1
|
Zhang S, Lin T, Xiong X, Chen C, Tan P, Wei Q. Targeting histone modifiers in bladder cancer therapy - preclinical and clinical evidence. Nat Rev Urol 2024; 21:495-511. [PMID: 38374198 DOI: 10.1038/s41585-024-00857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
Bladder cancer in the most advanced, muscle-invasive stage is lethal, and very limited therapeutic advances have been reported for decades. To date, cisplatin-based chemotherapy remains the first-line therapy for advanced bladder cancer. Late-line options have historically been limited. In the past few years, next-generation sequencing technology has enabled chromatin remodelling gene mutations to be characterized, showing that these alterations are more frequent in urothelial bladder carcinoma than in other cancer types. Histone modifiers have functional roles in tumour progression by modulating the expression of tumour suppressors and oncogenes and, therefore, have been considered as novel drug targets for cancer therapy. The roles of epigenetic reprogramming through histone modifications have been increasingly studied in bladder cancer, and the therapeutic efficacy of targeting those histone modifiers genetically or chemically is being assessed in preclinical studies. Results from preclinical studies in bladder cancer encouraged the investigation of some of these drugs in clinical trials, which yield mixed results. Further understanding of how alterations of histone modification mechanistically contribute to bladder cancer progression, drug resistance and tumour microenvironment remodelling will be required to facilitate clinical application of epigenetic drugs in bladder cancer.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tianhai Lin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xingyu Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ping Tan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Zhai P, Tong T, Wang X, Li C, Liu C, Qin X, Li S, Xie F, Mao J, Zhang J, Guo H. Nuclear miR-451a activates KDM7A and leads to cetuximab resistance in head and neck squamous cell carcinoma. Cell Mol Life Sci 2024; 81:282. [PMID: 38943031 PMCID: PMC11335205 DOI: 10.1007/s00018-024-05324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/29/2024] [Accepted: 06/16/2024] [Indexed: 06/30/2024]
Abstract
Cetuximab resistance has been a major challenge for head and neck squamous cell carcinoma (HNSCC) patients receiving targeted therapy. However, the mechanism that causes cetuximab resistance, especially microRNA (miRNA) regulation, remains unclear. Growing evidence suggests that miRNAs may act as "nuclear activating miRNAs" for targeting promoter regions or enhancers related to target genes. This study elucidates a novel mechanism underlying cetuximab resistance in HNSCC involving the nuclear activation of KDM7A transcription via miR-451a. Herein, small RNA sequencing, quantitative real-time polymerase chain reaction (qRT‒PCR) and fluorescence in situ hybridization (FISH) results provided compelling evidence of miR-451a nuclear enrichment in response to cetuximab treatment. Chromatin isolation via RNA purification, microarray analysis, and bioinformatic analysis revealed that miR-451a interacts with an enhancer region in KDM7A, activating its expression and further facilitating cetuximab resistance. It has also been demonstrated that the activation of KDM7A by nuclear miR-451a is induced by cetuximab treatment and is AGO2 dependent. Logistic regression analyses of 87 HNSCC samples indicated the significance of miR-451a and KDM7A in the development of cetuximab resistance. These discoveries support the potential of miR-451a and KDM7A as valuable biomarkers for cetuximab resistance and emphasize the function of nuclear-activating miRNAs.
Collapse
Affiliation(s)
- Peisong Zhai
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Tong Tong
- Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200002, People's Republic of China
| | - Xiaoning Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Chuwen Li
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Chun Liu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Xing Qin
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Shu Li
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Fei Xie
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China.
| | - Haiyan Guo
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
3
|
Tong D, Tang Y, Zhong P. The emerging roles of histone demethylases in cancers. Cancer Metastasis Rev 2024; 43:795-821. [PMID: 38227150 DOI: 10.1007/s10555-023-10160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Modulation of histone methylation status is regarded as an important mechanism of epigenetic regulation and has substantial clinical potential for the therapy of diseases, including cancer and other disorders. The present study aimed to provide a comprehensive introduction to the enzymology of histone demethylases, as well as their cancerous roles, molecular mechanisms, therapeutic possibilities, and challenges for targeting them, in order to advance drug design for clinical therapy and highlight new insight into the mechanisms of these enzymes in cancer. A series of clinical trials have been performed to explore potential roles of histone demethylases in several cancer types. Numerous targeted inhibitors associated with immunotherapy, chemotherapy, radiotherapy, and targeted therapy have been used to exert anticancer functions. Future studies should evaluate the dynamic transformation of histone demethylases leading to carcinogenesis and explore individual therapy.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urological Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| | - Ying Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Peng Zhong
- Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| |
Collapse
|
4
|
Li CY, Liu YJ, Tao F, Chen RY, Shi JJ, Lu JF, Yang GJ, Chen J. Lysine-specific demethylase 7A (KDM7A): A potential target for disease therapy. Biochem Pharmacol 2023; 216:115799. [PMID: 37696455 DOI: 10.1016/j.bcp.2023.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Histone demethylation is a kind of epigenetic modification mediated by a variety of enzymes and participates in regulating multiple physiological and pathological events. Lysine-specific demethylase 7A is a kind of α-ketoglutarate- and Fe(II)-dependent demethylase belonging to the PHF2/8 subfamily of the JmjC demethylases. KDM7A is mainly localized in the nucleus and contributes to transcriptional activation via removing mono- and di-methyl groups from the lysine residues 9 and 27 of Histone H3. Mounting studies support that KDM7A is not only necessary for normal embryonic, neural, and skeletal development, but also associated with cancer, inflammation, osteoporosis, and other diseases. Herein, the structure of KDM7A is described by comparing the similarities and differences of its amino acid sequences of KDM7A and other Histone demethylases; the functions of KDM7A in homeostasis and dyshomeostasis are summarized via documenting its content and related signaling; the currently known KDM7A-specific inhibitors and their structural relationship are listed based on their structure optimization and pharmacological activities; and the challenges and opportunities in exploring functions and developing targeted agents of KDM7A are also prospected via presenting encountered problems and potential solutions, which will provide an insight in functional exploration and drug discovery for KDM7A-related diseases.
Collapse
Affiliation(s)
- Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
5
|
Song YQ, Yang GJ, Ma DL, Wang W, Leung CH. The role and prospect of lysine-specific demethylases in cancer chemoresistance. Med Res Rev 2023; 43:1438-1469. [PMID: 37012609 DOI: 10.1002/med.21955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/08/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Histone methylation plays a key function in modulating gene expression, and preserving genome integrity and epigenetic inheritance. However, aberrations of histone methylation are commonly observed in human diseases, especially cancer. Lysine methylation mediated by histone methyltransferases can be reversed by lysine demethylases (KDMs), which remove methyl marks from histone lysine residues. Currently, drug resistance is a main impediment for cancer therapy. KDMs have been found to mediate drug tolerance of many cancers via altering the metabolic profile of cancer cells, upregulating the ratio of cancer stem cells and drug-tolerant genes, and promoting the epithelial-mesenchymal transition and metastatic ability. Moreover, different cancers show distinct oncogenic addictions for KDMs. The abnormal activation or overexpression of KDMs can alter gene expression signatures to enhance cell survival and drug resistance in cancer cells. In this review, we describe the structural features and functions of KDMs, the KDMs preferences of different cancers, and the mechanisms of drug resistance resulting from KDMs. We then survey KDM inhibitors that have been used for combating drug resistance in cancer, and discuss the opportunities and challenges of KDMs as therapeutic targets for cancer drug resistance.
Collapse
Affiliation(s)
- Ying-Qi Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| |
Collapse
|
6
|
Chen J, Huang CP, Quan C, Zu X, Ou Z, Tsai YC, Messing E, Yeh S, Chang C. The androgen receptor in bladder cancer. Nat Rev Urol 2023; 20:560-574. [PMID: 37072491 DOI: 10.1038/s41585-023-00761-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/20/2023]
Abstract
Bladder cancer is the ninth most common cancer worldwide with a striking sex-based difference in incidence. Emerging evidence indicates that the androgen receptor (AR) might promote the development, progression and recurrence of bladder cancer, contributing to the observed sex differences. Targeting androgen-AR signalling has promise as potential therapy for bladder cancer and helps to suppress progression of this disease. In addition, the identification of a new membrane AR and AR-regulated non-coding RNAs has important implications for bladder cancer treatment. The success of human clinical trials of targeted-AR therapies will help in the development of improved treatments for patients with bladder cancer.
Collapse
Affiliation(s)
- Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Chi-Ping Huang
- Department of Urology, China Medical University Hospital, Taichung, Taiwan
| | - Chao Quan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Zhenyu Ou
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Yu-Chieh Tsai
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward Messing
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Shuyuan Yeh
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Chawnshang Chang
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Urology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
7
|
Burlibasa L, Nicu AT, Chifiriuc MC, Medar C, Petrescu A, Jinga V, Stoica I. H3 histone methylation landscape in male urogenital cancers: from molecular mechanisms to epigenetic biomarkers and therapeutic targets. Front Cell Dev Biol 2023; 11:1181764. [PMID: 37228649 PMCID: PMC10203431 DOI: 10.3389/fcell.2023.1181764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
During the last decades, male urogenital cancers (including prostate, renal, bladder and testicular cancers) have become one of the most frequently encountered malignancies affecting all ages. While their great variety has promoted the development of various diagnosis, treatment and monitoring strategies, some aspects such as the common involvement of epigenetic mechanisms are still not elucidated. Epigenetic processes have come into the spotlight in the past years as important players in the initiation and progression of tumors, leading to a plethora of studies highlighting their potential as biomarkers for diagnosis, staging, prognosis, and even as therapeutic targets. Thus, fostering research on the various epigenetic mechanisms and their roles in cancer remains a priority for the scientific community. This review focuses on one of the main epigenetic mechanisms, namely, the methylation of the histone H3 at various sites and its involvement in male urogenital cancers. This histone modification presents a great interest due to its modulatory effect on gene expression, leading either to activation (e.g., H3K4me3, H3K36me3) or repression (e.g., H3K27me3, H3K9me3). In the last few years, growing evidence has demonstrated the aberrant expression of enzymes that methylate/demethylate histone H3 in cancer and inflammatory diseases, that might contribute to the initiation and progression of such disorders. We highlight how these particular epigenetic modifications are emerging as potential diagnostic and prognostic biomarkers or targets for the treatment of urogenital cancers.
Collapse
Affiliation(s)
| | | | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | - Cosmin Medar
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Amelia Petrescu
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Viorel Jinga
- Academy of Romanian Scientists, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Ileana Stoica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
8
|
Pereira IOA, da Silva GN, Almeida TC, Lima APB, Sávio ALV, Leite KRM, Salvadori DMF. LncRNA JHDM1D-AS1 Is a Key Biomarker for Progression and Modulation of Gemcitabine Sensitivity in Bladder Cancer Cells. Molecules 2023; 28:molecules28052412. [PMID: 36903656 PMCID: PMC10005151 DOI: 10.3390/molecules28052412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Long non-coding RNAs are frequently found to be dysregulated and are linked to carcinogenesis, aggressiveness, and chemoresistance in a variety of tumors. As expression levels of the JHDM1D gene and lncRNA JHDM1D-AS1 are altered in bladder tumors, we sought to use their combined expression to distinguish between low-and high-grade bladder tumors by RTq-PCR. In addition, we evaluated the functional role of JHDM1D-AS1 and its association with the modulation of gemcitabine sensitivity in high-grade bladder-tumor cells. J82 and UM-UC-3 cells were treated with siRNA-JHDM1D-AS1 and/or three concentrations of gemcitabine (0.39, 0.78, and 1.56 µM), and then submitted to cytotoxicity testing (XTT), clonogenic survival, cell cycle progression, cell morphology, and cell migration assays. When JHDM1D and JHDM1D-AS1 expression levels were used in combination, our findings indicated favorable prognostic value. Furthermore, the combined treatment resulted in greater cytotoxicity, a decrease in clone formation, G0/G1 cell cycle arrest, morphological alterations, and a reduction in cell migration capacity in both lineages compared to the treatments alone. Thus, silencing of JHDM1D-AS1 reduced the growth and proliferation of high-grade bladder-tumor cells and increased their sensitivity to gemcitabine treatment. In addition, the expression of JHDM1D/JHDM1D-AS1 indicated potential prognostic value in the progression of bladder tumors.
Collapse
Affiliation(s)
| | - Glenda Nicioli da Silva
- Departamento de Análises Clínicas, Pharmacy School, UFOP—Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
- Correspondence:
| | - Tamires Cunha Almeida
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo 05503-900, SP, Brazil
| | - Ana Paula Braga Lima
- Departamento de Análises Clínicas, Pharmacy School, UFOP—Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - André Luiz Ventura Sávio
- Departamento de Odontologia, Faculdade do Centro Oeste Paulista—FACOP, Piratininga 17490-000, SP, Brazil
- Departamento de Ciências Médicas, Universidade do Oeste Paulista—UNOESTE, Jaú 19050-900, SP, Brazil
| | - Katia Ramos Moreira Leite
- Departamento de Cirurgia, Medical School, USP—University of São Paulo, São Paulo 05508-060, SP, Brazil
| | | |
Collapse
|
9
|
Wang N, Ma T, Yu B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther 2023; 8:69. [PMID: 36797239 PMCID: PMC9935618 DOI: 10.1038/s41392-023-01341-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
Drug resistance is mainly responsible for cancer recurrence and poor prognosis. Epigenetic regulation is a heritable change in gene expressions independent of nucleotide sequence changes. As the common epigenetic regulation mechanisms, DNA methylation, histone modification, and non-coding RNA regulation have been well studied. Increasing evidence has shown that aberrant epigenetic regulations contribute to tumor resistance. Therefore, targeting epigenetic regulators represents an effective strategy to reverse drug resistance. In this review, we mainly summarize the roles of epigenetic regulation in tumor resistance. In addition, as the essential factors for epigenetic modifications, histone demethylases mediate the histone or genomic DNA modifications. Herein, we comprehensively describe the functions of the histone demethylase family including the lysine-specific demethylase family, the Jumonji C-domain-containing demethylase family, and the histone arginine demethylase family, and fully discuss their regulatory mechanisms related to cancer drug resistance. In addition, therapeutic strategies, including small-molecule inhibitors and small interfering RNA targeting histone demethylases to overcome drug resistance, are also described.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ting Ma
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Yu
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
10
|
Li F, Zheng Z, Chen W, Li D, Zhang H, Zhu Y, Mo Q, Zhao X, Fan Q, Deng F, Han C, Tan W. Regulation of cisplatin resistance in bladder cancer by epigenetic mechanisms. Drug Resist Updat 2023; 68:100938. [PMID: 36774746 DOI: 10.1016/j.drup.2023.100938] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Bladder cancer is one of the most common malignancies in the world. Cisplatin is one of the most potent and widely used anticancer drugs and has been employed in several malignancies. Cisplatin-based combination chemotherapies have become important adjuvant therapies for bladder cancer patients. Cisplatin-based treatment often results in the development of chemoresistance, leading to therapeutic failure and limiting its application and effectiveness in bladder cancer. To develop improved and more effective cancer therapy, research has been conducted to elucidate the underlying mechanism of cisplatin resistance. Epigenetic modifications have been demonstrated involved in drug resistance to chemotherapy, and epigenetic biomarkers, such as urine tumor DNA methylation assay, have been applied in patients screening or monitoring. Here, we provide a systematic description of epigenetic mechanisms, including DNA methylation, noncoding RNA regulation, m6A modification and posttranslational modifications, related to cisplatin resistance in bladder cancer.
Collapse
Affiliation(s)
- Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaosong Zheng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Chen
- Department of Urology, Institute of Precision Medicine, Zigong Forth People's Hospital, Zigong, Sichuan, China
| | - Dongqing Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Henghui Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanchao Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qixin Mo
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinlei Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Conghui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Shah SD, Gillard BM, Wrobel MM, Karasik E, Moser MT, Mastri M, Long MD, Sule N, Brackett CM, Huss WJ, Foster BA. Syngeneic model of carcinogen-induced tumor mimics basal/squamous, stromal-rich, and neuroendocrine molecular and immunological features of muscle-invasive bladder cancer. Front Oncol 2023; 13:1120329. [PMID: 36816919 PMCID: PMC9936245 DOI: 10.3389/fonc.2023.1120329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Bladder cancer is a heterogenous disease and the emerging knowledge on molecular classification of bladder tumors may impact treatment decisions based on molecular subtype. Pre-clinical models representing each subtype are needed to test novel therapies. Carcinogen-induced bladder cancer models represent heterogeneous, immune-competent, pre-clinical testing options with many features found in the human disease. Methods Invasive bladder tumors were induced in C57BL/6 mice when continuously exposed to N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) in the drinking water. Tumors were excised and serially passed by subcutaneous implantation into sex-matched syngeneic C57BL/6 hosts. Eight lines were named BBN-induced Urothelium Roswell Park (BURP) tumor lines. BURP lines were characterized by applying consensus molecular classification to RNA expression, histopathology, and immune profiles by CIBERSORT. Two lines were further characterized for cisplatin response. Results Eight BURP tumor lines were established with 3 male and 3 female BURP tumor lines, having the basal/squamous (BaSq) molecular phenotype and morphology. BURP-16SR was established from a male mouse and has a stromal-rich (SR) molecular phenotype and a sarcomatoid carcinoma morphology. BURP-19NE was established from a male mouse and has a neuroendocrine (NE)-like molecular phenotype and poorly differentiated morphology. The established BURP tumor lines have unique immune profiles with fewer immune infiltrates compared to their originating BBN-induced tumors. The immune profiles of the BURP tumor lines capture some of the features observed in the molecular classifications of human bladder cancer. BURP-16SR growth was inhibited by cisplatin treatment, while BURP-24BaSq did not respond to cisplatin. Discussion The BURP lines represent several molecular classifications, including basal/squamous, stroma-rich, and NE-like. The stroma-rich (BURP-16SR) and NE-like (BURP-19NE) represent unique immunocompetent models that can be used to test novel treatments in these less common bladder cancer subtypes. Six basal/squamous tumor lines were established from both male and female mice. Overall, the BURP tumor lines have less heterogeneity than the carcinogen-induced tumors and can be used to evaluate treatment response without the confounding mixed response often observed in heterogeneous tumors. Additionally, basal/squamous tumor lines were established and maintained in both male and female mice, thereby allowing these tumor lines to be used to compare differential treatment responses between sexes.
Collapse
Affiliation(s)
- Shruti D. Shah
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Bryan M. Gillard
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Michelle M. Wrobel
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Michael T. Moser
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Michalis Mastri
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Mark D. Long
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Norbert Sule
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Craig M. Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States,*Correspondence: Craig M. Brackett, ; Wendy J. Huss, ; Barbara A. Foster,
| | - Wendy J. Huss
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States,Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States,*Correspondence: Craig M. Brackett, ; Wendy J. Huss, ; Barbara A. Foster,
| | - Barbara A. Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States,*Correspondence: Craig M. Brackett, ; Wendy J. Huss, ; Barbara A. Foster,
| |
Collapse
|
12
|
Meghani K, Folgosa Cooley L, Piunti A, Meeks JJ. Role of Chromatin Modifying Complexes and Therapeutic Opportunities in Bladder Cancer. Bladder Cancer 2022; 8:101-112. [PMID: 35898580 PMCID: PMC9278011 DOI: 10.3233/blc-211609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/14/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Chromatin modifying enzymes, mainly through post translational modifications, regulate chromatin architecture and by extension the underlying transcriptional kinetics in normal and malignant cells. Muscle invasive bladder cancer (MIBC) has a high frequency of alterations in chromatin modifiers, with 76% of tumors exhibiting mutation in at least one chromatin modifying enzyme [1]. Additionally, clonal expansion of cells with inactivating mutations in chromatin modifiers has been identified in the normal urothelium, pointing to a currently unknown role of these proteins in normal bladder homeostasis. OBJECTIVE To review current knowledge of chromatin modifications and enzymes regulating these processes in Bladder cancer (BCa). METHODS By reviewing current literature, we summarize our present knowledge of external stimuli that trigger loss of equilibrium in the chromatin accessibility landscape and emerging therapeutic interventions for targeting these processes. RESULTS Genetic lesions in BCa lead to altered function of chromatin modifying enzymes, resulting in coordinated dysregulation of epigenetic processes with disease progression. CONCLUSION Mutations in chromatin modifying enzymes are wide-spread in BCa and several promising therapeutic targets for modulating activity of these genes are currently in clinical trials. Further research into understanding how the epigenetic landscape evolves as the disease progresses, could help identify patients who might benefit the most from these targeted therapies.
Collapse
Affiliation(s)
- Khyati Meghani
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
| | - Lauren Folgosa Cooley
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
| | - Andrea Piunti
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
| | - Joshua J. Meeks
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago IL, USA
| |
Collapse
|
13
|
Bacolod MD, Fisher PB, Barany F. Multi-CpG linear regression models to accurately predict paclitaxel and docetaxel activity in cancer cell lines. Adv Cancer Res 2022; 158:233-292. [PMID: 36990534 DOI: 10.1016/bs.acr.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The microtubule-targeting paclitaxel (PTX) and docetaxel (DTX) are widely used chemotherapeutic agents. However, the dysregulation of apoptotic processes, microtubule-binding proteins, and multi-drug resistance efflux and influx proteins can alter the efficacy of taxane drugs. In this review, we have created multi-CpG linear regression models to predict the activities of PTX and DTX drugs through the integration of publicly available pharmacological and genome-wide molecular profiling datasets generated using hundreds of cancer cell lines of diverse tissue of origin. Our findings indicate that linear regression models based on CpG methylation levels can predict PTX and DTX activities (log-fold change in viability relative to DMSO) with high precision. For example, a 287-CpG model predicts PTX activity at R2 of 0.985 among 399 cell lines. Just as precise (R2=0.996) is a 342-CpG model for predicting DTX activity in 390 cell lines. However, our predictive models, which employ a combination of mRNA expression and mutation as input variables, are less accurate compared to the CpG-based models. While a 290 mRNA/mutation model was able to predict PTX activity with R2 of 0.830 (for 546 cell lines), a 236 mRNA/mutation model could calculate DTX activity at R2 of 0.751 (for 531 cell lines). The CpG-based models restricted to lung cancer cell lines were also highly predictive (R2≥0.980) for PTX (74 CpGs, 88 cell lines) and DTX (58 CpGs, 83 cell lines). The underlying molecular biology behind taxane activity/resistance is evident in these models. Indeed, many of the genes represented in PTX or DTX CpG-based models have functionalities related to apoptosis (e.g., ACIN1, TP73, TNFRSF10B, DNASE1, DFFB, CREB1, BNIP3), and mitosis/microtubules (e.g., MAD1L1, ANAPC2, EML4, PARP3, CCT6A, JAKMIP1). Also represented are genes involved in epigenetic regulation (HDAC4, DNMT3B, and histone demethylases KDM4B, KDM4C, KDM2B, and KDM7A), and those that have never been previously linked to taxane activity (DIP2C, PTPRN2, TTC23, SHANK2). In summary, it is possible to accurately predict taxane activity in cell lines based entirely on methylation at multiple CpG sites.
Collapse
|
14
|
Ide H, Miyamoto H. Sex Hormone Receptor Signaling in Bladder Cancer: A Potential Target for Enhancing the Efficacy of Conventional Non-Surgical Therapy. Cells 2021; 10:1169. [PMID: 34064926 PMCID: PMC8150801 DOI: 10.3390/cells10051169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
There have been critical problems in the non-surgical treatment for bladder cancer, especially residence to intravesical pharmacotherapy, including BCG immunotherapy, cisplatin-based chemotherapy, and radiotherapy. Recent preclinical and clinical evidence has suggested a vital role of sex steroid hormone-mediated signaling in the progression of urothelial cancer. Moreover, activation of the androgen receptor and estrogen receptor pathways has been implicated in modulating sensitivity to conventional non-surgical therapy for bladder cancer. This may indicate the possibility of anti-androgenic and anti-estrogenic drugs, apart from their direct anti-tumor activity, to function as sensitizers of such conventional treatment. This article summarizes available data suggesting the involvement of sex hormone receptors, such as androgen receptor, estrogen receptor-α, and estrogen receptor-β, in the progression of urothelial cancer, focusing on their modulation for the efficacy of conventional therapy, and discusses their potential of overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of Urology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
15
|
The Role of Androgens and Androgen Receptor in Human Bladder Cancer. Biomolecules 2021; 11:biom11040594. [PMID: 33919565 PMCID: PMC8072960 DOI: 10.3390/biom11040594] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer (urothelial carcinoma) is one of the most frequently diagnosed neoplasms, with an estimated half a million new cases and 200,000 deaths per year worldwide. This pathology mainly affects men. Men have a higher risk (4:1) of developing bladder cancer than women. Cigarette smoking and exposure to chemicals such as aromatic amines, and aniline dyes have been established as risk factors for bladder cancer and may contribute to the sex disparity. Male internal genitalia, including the urothelium and prostate, are derived from urothelial sinus endoderm; both tissues express the androgen receptor (AR). Several investigations have shown evidence that the AR plays an important role in the initiation and development of different types of cancer including bladder cancer. In this article, we summarize the available data that help to explain the role of the AR in the development and progression of bladder cancer, as well as the therapies used for its treatment.
Collapse
|