1
|
Serrano-Albal M, Aquilina MC, Kiazim LG, Zak LJ, Griffin DK, Ellis PJ. Effect of Two Different Sperm Selection Methods on Boar Sperm Parameters and In Vitro Fertilisation Outcomes. Animals (Basel) 2024; 14:2544. [PMID: 39272329 PMCID: PMC11394568 DOI: 10.3390/ani14172544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Porcine in vitro embryo production (IVP) protocols have conventionally used density gradient selection (DGS) by centrifugation to prepare sperm samples and achieve successful fertilisation. However, the possible toxicity of the solutions used and the potential damage caused by the centrifugation step may have a negative effect on the quality of the sample. Microfluidic chip-based sperm (MCS) sorting has been proposed as an alternative technique for the selection of high-quality sperm with the purpose of improving reproductive outcomes in IVF. This device does not require centrifugation or any toxic solution to prepare the sample for fertilisation. The sample is not subjected to unnecessary stress, and the process is less operator-dependent. In this study, we compared the sperm parameters of unselected extender-diluted boar semen samples with selected samples using DGS and MCS methods. The results show an expected reduction in sperm concentration after both methods. All the groups were significantly different from one another, with MCS being the group with the lowest concentration. Though the three groups had a similar overall motility, significant differences were found in progressive motility when comparing the unselected group (control, 19.5 ± 1.4%) with DGS and MCS. Progressive motility in DGS was also significantly higher than in MCS (65.2 ± 4.9% and 45.7% ± 5.3, respectively). However, MCS selection resulted in enriched sperm samples with a significantly lower proportion of morphologically abnormal sperm compared to DGS. After fertilisation, no statistical differences were found between the two methods for embryological parameters such as cleavage rates, blastulation rates, and embryo quality. The number of cells in blastocysts derived from MCS was significantly greater than those derived from DGS sperm. Thus, we demonstrate that MCS is at least as good as the standard DGS for most measures. As a more gentle and reproducible approach for sperm selection, however, it could improve consistency and improve IVP outcomes as mediated by a greater proportion of morphologically normal sperm and manifested by a higher cell count in blastocysts.
Collapse
Affiliation(s)
| | | | - Lucas G Kiazim
- School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK
| | - Louisa J Zak
- Topigs Norsvin Research Center, Meerendonkweg 25, 5216 TZ 's-Hertogenbosch, The Netherlands
| | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK
| | - Peter J Ellis
- School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK
| |
Collapse
|
2
|
Toledo-Guardiola SM, Párraga-Ros E, Seva J, Luongo C, García-Vázquez FA, Soriano-Úbeda C, Matás C. Artificial insemination of all ejaculated sperm fractions accelerates embryo development and increases the uterine vascularity in the pig. Theriogenology 2024; 219:32-38. [PMID: 38382215 DOI: 10.1016/j.theriogenology.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
The semen of boar is characterized by ejaculation in well-differentiated fractions with specific concentration, composition, and volume. The 'sperm-rich fraction' (SRF), the most concentrated seminal fraction, is habitually collected in insemination centers to make artificial insemination (AI) doses. The absence of the other fractions in AI doses could alter the uterine reaction to AI and not trigger essential responses that could maximize fertility. Thus, there is an urge to ascertain the impact of different ejaculate fractions on the uterus after AI to optimize the semen doses. This work analyzed specific parameters related to fertility in pregnant artificially inseminated sows (n = 15) with ac-cumulative fractions of the semen of boars (n = 6): F1, composed of the sperm-rich fraction (SRF); F2, composed of F1 plus the intermediate fraction; F3, composed of F2 plus the post-SRF. Non-inseminated sows (n = 5) were included as control (C). The different types of seminal dose did not affect the number of ovulated follicles (CL; corpora lutea, p > 0.05) but did affect the embryo development (p < 0.05). The proportion of embryos in morula stages was significantly higher in AI-F1 sows (84.4%, p < 0.05). Morulas and blastocysts were balanced in AI-F2 or AI-F3 (p > 0.05). Independently of the type of seminal dose (F1, F2, or F3), we observed by immunohistochemistry that AI significantly increased uterine vascularization, although with some anatomical differences. The cranial region of the uterine horns was significantly more vascularized in AI-F1 or AI-F2 sows (26.7 ± 2.3 and 28.6 ± 2.0%, respectively), and AI-F3 showed significantly less vascularization at that point (17.8 ± 1.6%, p < 0.05). To summarize, the synergistic effect of all ejaculate fractions accelerates embryo development, at least during the preimplantation period, and increases the uterine reaction to AI in certain parts of the uterus.
Collapse
Affiliation(s)
- Santa María Toledo-Guardiola
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum Universidad de Murcia, Murcia, Spain.
| | - Ester Párraga-Ros
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum Universidad de Murcia, Murcia, Spain.
| | - Juan Seva
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum Universidad de Murcia, Murcia, Spain.
| | - Chiara Luongo
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum Universidad de Murcia, Murcia, Spain.
| | - Francisco A García-Vázquez
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum Universidad de Murcia, Murcia, Spain.
| | - C Soriano-Úbeda
- Departamento de Medicina, Cirugía y Anatomía Veterinaria, Facultad de Veterinaria, Universidad de León, León, Spain.
| | - C Matás
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
3
|
Álvarez-Rodríguez M, Martinez-Serrano CA, Gardela J, Nieto H, de Mercado E, Rodríguez-Martínez H. MicroRNA expression in specific segments of the pig periovulatory internal genital tract is differentially regulated by semen or by seminal plasma. Res Vet Sci 2024; 168:105134. [PMID: 38194892 DOI: 10.1016/j.rvsc.2023.105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
microRNAs play pivotal roles during mammalian reproduction, including the cross-talk between gametes, embryos and the maternal genital tract. Mating induces changes in the expression of mRNA transcripts in the female, but whether miRNAs are involved remains to be elucidated. In the current study, we mapped 181 miRNAs in the porcine peri-ovulatory female reproductive tract: Cervix (Cvx), distal and proximal uterus (Dist-Ut, Prox-Ut), Utero-tubal-junction (UTJ), isthmus (Isth), ampulla (Amp), and infundibulum (Inf) when exposed to semen (natural mating (NM) or artificial insemination (AI-P1)) or to infusions of sperm-free seminal plasma (SP): the first 10 mL of the sperm rich fraction (SP-P1) or the entire ejaculate (SP-E). Among the most interesting findings, NM decreased mir-671, implicated in uterine development and pregnancy loss prior to embryo implantation, in Cvx, Dist-UT, Prox-UT, Isth, and Inf, while it increased in Amp. NM and SP-E induced the downregulation of miR-let7A-1 (Dist-UT, Prox-UT), a regulator of immunity during pregnancy. miR-34C-1, a regulator of endometrial receptivity gene expression, was increased in Dist-UT, UTJ and Amp (NM), in Prox-UT (AI-P1), and in Amp (SP-P1). miR-296, a modulator of the inflammatory response and apoptosis, was upregulated in the UTJ (all treatments). NM elicited the highest miRNA activity in the sperm reservoir (UTJ), suggesting that key-regulators such as miR-34c or miR-296 may modulate the metabolic processes linked to the adequate preparation for gamete encounter in the oviduct. Our results suggest that SP should be maintained in AI to warrant miRNA regulation within the female genital tract for reproductive success.
Collapse
Affiliation(s)
- Manuel Álvarez-Rodríguez
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain; Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Cristina A Martinez-Serrano
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain; Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Jaume Gardela
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Helena Nieto
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain
| | - Eduardo de Mercado
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain
| | - Heriberto Rodríguez-Martínez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden.
| |
Collapse
|
4
|
Álvarez-Rodríguez M, Roca J, Martínez EA, Rodríguez-Martínez H. Mating modifies the expression of crucial oxidative-reductive transcripts in the pig oviductal sperm reservoir: is the female ensuring sperm survival? Front Endocrinol (Lausanne) 2023; 14:1042176. [PMID: 37351104 PMCID: PMC10282951 DOI: 10.3389/fendo.2023.1042176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/17/2023] [Indexed: 06/24/2023] Open
Abstract
Background Mating induces large changes in the female genital tract, warranting female homeostasis and immune preparation for pregnancy, including the preservation of crucial oxidative status among its pathways. Being highly susceptible to oxidative stress, sperm survival and preserved function depend on the seminal plasma, a protection that is removed during sperm handling but also after mating when spermatozoa enter the oviduct. Therefore, it is pertinent to consider that the female sperm reservoir takes up this protection, providing a suitable environment for sperm viability. These aspects have not been explored despite the increasing strategies in modulating the female status through diet control and nutritional supplementation. Aims To test the hypothesis that mating modifies the expression of crucial oxidative-reductive transcripts across the entire pig female genital tract (cervix to infundibulum) and, particularly in the sperm reservoir at the utero-tubal junction, before ovulation, a period dominated by estrogen stimulation of ovarian as well as of seminal origin. Methods The differential expression of estrogen (ER) and progesterone (PR) receptors and of 59 oxidative-reductive transcripts were studied using a species-specific microarray platform, in specific segments of the peri-ovulatory sow reproductive tract in response to mating. Results Mating induced changes along the entire tract, with a conspicuous downregulation of both ER and PR and an upregulation of superoxide dismutase 1 (SOD1), glutaredoxin (GLRX3), and peroxiredoxin 1 and 3 (PRDX1, PRDX3), among other NADH Dehydrogenase Ubiquinone Flavoproteins, in the distal uterus segment. These changes perhaps helped prevent oxidative stress in the area adjacent to the sperm reservoir at the utero-tubal junction. Concomitantly, there were a downregulation of catalase (CAT) and NADH dehydrogenase (ubiquinone) oxidoreductases 1 beta subcomplex, subunit 1 (NDUFB1) in the utero-tubal junction alongside an overall downregulation of CAT, SOD1, and PRDX3 in the ampullar and infundibulum segments. Conclusions Natural mating is an inducer of changes in the expression of female genes commanding antioxidant enzymes relevant for sperm survival during sperm transport, under predominant estrogen influence through the bloodstream and semen. The findings could contribute to the design of new therapeutics for the female to improve oxidative-reductive balance.
Collapse
Affiliation(s)
- Manuel Álvarez-Rodríguez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Department of Animal Reproduction, Instituto Nacional de Investigación Agraria y Alimentaria (INIA)-CSIC, Madrid, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - Emilio A. Martínez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - Heriberto Rodríguez-Martínez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Abstract
Sperm selection is a clinical need for guided fertilization in men with low-quality semen. In this regard, microfluidics can provide an enabling platform for the precise manipulation and separation of high-quality sperm cells through applying various stimuli, including chemical agents, mechanical forces, and thermal gradients. In addition, microfluidic platforms can help to guide sperms and oocytes for controlled in vitro fertilization or sperm sorting using both passive and active methods. Herein, we present a detailed review of the use of various microfluidic methods for sorting and categorizing sperms for different applications. The advantages and disadvantages of each method are further discussed and future perspectives in the field are given.
Collapse
|
6
|
Rodriguez-Martinez H, Martinez EA, Calvete JJ, Peña Vega FJ, Roca J. Seminal Plasma: Relevant for Fertility? Int J Mol Sci 2021; 22:ijms22094368. [PMID: 33922047 PMCID: PMC8122421 DOI: 10.3390/ijms22094368] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Seminal plasma (SP), the non-cellular component of semen, is a heterogeneous composite fluid built by secretions of the testis, the epididymis and the accessory sexual glands. Its composition, despite species-specific anatomical peculiarities, consistently contains inorganic ions, specific hormones, proteins and peptides, including cytokines and enzymes, cholesterol, DNA and RNA-the latter often protected within epididymis- or prostate-derived extracellular vesicles. It is beyond question that the SP participates in diverse aspects of sperm function pre-fertilization events. The SP also interacts with the various compartments of the tubular genital tract, triggering changes in gene function that prepares for an eventual successful pregnancy; thus, it ultimately modulates fertility. Despite these concepts, it is imperative to remember that SP-free spermatozoa (epididymal or washed ejaculated) are still fertile, so this review shall focus on the differences between the in vivo roles of the SP following semen deposition in the female and those regarding additions of SP on spermatozoa handled for artificial reproduction, including cryopreservation, from artificial insemination to in vitro fertilization. This review attempts, including our own results on model animal species, to critically summarize the current knowledge of the reproductive roles played by SP components, particularly in our own species, which is increasingly affected by infertility. The ultimate goal is to reconcile the delicate balance between the SP molecular concentration and their concerted effects after temporal exposure in vivo. We aim to appraise the functions of the SP components, their relevance as diagnostic biomarkers and their value as eventual additives to refine reproductive strategies, including biotechnologies, in livestock models and humans.
Collapse
Affiliation(s)
- Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
- Correspondence: ; Tel.: +46-132-869-25
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (E.A.M.); (J.R.)
| | - Juan J. Calvete
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, C.S.I.C., 46010 Valencia, Spain;
| | - Fernando J. Peña Vega
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, 10003 Caceres, Spain;
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (E.A.M.); (J.R.)
| |
Collapse
|