1
|
Li N, Xu J, Yan X, Liu Q, Zhang M. TROP2 promotes the proliferation of triple-negative breast cancer cells via calcium ion-dependent ER stress signaling pathway. Cell Biochem Biophys 2024; 82:2205-2216. [PMID: 38816653 DOI: 10.1007/s12013-024-01327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE To explore the molecular mechanisms of tumor-associated calcium signal transduction factor 2 (TROP2) affecting the occurrence and development of triple-negative breast cancer (TNBC). METHODS The TCGA database, immunohistochemical staining, and qRT-PCR were used to analyze the expression of TROP2 in TNBC tissues and cells. The protein expressions of TROP2 and inositol 1,4,5-trisphosphate receptor (IP3R) after TROP2 knockdown were detected by western blot (WB). Cell proliferation was detected by CCK8 and colony formation assay, Annexin V-APC/PI flow cytometry was used to detect apoptosis, and intracellular calcium ion (Ca2+) was detected by flow cytometry with Fura 2-AM fluorescent probe. Finally, the morphological changes of the endoplasmic reticulum (ER) were observed by transmission electron microscopy, and the expression of ER stress (ERS)-related proteins was detected by WB and immunofluorescence staining. RESULTS TROP2 was up-regulated in TNBC tumor tissues and cells. Silencing TROP2 decreased the proliferation rate and clone formation number, and increased the apoptosis rate and the Ca2+ level in TNBC cells. These phenomena were reversed after the addition of 2-APB. In addition, after TROP2 knockdown, the expressions of IP3R and ERS-related proteins were up-regulated, the ER was cystic dilated, and ERS was activated. And the addition of 2-APB significantly inhibited the activation of ERS induced by TROP2 knockdown. CONCLUSION TROP2 regulated the proliferation and apoptosis of TNBC cells through a Ca2+-dependent ERS signaling pathway.
Collapse
Affiliation(s)
- Ning Li
- Department of Breast Surgery, Changzhi People's Hospital, Changzhi, 046000, China
| | - Jianzhong Xu
- Department of Breast Surgery, Changzhi People's Hospital, Changzhi, 046000, China
| | - Xi Yan
- Department of Pharmacy, Changzhi People's Hospital, Changzhi, 046000, China
| | - Qing Liu
- Department of Emergency, Changzhi People's Hospital, Changzhi, 046000, China
| | - Mingqi Zhang
- Department of Breast Surgery, Changzhi People's Hospital, Changzhi, 046000, China.
| |
Collapse
|
2
|
Ji R, Chang L, An C, Zhang J. Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: implications for cancer. Front Cell Dev Biol 2024; 12:1326231. [PMID: 38505262 PMCID: PMC10949864 DOI: 10.3389/fcell.2024.1326231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular acidification of tumors is common. Through proton-sensing ion channels or proton-sensing G protein-coupled receptors (GPCRs), tumor cells sense extracellular acidification to stimulate a variety of intracellular signaling pathways including the calcium signaling, which consequently exerts global impacts on tumor cells. Proton-sensing ion channels, and proton-sensing GPCRs have natural advantages as drug targets of anticancer therapy. However, they and the calcium signaling regulated by them attracted limited attention as potential targets of anticancer drugs. In the present review, we discuss the progress in studies on proton-sensing ion channels, and proton-sensing GPCRs, especially emphasizing the effects of calcium signaling activated by them on the characteristics of tumors, including proliferation, migration, invasion, metastasis, drug resistance, angiogenesis. In addition, we review the drugs targeting proton-sensing channels or GPCRs that are currently in clinical trials, as well as the relevant potential drugs for cancer treatments, and discuss their future prospects. The present review aims to elucidate the important role of proton-sensing ion channels, GPCRs and calcium signaling regulated by them in cancer initiation and development. This review will promote the development of drugs targeting proton-sensing channels or GPCRs for cancer treatments, effectively taking their unique advantage as anti-cancer drug targets.
Collapse
Affiliation(s)
- Renhui Ji
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Li Chang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| | - Junjing Zhang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
3
|
Tscherrig D, Bhardwaj R, Biner D, Dernič J, Ross-Kaschitza D, Peinelt C, Hediger MA, Lochner M. Development of chemical tools based on GSK-7975A to study store-operated calcium entry in cells. Cell Calcium 2024; 117:102834. [PMID: 38006628 DOI: 10.1016/j.ceca.2023.102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Many physiological functions, such as cell differentiation, proliferation, muscle contraction, neurotransmission and fertilisation, are regulated by changes of Ca2+ levels. The major Ca2+ store in cells is the endoplasmic reticulum (ER). Certain cellular processes induce ER store depletion, e.g. by activating IP3 receptors, that in turn induces a store refilling process known as store-operated calcium entry (SOCE). This refilling process entails protein-protein interactions between Ca2+ sensing stromal interaction molecules (STIM) in the ER membrane and Orai proteins in the plasma membrane. Fully assembled STIM/Orai complexes then form highly selective Ca2+ channels called Ca2+ release-activated Ca2+ Channels (CRAC) through which Ca2+ ions flow into the cytosol and subsequently are pumped into the ER by the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). Abnormal SOCE has been associated with numerous human diseases and cancers, and therefore key players STIM and Orai have attracted significant therapeutic interest. Several potent experimental and clinical candidate compounds have been developed and have helped to study SOCE in various cell types. We have synthesized multiple novel small-molecule probes based on the known SOCE inhibitor GSK-7975A. Here we present GSK-7975A derivatives, which feature photo-caging, photo-crosslinking, biotin and clickable moieties, and also contain deuterium labels. Evaluation of these GSK-7975A probes using a fluorometric imaging plate reader (FLIPR)-Tetra-based Ca2+ imaging assay showed that most synthetic modifications did not have a detrimental impact on the SOCE inhibitory activity. The photo-caged GSK-7975A was also used in patch-clamp electrophysiology experiments. In summary, we have developed a number of active, GSK-7975A-based molecular probes that have interesting properties and therefore are useful experimental tools to study SOCE in various cells and settings.
Collapse
Affiliation(s)
- Dominic Tscherrig
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Rajesh Bhardwaj
- Department of BioMedical Research, University of Bern and Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, Freiburgstrasse 15, 3010 Bern, Switzerland.
| | - Daniel Biner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jan Dernič
- Department of BioMedical Research, University of Bern and Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Daniela Ross-Kaschitza
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Matthias A Hediger
- Department of BioMedical Research, University of Bern and Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, Freiburgstrasse 15, 3010 Bern, Switzerland.
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
4
|
Slowik EJ, Stankoska K, Bui NN, Pasieka B, Conrad D, Zapp J, Hoth M, Bogeski I, Kappl R. The calcium channel modulator 2-APB hydrolyzes in physiological buffers and acts as an effective radical scavenger and inhibitor of the NADPH oxidase 2. Redox Biol 2023; 61:102654. [PMID: 36889081 PMCID: PMC10009725 DOI: 10.1016/j.redox.2023.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
2-aminoethoxydiphenyl borate (2-APB) is commonly used as a tool to modulate calcium signaling in physiological studies. 2-APB has a complex pharmacology and acts as activator or inhibitor of a variety of Ca2+ channels and transporters. While unspecific, 2-APB is one of the most-used agents to modulate store-operated calcium entry (SOCE) mediated by the STIM-gated Orai channels. Due to its boron core structure, 2-APB tends to readily hydrolyze in aqueous environment, a property that results in a complex physicochemical behavior. Here, we quantified the degree of hydrolysis in physiological conditions and identified the hydrolysis products diphenylborinic acid and 2-aminoethanol by NMR. Notably, we detected a high sensitivity of 2-APB/diphenylborinic acid towards decomposition by hydrogen peroxide to compounds such as phenylboronic acid, phenol, and boric acid, which were, in contrast to 2-APB itself and diphenylborinic acid, insufficient to affect SOCE in physiological experiments. Consequently, the efficacy of 2-APB as a Ca2+ signal modulator strongly depends on the reactive oxygen species (ROS) production within the experimental system. The antioxidant behavior of 2-APB towards ROS and its resulting decomposition are inversely correlated to its potency to modulate Ca2+ signaling as shown by electron spin resonance spectroscopy (ESR) and Ca2+ imaging. Finally, we observed a strong inhibitory effect of 2-APB, i.e., its hydrolysis product diphenylborinic acid, on NADPH oxidase (NOX2) activity in human monocytes. These new 2-APB properties are highly relevant for Ca2+ and redox signaling studies and for pharmacological application of 2-APB and related boron compounds.
Collapse
Affiliation(s)
- Ewa Jasmin Slowik
- Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Katerina Stankoska
- Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Nhat Nguyen Bui
- Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Bastian Pasieka
- Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - David Conrad
- Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany; Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Saarland University Faculty of Medicine, 66421, Homburg, Germany
| | - Josef Zapp
- Department of Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Markus Hoth
- Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Ivan Bogeski
- Molecular Physiology, Department of Cardiovascular Physiology, UMG, 37073, Göttingen, Germany
| | - Reinhard Kappl
- Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
5
|
Vacassenno RM, Haddad CN, Cooper RL. Bacterial lipopolysaccharide hyperpolarizes the membrane potential and is antagonized by the K2p channel blocker doxapram. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109571. [PMID: 36740004 DOI: 10.1016/j.cbpc.2023.109571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Exposure of Drosophila skeletal muscle to bacterial lipopolysaccharides (LPS) rapidly and transiently hyperpolarizes membrane potential. However, the mechanism responsible for hyperpolarization remains unclear. The resting membrane potential of the cells is maintained through multiple mechanisms. This study investigated the possibility of LPS activating calcium-activated potassium channels (KCa) and/or K2p channels. 2-Aminoethyl diphenylborinate (2-APB), blocks uptake of Ca2+ into the endoplasmic reticulum (ER); thus, limiting release from ryanodine-sensitive internal stores to reduce the function of KCa channels. Exposure to 2-APB produces waves of hyperpolarization even during desensitization of the response to LPS and in the presence of doxapram. This finding in this study suggests that doxapram blocked the acid-sensitive K2p tandem-pore channel subtype known in mammals. Doxapram blocked LPS-induced hyperpolarization and depolarized the muscles as well as induced motor neurons to produce evoked excitatory junction potentials (EJPs). This was induced by depolarizing motor neurons, similar to the increase in extracellular K+ concentration. The hyperpolarizing effect of LPS was not blocked by decreased extracellular Ca2+or the presence of Cd2+. LPS appears to transiently activate doxapram sensitive K2p channels independently of KCa channels in hyperpolarizing the muscle. Septicemia induced by gram-negative bacteria results in an increase in inflammatory cytokines, primarily induced by bacterial LPS. Currently, blockers of LPS receptors in mammals are unknown; further research on doxapram and other K2p channels is warranted. (220 words).
Collapse
Affiliation(s)
- Rachael M Vacassenno
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA; Department of Biology, Eastern Kentucky University, Richmond, KY 40475, USA.
| | - Christine N Haddad
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
6
|
Alhamed AS, Alqinyah M, Alsufayan MA, Alhaydan IA, Alassmrry YA, Alnefaie HO, Algahtani MM, Alghaith AF, Alhamami HN, Albogami AM, Alhazzani K, AZ A. Blockade of store-operated calcium entry sensitizes breast cancer cells to cisplatin therapy via modulating inflammatory response. Saudi Pharm J 2023; 31:245-254. [PMID: 36942275 PMCID: PMC10023550 DOI: 10.1016/j.jsps.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Store-operated calcium entry (SOCE) is an important pathway for calcium signaling that regulates calcium influx across the plasma membrane upon the depletion of calcium stores in the endoplasmic reticulum. SOCE participates in regulating a number of physiological processes including cell proliferation and migration while SOCE dysregulation has been linked with pathophysiological conditions such as inflammation and cancer. The crosslink between cancer and inflammation has been well-established where abundant evidence demonstrate that inflammation plays a role in cancer pathophysiology and the response of cancer cells to chemotherapeutic agents including cisplatin. Indeed, the efficacy of cisplatin against cancer cells is reduced by inflammation. Interestingly, it was shown that SOCE enhances inflammatory signaling in immune cells. Therefore, the main objectives of this study are to examine the impact of SOCE inhibition on the cisplatin sensitivity of breast cancer cells and to explore its related mechanism in modulating the inflammatory response in breast cancer cells. Our findings showed that SOCE inhibitor (BTP2) enhanced cisplatin cytotoxicity against resistant breast cancer cells via inhibition of cell proliferation and migration as well as induction of apoptosis. We also found an upregulation in the gene expression of two major components of SOCE, STIM1 and ORAI1, in cisplatin-resistant breast cancer cells compared to cisplatin-sensitive breast cancer cells. In addition, cisplatin treatment increased the gene expression of STIM1 and ORAI1 in cisplatin-resistant breast cancer cells. Finally, this study also demonstrated that cisplatin therapy caused an increase in the gene expression of inflammatory mediators COX2, IL-8, and TNF-α as well as COX2 protein and upon SOCE inhibition using BTP2, the effect of cisplatin on the inflammatory mediators was reversed. Altogether, this study has proven the pivotal role of SOCE in cisplatin resistance of breast cancer cells and showed the importance of targeting this pathway in improving breast cancer therapy.
Collapse
Affiliation(s)
- Abdullah S. Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Corresponding author.
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Musab A. Alsufayan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ibrahim A. Alhaydan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yasseen A. Alassmrry
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hajar O. Alnefaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad M. Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adel F. Alghaith
- Department of pharmaceutics, College of pharmacy, king Saud university, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hussain N. Alhamami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Albogami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alanazi AZ
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Rubaiy HN. ORAI Calcium Channels: Regulation, Function, Pharmacology, and Therapeutic Targets. Pharmaceuticals (Basel) 2023; 16:162. [PMID: 37259313 PMCID: PMC9967976 DOI: 10.3390/ph16020162] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 11/25/2023] Open
Abstract
The changes in intracellular free calcium (Ca2+) levels are one of the most widely regulators of cell function; therefore, calcium as a universal intracellular mediator is involved in very important human diseases and disorders. In many cells, Ca2+ inflow is mediated by store-operated calcium channels, and it is recognized that the store-operated calcium entry (SOCE) is mediated by the two partners: the pore-forming proteins Orai (Orai1-3) and the calcium store sensor, stromal interaction molecule (STIM1-2). Importantly, the Orai/STIM channels are involved in crucial cell signalling processes such as growth factors, neurotransmitters, and cytokines via interaction with protein tyrosine kinase coupled receptors and G protein-coupled receptors. Therefore, in recent years, the issue of Orai/STIM channels as a drug target in human diseases has received considerable attention. This review summarizes and highlights our current knowledge of the Orai/STIM channels in human diseases and disorders, including immunodeficiency, myopathy, tubular aggregate, Stormorken syndrome, York platelet syndrome, cardiovascular and metabolic disorders, and cancers, as well as suggesting these channels as drug targets for pharmacological therapeutic intervention. Moreover, this work will also focus on the pharmacological modulators of Orai/STIM channel complexes. Together, our thoughtful of the biology and physiology of the Orai/STIM channels have grown remarkably during the past three decades, and the next important milestone in the field of store-operated calcium entry will be to identify potent and selective small molecules as a therapeutic agent with the purpose to target human diseases and disorders for patient benefit.
Collapse
Affiliation(s)
- Hussein N Rubaiy
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institute and Karolinska University Hospital, C1:68, 141 86 Stockholm, Sweden
| |
Collapse
|
8
|
Sanchez-Collado J, Nieto-Felipe J, Jardin I, Bhardwaj R, Berna-Erro A, Salido GM, Smani T, Hediger MA, Lopez JJ, Rosado JA. Store-Operated Calcium Entry in Breast Cancer Cells Is Insensitive to Orai1 and STIM1 N-Linked Glycosylation. Cancers (Basel) 2022; 15:cancers15010203. [PMID: 36612199 PMCID: PMC9818078 DOI: 10.3390/cancers15010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
N-linked glycosylation is a post-translational modification that affects protein function, structure, and interaction with other proteins. The store-operated Ca2+ entry (SOCE) core proteins, Orai1 and STIM1, exhibit N-glycosylation consensus motifs. Abnormal SOCE has been associated to a number of disorders, including cancer, and alterations in Orai1 glycosylation have been related to cancer invasiveness and metastasis. Here we show that treatment of non-tumoral breast epithelial cells with tunicamycin attenuates SOCE. Meanwhile, tunicamycin was without effect on SOCE in luminal MCF7 and triple negative breast cancer (TNBC) MDA-MB-231 cells. Ca2+ imaging experiments revealed that expression of the glycosylation-deficient Orai1 mutant (Orai1N223A) did not alter SOCE in MCF10A, MCF7 and MDA-MB-231 cells. However, expression of the non-glycosylable STIM1 mutant (STIM1N131/171Q) significantly attenuated SOCE in MCF10A cells but was without effect in SOCE in MCF7 and MDA-MB-231 cells. In non-tumoral cells impairment of STIM1 N-linked glycosylation attenuated thapsigargin (TG)-induced caspase-3 activation while in breast cancer cells, which exhibit a smaller caspase-3 activity in response to TG, expression of the non-glycosylable STIM1 mutant (STIM1N131/171Q) was without effect on TG-evoked caspase-3 activation. Summarizing, STIM1 N-linked glycosylation is essential for full SOCE activation in non-tumoral breast epithelial cells; by contrast, SOCE in breast cancer MCF7 and MDA-MB-231 cells is insensitive to Orai1 and STIM1 N-linked glycosylation, and this event might participate in the development of apoptosis resistance.
Collapse
Affiliation(s)
- Jose Sanchez-Collado
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Joel Nieto-Felipe
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Isaac Jardin
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Rajesh Bhardwaj
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, University of Bern, CH-3010 Bern, Switzerland
| | - Alejandro Berna-Erro
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Gines M. Salido
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Sevilla, 41013 Sevilla, Spain
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, University of Bern, CH-3010 Bern, Switzerland
| | - Jose J. Lopez
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
- Correspondence: Correspondence: (J.J.L.); (J.A.R.)
| | - Juan A. Rosado
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
- Correspondence: Correspondence: (J.J.L.); (J.A.R.)
| |
Collapse
|
9
|
Qin W, Feng J, Ma R, Jiang Y, Lv H. The effects of dantrolene and 2-aminoethoxydiphenyl borate (2-APB) on arsenic-induced osteoporosis. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Boutin JA, Bedut S, Jullian M, Galibert M, Frankiewicz L, Gloanec P, Ferry G, Puget K, Leprince J. Caloxin-derived peptides for the inhibition of plasma membrane calcium ATPases. Peptides 2022; 154:170813. [PMID: 35605801 DOI: 10.1016/j.peptides.2022.170813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
Abstract
Plasma membrane calcium ATPases (PMCAs) are a family of transmembrane proteins responsible for the extrusion of cytosolic Ca2+ to the extracellular milieu. They are important players of the calcium homeostasis possibly implicated in some important diseases. The reference inhibitors of PMCA extruding activity are on one hand ortho-vanadate (IC50 in the 30 mM range), and on the other a series of 12- to 20-mer peptides named caloxins (IC50 in the 100 µM scale). As for all integral membrane proteins, biochemistry and pharmacology are difficult to study on isolated and/or purified proteins. Using a series of reference blockers, we assessed a pharmacological window with which we could study the functionality of PMCAs in living cells. Using this system, we screened for alternative versions of caloxins, aiming at shortening the peptide backbone, introducing non-natural amino acids, and overall trying to get a glimpse at the structure-activity relationship between those new peptides and the protein in a cellular context. We describe a short series of equipotent 5-residue long analogues with IC50 in the low µM range.
Collapse
Affiliation(s)
- Jean A Boutin
- Institut de Recherches Servier, Croissy-sur-Seine, France; INSERM U1239, University of Rouen Normandy, Laboratory of Neuroendocrine Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen, France.
| | | | | | | | | | | | - Gilles Ferry
- Institut de Recherches Servier, Croissy-sur-Seine, France
| | | | - Jérôme Leprince
- INSERM U1239, University of Rouen Normandy, Laboratory of Neuroendocrine Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen, France; INSERM US51, University of Rouen Normandy, Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
| |
Collapse
|
11
|
Augustynek B, Gyimesi G, Dernič J, Sallinger M, Albano G, Klesse GJ, Kandasamy P, Grabmayr H, Frischauf I, Fuster DG, Peinelt C, Hediger MA, Bhardwaj R. Discovery of novel gating checkpoints in the Orai1 calcium channel by systematic analysis of constitutively active mutants of its paralogs and orthologs. Cell Calcium 2022; 105:102616. [PMID: 35792401 DOI: 10.1016/j.ceca.2022.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
In humans, there are three paralogs of the Orai Ca2+ channel that form the core of the store-operated calcium entry (SOCE) machinery. While the STIM-mediated gating mechanism of Orai channels is still under active investigation, several artificial and natural variants are known to cause constitutive activity of the human Orai1 channel. Surprisingly, little is known about the conservation of the gating checkpoints among the different human Orai paralogs and orthologs in other species. In our work, we show that the mutation corresponding to the activating mutation H134A in transmembrane helix 2 (TM2) of human Orai1 also activates Orai2 and Orai3, likely via a similar mechanism. However, this cross-paralog conservation does not apply to the "ANSGA" nexus mutations in TM4 of human Orai1, which is reported to mimic the STIM1-activated state of the channel. In investigating the mechanistic background of these differences, we identified two positions, H171 and F246 in human Orai1, that are not conserved among paralogs and that seem to be crucial for the channel activation triggered by the "ANSGA" mutations in Orai1. However, mutations of the same residues still allow gating of Orai1 by STIM1, suggesting that the ANSGA mutant of Orai1 may not be a surrogate for the STIM1-activated state of the Orai1 channel. Our results shed new light on these important gating checkpoints and show that the gating mechanism of Orai channels is affected by multiple factors that are not necessarily conserved among orai homologs, such as the TM4-TM3 coupling.
Collapse
Affiliation(s)
- Bartłomiej Augustynek
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Jan Dernič
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Giuseppe Albano
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Gabriel J Klesse
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Herwig Grabmayr
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Irene Frischauf
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Daniel G Fuster
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland.
| | - Rajesh Bhardwaj
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland; Current address: Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, 111 TW Alexander Drive, NC 27709, USA.
| |
Collapse
|
12
|
Bortolin A, Neto E, Lamghari M. Calcium Signalling in Breast Cancer Associated Bone Pain. Int J Mol Sci 2022; 23:ijms23031902. [PMID: 35163823 PMCID: PMC8836937 DOI: 10.3390/ijms23031902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/05/2023] Open
Abstract
Calcium (Ca2+) is involved as a signalling mediator in a broad variety of physiological processes. Some of the fastest responses in human body like neuronal action potential firing, to the slowest gene transcriptional regulation processes are controlled by pathways involving calcium signalling. Under pathological conditions these mechanisms are also involved in tumoral cells reprogramming, resulting in the altered expression of genes associated with cell proliferation, metastatisation and homing to the secondary metastatic site. On the other hand, calcium exerts a central function in nociception, from cues sensing in distal neurons, to signal modulation and interpretation in the central nervous system leading, in pathological conditions, to hyperalgesia, allodynia and pain chronicization. It is well known the relationship between cancer and pain when tumoral metastatic cells settle in the bones, especially in late breast cancer stage, where they alter the bone micro-environment leading to bone lesions and resulting in pain refractory to the conventional analgesic therapies. The purpose of this review is to address the Ca2+ signalling mechanisms involved in cancer cell metastatisation as well as the function of the same signalling tools in pain regulation and transmission. Finally, the possible interactions between these two cells types cohabiting the same Ca2+ rich environment will be further explored attempting to highlight new possible therapeutical targets.
Collapse
Affiliation(s)
- Andrea Bortolin
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Estrela Neto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
| | - Meriem Lamghari
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
13
|
Jain PP, Lai N, Xiong M, Chen J, Babicheva A, Zhao T, Parmisano S, Zhao M, Paquin C, Matti M, Powers R, Balistrieri A, Kim NH, Valdez-Jasso D, Thistlethwaite PA, Shyy JYJ, Wang J, Garcia JGN, Makino A, Yuan JXJ. TRPC6, a therapeutic target for pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1161-L1182. [PMID: 34704831 PMCID: PMC8715021 DOI: 10.1152/ajplung.00159.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary arterial hypertension (PAH) is a fatal and progressive disease. Sustained vasoconstriction due to pulmonary arterial smooth muscle cell (PASMC) contraction and concentric arterial remodeling due partially to PASMC proliferation are the major causes for increased pulmonary vascular resistance and increased pulmonary arterial pressure in patients with precapillary pulmonary hypertension (PH) including PAH and PH due to respiratory diseases or hypoxemia. We and others observed upregulation of TRPC6 channels in PASMCs from patients with PAH. A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) in PASMC triggers PASMC contraction and vasoconstriction, while Ca2+-dependent activation of PI3K/AKT/mTOR pathway is a pivotal signaling cascade for cell proliferation and gene expression. Despite evidence supporting a pathological role of TRPC6, no selective and orally bioavailable TRPC6 antagonist has yet been developed and tested for treatment of PAH or PH. In this study, we sought to investigate whether block of receptor-operated Ca2+ channels using a nonselective blocker of cation channels, 2-aminoethyl diphenylborinate (2-APB, administered intraperitoneally) and a selective blocker of TRPC6, BI-749327 (administered orally) can reverse established PH in mice. The results from the study show that intrapulmonary application of 2-APB (40 µM) or BI-749327 (3-10 µM) significantly and reversibly inhibited acute alveolar hypoxia-induced pulmonary vasoconstriction. Intraperitoneal injection of 2-APB (1 mg/kg per day) significantly attenuated the development of PH and partially reversed established PH in mice. Oral gavage of BI-749327 (30 mg/kg, every day, for 2 wk) reversed established PH by ∼50% via regression of pulmonary vascular remodeling. Furthermore, 2-APB and BI-749327 both significantly inhibited PDGF- and serum-mediated phosphorylation of AKT and mTOR in PASMC. In summary, the receptor-operated and mechanosensitive TRPC6 channel is a good target for developing novel treatment for PAH/PH. BI-749327, a selective TRPC6 blocker, is potentially a novel and effective drug for treating PAH and PH due to respiratory diseases or hypoxemia.
Collapse
MESH Headings
- Animals
- Boron Compounds/pharmacology
- Calcium Signaling
- Cells, Cultured
- Gene Expression Regulation/drug effects
- Humans
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Mice
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- TRPC6 Cation Channel/antagonists & inhibitors
- TRPC6 Cation Channel/genetics
- TRPC6 Cation Channel/metabolism
- Vasoconstriction
Collapse
Affiliation(s)
- Pritesh P Jain
- Section of Physiology, University of California, San Diego, La Jolla, California
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Ning Lai
- Section of Physiology, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Medicine and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingmei Xiong
- Section of Physiology, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Medicine and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiyuan Chen
- Section of Physiology, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Medicine and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Aleksandra Babicheva
- Section of Physiology, University of California, San Diego, La Jolla, California
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Tengteng Zhao
- Section of Physiology, University of California, San Diego, La Jolla, California
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Sophia Parmisano
- Section of Physiology, University of California, San Diego, La Jolla, California
| | - Manjia Zhao
- Section of Physiology, University of California, San Diego, La Jolla, California
| | - Cole Paquin
- Section of Physiology, University of California, San Diego, La Jolla, California
| | - Moreen Matti
- Section of Physiology, University of California, San Diego, La Jolla, California
| | - Ryan Powers
- Section of Physiology, University of California, San Diego, La Jolla, California
| | - Angela Balistrieri
- Section of Physiology, University of California, San Diego, La Jolla, California
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Nick H Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Patricia A Thistlethwaite
- Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, California
| | - John Y-J Shyy
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, California
| | - Jian Wang
- Section of Physiology, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Medicine and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona, Tucson, Arizona
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, University of California, San Diego, La Jolla, California
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
14
|
Apoptotic Cells Trigger Calcium Entry in Phagocytes by Inducing the Orai1-STIM1 Association. Cells 2021; 10:cells10102702. [PMID: 34685684 PMCID: PMC8534458 DOI: 10.3390/cells10102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022] Open
Abstract
Swift and continuous phagocytosis of apoptotic cells can be achieved by modulation of calcium flux in phagocytes. However, the molecular mechanism by which apoptotic cells modulate calcium flux in phagocytes is incompletely understood. Here, using biophysical, biochemical, pharmaceutical, and genetic approaches, we show that apoptotic cells induced the Orai1-STIM1 interaction, leading to store-operated calcium entry (SOCE) in phagocytes through the Mertk-phospholipase C (PLC) γ1-inositol 1,4,5-triphosphate receptor (IP3R) axis. Apoptotic cells induced calcium release from the endoplasmic reticulum, which led to the Orai1-STIM1 association and, consequently, SOCE in phagocytes. This association was attenuated by masking phosphatidylserine. In addition, the depletion of Mertk, which indirectly senses phosphatidylserine on apoptotic cells, reduced the phosphorylation levels of PLCγ1 and IP3R, resulting in attenuation of the Orai1-STIM1 interaction and inefficient SOCE upon apoptotic cell stimulation. Taken together, our observations uncover the mechanism of how phagocytes engulfing apoptotic cells elevate the calcium level.
Collapse
|
15
|
Tiffner A, Derler I. Isoform-Specific Properties of Orai Homologues in Activation, Downstream Signaling, Physiology and Pathophysiology. Int J Mol Sci 2021; 22:8020. [PMID: 34360783 PMCID: PMC8347056 DOI: 10.3390/ijms22158020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
Ca2+ ion channels are critical in a variety of physiological events, including cell growth, differentiation, gene transcription and apoptosis. One such essential entry pathway for calcium into the cell is the Ca2+ release-activated Ca2+ (CRAC) channel. It consists of the Ca2+ sensing protein, stromal interaction molecule 1 (STIM1) located in the endoplasmic reticulum (ER) and a Ca2+ ion channel Orai in the plasma membrane. The Orai channel family includes three homologues Orai1, Orai2 and Orai3. While Orai1 is the "classical" Ca2+ ion channel within the CRAC channel complex and plays a universal role in the human body, there is increasing evidence that Orai2 and Orai3 are important in specific physiological and pathophysiological processes. This makes them an attractive target in drug discovery, but requires a detailed understanding of the three Orai channels and, in particular, their differences. Orai channel activation is initiated via Ca2+ store depletion, which is sensed by STIM1 proteins, and induces their conformational change and oligomerization. Upon STIM1 coupling, Orai channels activate to allow Ca2+ permeation into the cell. While this activation mechanism is comparable among the isoforms, they differ by a number of functional and structural properties due to non-conserved regions in their sequences. In this review, we summarize the knowledge as well as open questions in our current understanding of the three isoforms in terms of their structure/function relationship, downstream signaling and physiology as well as pathophysiology.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
16
|
Furin Prodomain ppFurin Enhances Ca 2+ Entry Through Orai and TRPC6 Channels' Activation in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13071670. [PMID: 33916304 PMCID: PMC8037623 DOI: 10.3390/cancers13071670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Furin, a proprotein convertase that belongs to a family of Ca2+-dependent serine peptidases, is involved in the maturation of a variety of proproteins, including growth factors, receptors and differentiation factors, adhesion molecules and proteases. Furin have been associated with tumorigenesis and tumor progression and metastasis; therefore, it has been hypothesized that Furin may constitute a new potential target for cancer therapy. In triple negative breast cancer cells, inhibition of Furin by the prodomain ppFurin results in enhancement of Ca2+ influx, which involves both the increase of store-operated calcium entry (SOCE) and the activation of constitutive Ca2+ entry. The latter involves the activation of Orai and TRPC6 channels, while the increase of SOCE observed in ppFurin-expressing cells is entirely dependent on Orai channels. As a result, ppFurin expression reduces triple negative breast cancer cell viability and ability to migrate and enhances their sensitization to hydrogen peroxide-induced apoptosis. Abstract The intracellular calcium concentration ([Ca2+]i) modulation plays a key role in the regulation of cellular growth and survival in normal cells and failure of [Ca2+]i homeostasis is involved in tumor initiation and progression. Here we showed that inhibition of Furin by its naturally occurring inhibitor the prodomain ppFurin in the MDA-MB-231 breast cancer cells resulted in enhanced store-operated calcium entry (SOCE) and reduced the cell malignant phenotype. Expression of ppFurin in a stable manner in MDA-MB-231 and the melanoma MDA-MB-435 cell lines inhibits Furin activity as assessed by in vitro digestion assays. Accordingly, cell transfection experiments revealed that the ppFurin-expressing cells are unable to adequately process the proprotein convertase (PC) substrates vascular endothelial growth factor C (proVEGF-C) and insulin-like growth factor-1 receptor (proIGF-1R). Compared to MDA-MB-435 cells, expression of ppFurin in MDA-MB-231 and BT20 cells significantly enhanced SOCE and induced constitutive Ca2+ entry. The enhanced SOCE is impaired by inhibition of Orai channels while the constitutive Ca2+ entry is attenuated by silencing or inhibition of TRPC6 or inhibition of Orai channels. Analysis of TRPC6 activation revealed its upregulated tyrosine phosphorylation in ppFurin-expressing MDA-MB-231 cells. In addition, while ppFurin had no effect on MDA-MB-435 cell viability, in MDA-MB-231 cells ppFurin expression reduced their viability and ability to migrate and enhanced their sensitization to the apoptosis inducer hydrogen peroxide and similar results were observed in BT20 cells. These findings suggest that Furin inhibition by ppFurin may be a useful strategy to interfere with Ca2+ mobilization, leading to breast cancer cells’ malignant phenotype repression and reduction of their resistance to treatments.
Collapse
|
17
|
Skopin AY, Grigoryev AD, Glushankova LN, Shalygin AV, Wang G, Kartzev VG, Kaznacheyeva EV. A Novel Modulator of STIM2-Dependent Store-Operated Ca2+ Channel Activity. Acta Naturae 2021; 13:140-146. [PMID: 33959394 PMCID: PMC8084296 DOI: 10.32607/actanaturae.11269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/24/2020] [Indexed: 11/29/2022] Open
Abstract
Store-operated Ca2+ entry is one of the main pathways of calcium influx into non-excitable cells, which entails the initiation of many intracellular processes. The endoplasmic reticulum Ca2+ sensors STIM1 and STIM2 are the key components of store-operated Ca2+ entry in mammalian cells. Under physiological conditions, STIM proteins are responsible for store-operated Ca2+ entry activation. The STIM1 and STIM2 proteins differ in their potency for activating different store-operated channels. At the moment, there are no selective modulators of the STIM protein activity. We screened a library of small molecules and found the 4-MPTC compound, which selectively inhibited STIM2-dependent store-operated Ca2+ entry (IC50 = 1 μM) and had almost no effect on the STIM1-dependent activation of store-operated channels.
Collapse
Affiliation(s)
- A. Y. Skopin
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg, 194064 Russia
| | - A. D. Grigoryev
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg, 194064 Russia
| | - L. N. Glushankova
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg, 194064 Russia
| | - A. V. Shalygin
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg, 194064 Russia
| | - G. Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123 China
| | | | - E. V. Kaznacheyeva
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg, 194064 Russia
| |
Collapse
|
18
|
Ba G, Tang R, Sun X, Li Z, Lin H, Zhang W. Therapeutic effects of SKF-96365 on murine allergic rhinitis induced by OVA. Int J Immunopathol Pharmacol 2021; 35:20587384211015054. [PMID: 33983057 PMCID: PMC8127738 DOI: 10.1177/20587384211015054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/07/2021] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION SKF-96365 is regarded as an inhibitor of receptor-mediated calcium ion (Ca2+) entry. The current study aimed to explore the effects of SKF-96365 on murine allergic rhinitis (AR). METHODS Intranasal SKF-96365 administration was performed on OVA induced murine AR. Serum and nasal lavage fluid (NLF) from mice were harvested to assay IgE and inflammatory cytokines using ELISA method. Inflammatory cells were counted and analyzed in NLF. Nasal mucosa tissues were collected from mice and used for HE staining, immunohistochemistry (IHC) staining, and real-time PCR detection. RESULTS SKF-96365 had therapeutic effects on murine AR manifesting attenuation of sneezing, nasal rubbing, IgE, inflammatory cytokines, inflammatory cells, TRPC6 immunolabeling, and TRPC6, STIM1 and Orai1 mRNA levels in AR mice. CONCLUSION SKF-96365 could effectively alleviate the symptoms of murine AR. SKF-96365 could suppress TRPC6, STIM1, and Orai1 activities, leading to the downregulation of inflammatory cytokines and inflammatory cells in murine AR.
Collapse
Affiliation(s)
- Guangyi Ba
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ru Tang
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Xiwen Sun
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhipeng Li
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hai Lin
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Weitian Zhang
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
19
|
Le Guilcher C, Luyten T, Parys JB, Pucheault M, Dellis O. Synthesis and Characterization of Store-Operated Calcium Entry Inhibitors Active in the Submicromolar Range. Int J Mol Sci 2020; 21:ijms21249777. [PMID: 33371518 PMCID: PMC7767506 DOI: 10.3390/ijms21249777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
The store-operated calcium entry, better known as SOCE, forms the main Ca2+ influx pathway in non-excitable cells, especially in leukocytes, where it is required for cell activation and the immune response. During the past decades, several inhibitors were developed, but they lack specificity or efficacy. From the non-specific SOCE inhibitor 2-aminoethyl diphenylborinate (2-APB), we synthetized 16 new analogues by replacing/modifying the phenyl groups. Among them, our compound P11 showed the best inhibitory capacity with a Ki ≈ 75 nM. Furthermore, below 1 µM, P11 was devoid of any inhibitory activity on the two other main cellular targets of 2-APB, the IP3 receptors, and the SERCA pumps. Interestingly, Jurkat T cells secrete interleukin-2 under phytohemagglutinin stimulation but undergo cell death and stop IL-2 synthesis when stimulated in the presence of increasing P11 concentrations. Thus, P11 could represent the first member of a new and potent family of immunosuppressors.
Collapse
Affiliation(s)
- Camille Le Guilcher
- Physiopathogénèse et Traitements des Maladies du Foie, Université Paris-Saclay, Rue des Adeles, 91405 Orsay, France;
- INSERM U1193, Rue des Adeles, 91405 Orsay, France
| | - Tomas Luyten
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, B-3000 Leuven, Belgium; (T.L.); (J.B.P.)
| | - Jan B. Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, B-3000 Leuven, Belgium; (T.L.); (J.B.P.)
| | - Mathieu Pucheault
- Institute of Molecular Science, CNRS, Université de Bordeaux, 33400 Talence, France;
| | - Olivier Dellis
- Physiopathogénèse et Traitements des Maladies du Foie, Université Paris-Saclay, Rue des Adeles, 91405 Orsay, France;
- INSERM U1193, Rue des Adeles, 91405 Orsay, France
- Correspondence: ; Tel.: +33-169-154-959
| |
Collapse
|