1
|
de Santana MR, dos Santos YB, Santos KS, Santos Junior MC, Victor MM, Ramos GDS, do Nascimento RP, Costa SL. Differential Interactions of Flavonoids with the Aryl Hydrocarbon Receptor In Silico and Their Impact on Receptor Activity In Vitro. Pharmaceuticals (Basel) 2024; 17:980. [PMID: 39204085 PMCID: PMC11356971 DOI: 10.3390/ph17080980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
The molecular mechanisms underlying the observed anticancer effects of flavonoids remain unclear. Increasing evidence shows that the aryl hydrocarbon receptor (AHR) plays a crucial role in neoplastic disease progression, establishing it as a potential drug target. This study evaluated the potential of hydroxy flavonoids, known for their anticancer properties, to interact with AHR, both in silico and in vitro, aiming to understand the mechanisms of action and identify selective AHR modulators. A PAS-B domain homology model was constructed to evaluate in silico interactions of chrysin, naringenin, quercetin apigenin and agathisflavone. The EROD activity assay measured the effects of flavonoids on AHR's activity in human breast cancer cells (MCF7). Simulations showed that chrysin, apigenin, naringenin, and quercetin have the highest AHR binding affinity scores (-13.14 to -15.31), while agathisflavone showed low scores (-0.57 and -5.14). All tested flavonoids had the potential to inhibit AHR activity in a dose-dependent manner in the presence of an agonist (TCDD) in vitro. This study elucidates the distinct modulatory effects of flavonoids on AHR, emphasizing naringenin's newly described antagonistic potential. It underscores the importance of understanding flavonoid's molecular mechanisms, which is crucial for developing novel cancer therapies based on these molecules.
Collapse
Affiliation(s)
- Monique Reis de Santana
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil; (M.R.d.S.); (R.P.d.N.)
| | - Ylanna Bonfim dos Santos
- Molecular Modeling Laboratory, Department of Health, State University of Feira de Santana, Feira de Santana 44036-900, Brazil; (Y.B.d.S.); (K.S.S.); (M.C.S.J.)
| | - Késsia Souza Santos
- Molecular Modeling Laboratory, Department of Health, State University of Feira de Santana, Feira de Santana 44036-900, Brazil; (Y.B.d.S.); (K.S.S.); (M.C.S.J.)
| | - Manoelito Coelho Santos Junior
- Molecular Modeling Laboratory, Department of Health, State University of Feira de Santana, Feira de Santana 44036-900, Brazil; (Y.B.d.S.); (K.S.S.); (M.C.S.J.)
| | - Mauricio Moraes Victor
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador 40231-300, Brazil; (M.M.V.); (G.d.S.R.)
| | - Gabriel dos Santos Ramos
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador 40231-300, Brazil; (M.M.V.); (G.d.S.R.)
| | - Ravena Pereira do Nascimento
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil; (M.R.d.S.); (R.P.d.N.)
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil; (M.R.d.S.); (R.P.d.N.)
- National Institute of Translational Neuroscience (INNT), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
2
|
Xiang J, Mlambo R, Shaw I, Seid Y, Shah H, He Y, Kpegah JKSK, Tan S, Zhou W, He B. Cryopreservation of bioflavonoid-rich plant sources and bioflavonoid-microcapsules: emerging technologies for preserving bioactivity and enhancing nutraceutical applications. Front Nutr 2023; 10:1232129. [PMID: 37781117 PMCID: PMC10538722 DOI: 10.3389/fnut.2023.1232129] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Bioflavonoids are natural polyphenolic secondary metabolites that are medicinal. These compounds possess antitumor, cardioprotective, anti-inflammatory, antimicrobial, antiviral, and anti-psoriasis properties to mention a few. Plant species that contain bioflavonoids should be preserved as such. Also, the bioactivity of the bioflavonoids as neutraceutical compounds is compromised following extraction due to their sensitivity to environmental factors like light, pH, and temperature. In other words, the bioflavonoids' shelf-life is affected. Scientists noticed that bioflavonoids have low solubility properties, poor absorption, and low bioavailability following consumption. Researchers came up with methods to encapsulate bioflavonoids in order to circumvent the challenges above and also to mask the unpleasant order these chemicals may have. Besides, scientists cryopreserve plant species that contain bioflavonoids. In this review, we discuss cryopreservation and bioflavonoid microencapsulation focusing mainly on vitrification, slow freezing, and freeze-drying microencapsulation techniques. In addition, we highlight bioflavonoid extraction techniques, medicinal properties, challenges, and future perspectives of cryopreservation and microencapsulation of bioflavonoids. Regardless of the uniqueness of cryopreservation and microencapsulation as methods to preserve bioflavonoid sources and bioflavonoids' bioactivity, there are challenges reported. Freeze-drying technology is costly. Cryoprotectants damage the integrity of plant cells, to say the least. Researchers are working very hard to overcome these challenges. Encapsulating bioflavonoids via coaxial electrospray and then cryopreserving the micro/nanocapsules produced can be very interesting.
Collapse
Affiliation(s)
- Jia Xiang
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Ronald Mlambo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yimer Seid
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Hamid Shah
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, China
| | - Julius K S K Kpegah
- Department of Plastic Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songwen Tan
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Wenhu Zhou
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, China
| |
Collapse
|
3
|
Hu X, Zhao M, Hu S, Liu Q, Liao W, Wan L, Wei F, Su F, Guo Y, Zeng J. LINC00853 contributes to tumor stemness of gastric cancer through FOXP3-mediated transcription of PDZK1IP1. Biol Proced Online 2023; 25:20. [PMID: 37403034 DOI: 10.1186/s12575-023-00213-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The incidence and mortality of gastric cancer (GC) are high worldwide. Tumor stemness is a major contributor to tumorigenesis and development of GC, in which long non-coding RNAs (lncRNAs) are deeply involved. The purpose of this study was to investigate the influences and mechanisms of LINC00853 in the progression and stemness of GC. METHODS The level of LINC00853 was assessed based on The Cancer Genome Atlas (TCGA) database and GC cell lines by RT-PCR and in situ hybridization. An evaluation of biological functions of LINC00853 including cell proliferation, migration, and tumor stemness was conducted via gain-and loss-of-function experiments. Furthermore, RNA pull-down and RNA immunoprecipitation (RIP) assay were utilized to validate the connection between LINC00853 and the transcription factor Forkhead Box P3 (FOXP3). Nude mouse xenograft model was used to identify the impacts of LINC00853 on tumor development. RESULTS We identified the up-regulated levels of lncRNA-LINC00853 in GC, and its overexpression correlates with poor prognosis in GC patients. Further study indicated that LINC00853 promoted cell proliferation, migration and cancer stemness while suppressed cell apoptosis. Mechanistically, LINC00853 directly bind to FOXP3 and promoted FOXP3-mediated transcription of PDZK1 interacting protein 1(PDZK1IP1). Alterations of FOXP3 or PDZK1IP1 reversed the LINC00853-induced biological effects on cell proliferation, migration and stemness. Moreover, xenograft tumor assay was used to investigate the function of LINC00853 in vivo. CONCLUSIONS Taken together, these findings revealed the tumor-promoting activity of LINC00853 in GC, expanding our understanding of lncRNAs regulation on GC pathogenesis.
Collapse
Affiliation(s)
- Xia Hu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Maoyuan Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Shuangyuan Hu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Qingsong Liu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wenhao Liao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lina Wan
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Fangting Su
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yu Guo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
4
|
Fischer D, Fluegen G, Garcia P, Ghaffari-Tabrizi-Wizsy N, Gribaldo L, Huang RYJ, Rasche V, Ribatti D, Rousset X, Pinto MT, Viallet J, Wang Y, Schneider-Stock R. The CAM Model-Q&A with Experts. Cancers (Basel) 2022; 15:cancers15010191. [PMID: 36612187 PMCID: PMC9818221 DOI: 10.3390/cancers15010191] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
The chick chorioallantoic membrane (CAM), as an extraembryonic tissue layer generated by the fusion of the chorion with the vascularized allantoic membrane, is easily accessible for manipulation. Indeed, grafting tumor cells on the CAM lets xenografts/ovografts develop in a few days for further investigations. Thus, the CAM model represents an alternative test system that is a simple, fast, and low-cost tool to study tumor growth, drug response, or angiogenesis in vivo. Recently, a new era for the CAM model in immune-oncology-based drug discovery has been opened up. Although there are many advantages offering extraordinary and unique applications in cancer research, it has also disadvantages and limitations. This review will discuss the pros and cons with experts in the field.
Collapse
Affiliation(s)
- Dagmar Fischer
- Division of Pharmaceutical Technology, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Georg Fluegen
- Department of General, Visceral, Thoracic and Pediatric Surgery (A), Medical Faculty, Heinrich-Heine-University, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Paul Garcia
- Institute for Advanced Biosciences, Research Center Université Grenoble Alpes (UGA)/Inserm U 1209/CNRS 5309, 38700 La Tronche, France
- R&D Department, Inovotion, 38700 La Tronche, France
| | - Nassim Ghaffari-Tabrizi-Wizsy
- SFL Chicken CAM Lab, Department of Immunology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Laura Gribaldo
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Ruby Yun-Ju Huang
- School of Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Volker Rasche
- Department of Internal Medicine II, Ulm University Medical Center, 89073 Ulm, Germany
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neurosciences, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | | | - Marta Texeira Pinto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
| | - Jean Viallet
- R&D Department, Inovotion, 38700 La Tronche, France
| | - Yan Wang
- R&D Department, Inovotion, 38700 La Tronche, France
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, 94054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8526-069
| |
Collapse
|
5
|
Jin N, Liu Y, Xiong P, Zhang Y, Mo J, Huang X, Zhou Y. Exploring the Underlying Mechanism of Ren-Shen-Bai-Du Powder for Treating Inflammatory Bowel Disease Based on Network Pharmacology and Molecular Docking. Pharmaceuticals (Basel) 2022; 15:ph15091038. [PMID: 36145261 PMCID: PMC9504917 DOI: 10.3390/ph15091038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022] Open
Abstract
Ren-Shen-Bai-Du Powder (RSBDP) is currently used for inflammatory bowel disease (IBD) therapy in China. However, its potential mechanism against IBD remains unknown. In this study, we initially identified potential targets of RSBDP against IBD through network pharmacology analysis and molecular docking. Afterwards, the DSS-induced colitis mice model was employed to assess the effects of RSBDP. The results of network pharmacology indicated that a total of 39 main active ingredients in RSBDP generated 309 pairs of drug-ingredient and ingredient-target correspondences through 115 highly relevant targets of IBD. The primary ingredients (quercetin, kaempferol, luteolin, naringenin, and sitosterol) exerted functions through multiple targets that include CYP1B1, CA4/7, and ESR1/2, etc. GO functional enrichment analysis revealed that the targets related to IBD were significantly enriched in the oxidation-reduction process, protein binding, and cytosol. Per the KEGG pathway analysis, pathways in cancer, adherens junction, and nitrogen metabolism were pivotal in the RSBDP’s treatment of IBD. Additionally, molecular docking demonstrated that a set of active ingredients and their targets displayed good bonding capabilities (e.g., kaempferol and AhR with combined energy < 5 kcal/mol). For the animal experiment, oral RSBDP promoted weight recovery, reduced intestinal inflammation, and decreased serum IL-1, IL-6, and IL-8 concentrations in the DSS + RSBDP group. Meanwhile, oral RSBDP significantly up-regulated the mRNA levels of CA7, CPY1B1, and PTPN11; in particular, the expression level of CYP1B1 in the DSS + RSBDP group was up-regulated by as high as 9-fold compared to the DSS group. Western blot results indicated that the protein levels of AKR1C1, PI3K, AKT, p-AKT, and Bcl-2 were significantly down-regulated, and Bax was significantly up-regulated in the DSS + RSBDP group. Compared to the DSS and control groups, the Bax/Bcl-2 value in the DSS + RSBDP group increased 4-fold and 8-fold, respectively, which suggested that oral RSBDP promotes apoptosis of intestinal epithelial cells. In short, this study established quercetin, kaempferol, luteolin, naringenin, and sitosterol as the primary key active ingredients of RSBDP that exert synergistic therapeutic effects against IBD through modulating the AhR/CYP1B1 and AKR1C1/PI3K/AKT pathways.
Collapse
Affiliation(s)
- Ni Jin
- School of Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yao Liu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Peiyu Xiong
- School of Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yiyi Zhang
- School of Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingwen Mo
- School of Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiushen Huang
- School of Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhou
- School of Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence:
| |
Collapse
|
6
|
Kgatle MM, Lawal IO, Mashabela G, Boshomane TMG, Koatale PC, Mahasha PW, Ndlovu H, Vorster M, Rodrigues HG, Zeevaart JR, Gordon S, Moura-Alves P, Sathekge MM. COVID-19 Is a Multi-Organ Aggressor: Epigenetic and Clinical Marks. Front Immunol 2021; 12:752380. [PMID: 34691068 PMCID: PMC8531724 DOI: 10.3389/fimmu.2021.752380] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022] Open
Abstract
The progression of coronavirus disease 2019 (COVID-19), resulting from a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, may be influenced by both genetic and environmental factors. Several viruses hijack the host genome machinery for their own advantage and survival, and similar phenomena might occur upon SARS-CoV-2 infection. Severe cases of COVID-19 may be driven by metabolic and epigenetic driven mechanisms, including DNA methylation and histone/chromatin alterations. These epigenetic phenomena may respond to enhanced viral replication and mediate persistent long-term infection and clinical phenotypes associated with severe COVID-19 cases and fatalities. Understanding the epigenetic events involved, and their clinical significance, may provide novel insights valuable for the therapeutic control and management of the COVID-19 pandemic. This review highlights different epigenetic marks potentially associated with COVID-19 development, clinical manifestation, and progression.
Collapse
Affiliation(s)
- Mankgopo Magdeline Kgatle
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Ismaheel Opeyemi Lawal
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Gabriel Mashabela
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Tebatso Moshoeu Gillian Boshomane
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Nuclear and Oncology Division, AXIM Medical (Pty), Midrand
| | - Palesa Caroline Koatale
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Phetole Walter Mahasha
- Precision Medicine and SAMRC Genomic Centre, Grants, Innovation, and Product Development (GIPD) Unit, South African Medical Research Council, Pretoria, South Africa
| | - Honest Ndlovu
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Hosana Gomes Rodrigues
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Campinas, Brazil
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- South African Nuclear Energy Corporation, Radiochemistry and NuMeRI PreClinical Imaging Facility, Mahikeng, South Africa
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Pedro Moura-Alves
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mike Machaba Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Microbial Transformation of Galangin Derivatives and Cytotoxicity Evaluation of Their Metabolites. Catalysts 2021. [DOI: 10.3390/catal11091020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Galangin (1), 3-O-methylgalangin (2), and galangin flavanone (3), the major bioactive flavonoids isolated from Alpinia officinarum, were biotransformed into one novel and four known metabolites (4–8) by application of the fungal strains Mucor hiemalis and Absidia coerulea as biocatalysts. Their structures were characterized by extensive spectroscopic analyses including one- and two-dimensional nuclear magnetic resonance spectroscopy and mass spectrometry. Compounds 1–7 were evaluated for their cytotoxic activities against cancer cell lines using the MTT assay. The new compound 3-O-methylgalangin-7-O-β-D-glucopyranoside (6) exhibited the most potent cytotoxic activity against MCF-7, A375P, B16F10, B16F1, and A549 cancer cell lines with the IC50 values at 3.55–6.23 μM.
Collapse
|
8
|
AhR and Cancer: From Gene Profiling to Targeted Therapy. Int J Mol Sci 2021; 22:ijms22020752. [PMID: 33451095 PMCID: PMC7828536 DOI: 10.3390/ijms22020752] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that has been shown to be an essential regulator of a broad spectrum of biological activities required for maintaining the body’s vital functions. AhR also plays a critical role in tumorigenesis. Its role in cancer is complex, encompassing both pro- and anti-tumorigenic activities. Its level of expression and activity are specific to each tumor and patient, increasing the difficulty of understanding the activating or inhibiting roles of AhR ligands. We explored the role of AhR in tumor cell lines and patients using genomic data sets and discuss the extent to which AhR can be considered as a therapeutic target.
Collapse
|
9
|
Wang Z, Snyder M, Kenison JE, Yang K, Lara B, Lydell E, Bennani K, Novikov O, Federico A, Monti S, Sherr DH. How the AHR Became Important in Cancer: The Role of Chronically Active AHR in Cancer Aggression. Int J Mol Sci 2020; 22:ijms22010387. [PMID: 33396563 PMCID: PMC7795223 DOI: 10.3390/ijms22010387] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
For decades, the aryl hydrocarbon receptor (AHR) was studied for its role in environmental chemical toxicity i.e., as a quirk of nature and a mediator of unintended consequences of human pollution. During that period, it was not certain that the AHR had a “normal” physiological function. However, the ongoing accumulation of data from an ever-expanding variety of studies on cancer, cancer immunity, autoimmunity, organ development, and other areas bears witness to a staggering array of AHR-controlled normal and pathological activities. The objective of this review is to discuss how the AHR has gone from a likely contributor to genotoxic environmental carcinogen-induced cancer to a master regulator of malignant cell progression and cancer aggression. Particular focus is placed on the association between AHR activity and poor cancer outcomes, feedback loops that control chronic AHR activity in cancer, and the role of chronically active AHR in driving cancer cell invasion, migration, cancer stem cell characteristics, and survival.
Collapse
Affiliation(s)
- Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Megan Snyder
- Graduate Program in Genetics and Genomics, Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Jessica E. Kenison
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Kangkang Yang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Brian Lara
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | - Emily Lydell
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Kawtar Bennani
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | | | - Anthony Federico
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - Stefano Monti
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
- Correspondence: ; Tel.: +1-617-358-1707
| |
Collapse
|