1
|
Ahmed I, Zhuang Z, Umar Farooq M, Li H, Wang S, Zhong Y, Zhang L, Zhang B. Efficient reduction of antibiotic resistance genes and mobile genetic elements in organic waste composting via fenton-like treatment. BIORESOURCE TECHNOLOGY 2024; 410:131306. [PMID: 39155020 DOI: 10.1016/j.biortech.2024.131306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Livestock manure harbors antibiotic resistance genes (ARGs), and aerobic composting (AC) is widely adopted for waste management. However, mitigating ARG resurgence in later stages remains challenging. This work aims to curb ARGs rebounding through a Fenton-like reaction during food waste and swine manure co-composting. Results revealed that 0.025 % zerovalent iron (ZVI) + 0.5 % hydrogen peroxide (H2O2) facilitated maximum ARG, mobile genetic elements (MGEs), and 16 s rRNA removal with reductions of 2.68, 2.69, and 1.4 logs. Spectroscopic analysis confirmed Fenton-like reaction and cell apoptosis analysis indicated that 0.025 % ZVI and 0.5 % H2O2 treatment had the maximum early apoptosis, least observed, and normal cells on day 30. Redundancy analysis highlighted the influence of bacterial communities and physicochemical properties on ARGs, with MGEs playing a crucial role in Fenton treatments. Our findings suggest incorporating ZVI and H2O2 in composting can significantly reduce ARGs and enhance waste management practices.
Collapse
Affiliation(s)
- Imtiaz Ahmed
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixian Zhuang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Muhammad Umar Farooq
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hu Li
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Shiquan Wang
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Yanxia Zhong
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
2
|
Victory JH, Smith EC, Ryan CE, Lambdin J, Sarvestani AL, Friedman LR, Eade AV, Larrain C, Pu T, Luberice K, Ramamoorthy B, Rainey AJ, Hannah CE, Smith KM, Mabry D, Xie C, Davis JL, Blakely AM, Gulley JL, Schlom J, Monge C, Greten TF, Hernandez JM. Hepatic artery infusion pump (HAIP) therapy in combination with targeted delivery of IL-12 for patients with metastatic colorectal cancer or intrahepatic cholangiocarcinoma: a phase II trial protocol. J Gastrointest Oncol 2024; 15:1348-1354. [PMID: 38989414 PMCID: PMC11231869 DOI: 10.21037/jgo-24-71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/12/2024] [Indexed: 07/12/2024] Open
Abstract
Background Treatment of advanced liver tumors remains challenging. Although immune checkpoint inhibition has revolutionized treatment for many cancers, responses in colorectal liver metastases and biliary tract cancers remain suboptimal. Investigation into additional immunomodulatory therapies for these cancers is needed. Interleukin-12 (IL-12) is a pro-inflammatory cytokine with robust anti-tumor activity, but systemic adverse effects largely terminated therapeutic development of recombinant human IL-12 (rhIL-12). PDS01ADC is a novel human monoclonal antibody (NHS76) conjugated to two IL-12 heterodimers with established safety in phase I trials. The NHS76 antibody specifically targets histone/DNA complexes which are accessible only in regions of cell death and this antibody has been shown to accumulate locally in tumors. Methods Patients with unresectable metastatic colorectal cancer (mCRC) or unresectable intrahepatic cholangiocarcinoma (ICC) will receive synchronization of subcutaneous PDS01ADC with floxuridine delivered via a hepatic artery infusion pump (HAIP). The primary outcome measured in this study will be overall response rate as measured by Response Evaluation Criteria in Solid Tumors (RECIST) criteria. Secondary outcomes measured in this study will include hepatic and non-hepatic progression-free survival (PFS), overall survival, and safety of PDS01ADC combination therapy with HAIP. Discussion Poor clinical response of these liver tumors to immunotherapy is likely due to various factors, including poor immune infiltrate into the tumor and immunosuppression by the tumor microenvironment. By exploiting the tumor cell death induced by HAIP locoregional therapy in combination with systemic chemotherapy, PDS01ADC is poised to modulate the tumor immune microenvironment to improve outcomes for patients undergoing HAIP therapy. Trial Registration ClinicalTrials.gov (ID NCT05286814 version 2023-10-18); https://clinicaltrials.gov/study/NCT05286814?term=NCT05286814&rank=1.
Collapse
Affiliation(s)
- Jack H. Victory
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Emily C. Smith
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Carrie E. Ryan
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jacob Lambdin
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Amber Leila Sarvestani
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lindsay R. Friedman
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alyssa V. Eade
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Carolina Larrain
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Tracey Pu
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kenneth Luberice
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Bhavishya Ramamoorthy
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ashley J. Rainey
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Cathleen E. Hannah
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kathleen M. Smith
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Donna Mabry
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Changqing Xie
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeremy L. Davis
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Andrew M. Blakely
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - James L. Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cecilia Monge
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F. Greten
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan M. Hernandez
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Xu T, Pan Y, Ding Q, Cao F, Chang K, Qiu J, Zhuge H, Hao L, Wei H, Si C, Dou X, Li S. The micro-743a-3p-GSTM1 pathway is an endogenous protective mechanism against alcohol-related liver disease in mice. Cell Mol Biol Lett 2024; 29:35. [PMID: 38475733 DOI: 10.1186/s11658-024-00557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND AND AIMS Epidemiological evidence suggests that the phenotype of glutathione S-transferase mu 1 (GSTM1), a hepatic high-expressed phase II detoxification enzyme, is closely associated with the incidence of alcohol-related liver disease (ALD). However, whether and how hepatic GSTM1 determines the development of ALD is largely unclear. This study was designed to elucidate the role and potential mechanism(s) of hepatic GSTM1 in the pathological process of ALD. METHODS GSTM1 was detected in the liver of various ALD mice models and cultured hepatocytes. Liver-specific GSTM1 or/and micro (miR)-743a-3p deficiency mice were generated by adenoassociated virus-8 delivered shRNA, respectively. The potential signal pathways involving in alcohol-regulated GSTM1 and GSTM1-associated ALD were explored via both genetic manipulation and pharmacological approaches. RESULTS GSTM1 was significantly upregulated in both chronic alcohol-induced mice liver and ethanol-exposed murine primary hepatocytes. Alcohol-reduced miR-743a-3p directly contributed to the upregulation of GSTM1, since liver specific silencing miR-743a-3p enhanced GSTM1 and miR-743a-3p loss protected alcohol-induced liver dysfunctions, which was significantly blocked by GSTM1 knockdown. GSTM1 loss robustly aggravated alcohol-induced hepatic steatosis, oxidative stress, inflammation, and early fibrotic-like changes, which was associated with the activation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun N-terminal kinase (JNK), and p38. GSTM1 antagonized ASK1 phosphorylation and its downstream JNK/p38 signaling pathway upon chronic alcohol consumption via binding with ASK1. ASK1 blockage significantly rescued hepatic GSTM1 loss-enhanced disorders in alcohol-fed mice liver. CONCLUSIONS Chronic alcohol consumption-induced upregulation of GSTM1 in the liver provides a feedback protection against hepatic steatosis and liver injury by counteracting ASK1 activation. Down-regulation of miR-743a-3p improves alcohol intake-induced hepatic steatosis and liver injury via direct targeting on GSTM1. The miR-743a-3p-GSTM1 axis functions as an innate protective pathway to defend the early stage of ALD.
Collapse
Affiliation(s)
- Tiantian Xu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yan Pan
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Feiwei Cao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Kaixin Chang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Hui Zhuge
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Liuyi Hao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Haibin Wei
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Caijuan Si
- Department of Clinical Nutrition, School of Medicine, Affiliated Zhejiang Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China.
- Department of Clinical Nutrition, School of Medicine, Affiliated Zhejiang Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Hassan AHE, Wang CY, Lee CJ, Jeon HR, Choi Y, Moon S, Lee CH, Kim YJ, Cho SB, Mahmoud K, El-Sayed SM, Lee SK, Lee YS. Repurposing Synthetic Congeners of a Natural Product Aurone Unveils a Lead Antitumor Agent Inhibiting Folded P-Loop Conformation of MET Receptor Tyrosine Kinase. Pharmaceuticals (Basel) 2023; 16:1597. [PMID: 38004462 PMCID: PMC10675456 DOI: 10.3390/ph16111597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
A library of 24 congeners of the natural product sulfuretin were evaluated against nine panels representing nine cancer diseases. While sulfuretin elicited very weak activities at 10 µM concentration, congener 1t was identified as a potential compound triggering growth inhibition of diverse cell lines. Mechanistic studies in HCT116 colon cancer cells revealed that congener 1t dose-dependently increased levels of cleaved-caspases 8 and 9 and cleaved-PARP, while it concentration-dependently decreased levels of CDK4, CDK6, Cdc25A, and Cyclin D and E resulting in induction of cell cycle arrest and apoptosis in colon cancer HCT116 cells. Mechanistic study also presented MET receptor tyrosine kinase as the molecular target mediating the anticancer activity of compound 1t in HCT116 cells. In silico study predicted folded p-loop conformation as the form of MET receptor tyrosine kinase responsible for binding of compound 1t. Together, the current study presents compound 1t as an interesting anticancer lead for further development.
Collapse
Affiliation(s)
- Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Cai Yi Wang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol Jung Lee
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hye Rim Jeon
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeonwoo Choi
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Suyeon Moon
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chae Hyeon Lee
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon Ju Kim
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soo Bin Cho
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kazem Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt
| | - Selwan M. El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Ugwu DI, Conradie J. Anticancer properties of complexes derived from bidentate ligands. J Inorg Biochem 2023; 246:112268. [PMID: 37301166 DOI: 10.1016/j.jinorgbio.2023.112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
Cancer is the abnormal division and multiplication of cells in an organ or tissue. It is the second leading cause of death globally. There are various types of cancer such as prostate, breast, colon, lung, stomach, liver, skin, and many others depending on the tissue or organ where the abnormal growth originates. Despite the huge investment in the development of anticancer agents, the transition of research to medications that improve substantially the treatment of cancer is less than 10%. Cisplatin and its analogs are ubiquitous metal-based anticancer agents notable for the treatment of various cancerous cells and tumors but unfortunately accompanied by large toxicities due to low selectivity between cancerous and normal cells. The improved toxicity profile of cisplatin analogs bearing bidentate ligands has motivated the synthesis of vast metal complexes of bidentate ligands. Complexes derived from bidentate ligands such as β-diketones, diolefins, benzimidazoles and dithiocarbamates have been reported to possess 20 to 15,600-fold better anticancer activity, when tested on cell lines, than some known antitumor drugs currently on the market, e.g. cisplatin, oxaliplatin, carboplatin, doxorubicin, and 5-fluorouracil. This work discusses the anticancer properties of various metal complexes derived from bidentate ligands, for possible application in chemotherapy. The results discussed were evaluated by the IC50 values as obtained from cell line tests on various metal-bidentate complexes. The structure-activity relationship study of the complexes discussed, revealed that hydrophobicity is a key factor that influences anticancer properties of molecules.
Collapse
Affiliation(s)
- David Izuchukwu Ugwu
- Department of Chemistry, University of the Free State, South Africa; Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, South Africa.
| |
Collapse
|
6
|
Sato A, Shimotsuma A, Miyoshi T, Takahashi Y, Funayama N, Ogino Y, Hiramoto A, Wataya Y, Kim HS. Extracellular Leakage Protein Patterns in Two Types of Cancer Cell Death: Necrosis and Apoptosis. ACS OMEGA 2023; 8:25059-25065. [PMID: 37483236 PMCID: PMC10357420 DOI: 10.1021/acsomega.3c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023]
Abstract
Dead cells release fragments of DNA, RNA, and proteins (including peptides) into the extracellular space. Two major forms of cell death during cancer development have been identified: necrosis and apoptosis. Our group investigated the mechanisms that regulate cell death during the treatment of mouse tumor FM3A cells with the anticancer drug floxuridine (FUdR). In the original strain F28-7, FUdR induced necrosis, whereas in the variant F28-7-A, it induced apoptosis. Here, we report that the extracellular leakage proteome (i.e., the secretome) is involved in these cell death phenomena. The secretome profile, which was analyzed via shotgun proteomic analysis, revealed that altered protein leakage was involved in signal transduction, transcription, RNA processing, translation, and cell death. Notably, the characteristic secretory proteins high mobility group box 1 and 2 were detected in the culture medium of both necrotic and apoptotic cells. Overall, these results indicate that unique cellular events mediated by secretory proteins may be involved in necrosis and apoptosis.
Collapse
Affiliation(s)
- Akira Sato
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Akira Shimotsuma
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Tetsuya Miyoshi
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yui Takahashi
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Naoki Funayama
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yoko Ogino
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
- Department
of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Akiko Hiramoto
- Division
of International Infectious Diseases Control, Faculty of Pharmaceutical
Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yusuke Wataya
- Division
of International Infectious Diseases Control, Faculty of Pharmaceutical
Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hye-Sook Kim
- Division
of International Infectious Diseases Control, Faculty of Pharmaceutical
Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
7
|
Zakaria NH, Saad N, Che Abdullah CA, Mohd Esa N. The Antiproliferative Effect of Chloroform Fraction of Eleutherine bulbosa (Mill.) Urb. on 2D- and 3D-Human Lung Cancer Cells (A549) Model. Pharmaceuticals (Basel) 2023; 16:936. [PMID: 37513848 PMCID: PMC10384492 DOI: 10.3390/ph16070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Since lung cancer is the leading cause of cancer-related death worldwide, research is being conducted to discover anticancer agents as its treatment. Eleutherine bulbosa, a Dayak folklore medicine, exhibited anticancer effects against several cancer cells; however, its anticancer potency against lung cancer cells has not been explored yet. This study aims to determine the anticancer potency of E. bulbosa bulbs against lung cancer cells (A549) using 2D and 3D culture models, as well as determine its active compounds using gas chromatography-mass spectrometry (GC-MS) analysis. Three fractions of E. bulbosa bulbs, namely chloroform, n-hexane, and ethyl acetate, were tested for cytotoxicity using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) and CellTiter-Glo. The antiproliferative effects of the most cytotoxic fraction against the 2D culture model were determined by a clonogenic survival assay and propidium iodide/Hoechst 33342 double staining, whereas the effects against the 3D culture model were determined by microscopy, flow cytometry, and gene expression analysis. The chloroform fraction is the most cytotoxic against A549 cells than other fractions, and it inhibited colony formation and induced apoptosis of A549 cells. The chloroform fraction also inhibited the growth of the A549 spheroid by suppressing the spheroid size, inducing apoptosis, reducing the proportion of CD44 lung cancer stem cells, causing arrest at the S phase of the cell cycle, and suppressing the expression of the SOX2 and MYC genes. Furthermore, the GC-MS analysis detected 20 active compounds in the chloroform fraction, including the major compounds of eleutherine and isoeleutherine. In conclusion, the chloroform fraction of E. bulbosa bulbs exhibit its antiproliferative effect on 2D and 3D culture models of A549 cells, suggesting it could be a lung cancer chemopreventive agent.
Collapse
Affiliation(s)
- Nur Hannan Zakaria
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Norazalina Saad
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Che Azurahanim Che Abdullah
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Norhaizan Mohd Esa
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Pourmadadi M, Tajiki A, Abdouss M. A green approach for preparation of polyacrylic acid/starch incorporated with titanium dioxide nanocomposite as a biocompatible platform for curcumin delivery to breast cancer cells. Int J Biol Macromol 2023; 242:124785. [PMID: 37169052 DOI: 10.1016/j.ijbiomac.2023.124785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Curcumin (Cur) is a polyphenolic hydrophobic molecule with several biological uses, including cancer therapy. However, its widespread use in cancer treatment faces limitations due to its low solubility in acidic and neutral conditions, rapid removal from the circulatory system, and poor bioavailability. In order to overcome these challenges, a biocompatible and pH-sensitive carrier nanoplatform was designed for the specific delivery of curcumin to breast cancer cells. This nanocomposite containing polyacrylic acid (PAA), starch, and titanium dioxide (TiO2) was synthesized with a specific morphology through the water-in-oil-in-water green emulsification strategy. The nanocomposite structure was confirmed by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, and field-emission scanning electrom microscopy (FE-SEM) imaging tests. The mean particle size of 151 nm for the PAA-Starch-TiO2 nanocomposite ensures specific entry into cancer cells and minimal damage to healthy cells. Loading efficiency (LE) and encapsulation efficiency (EE) for curcumin obtained 49.50 % and 87.25 %, which are desirable for a carrier nanoplatform. Compared to the physiological medium, the in-vitro release of curcumin was higher in the acidic conditions in all time intervals, which indicates the possibility of targeted drug release from the PAA-Starch-TiO2 nanocomposite around the tumor tissue. Furthermore, for better understanding of the release mechanism, the cumulative release data in both media were fitted with common mathematical kinetic models. Cytotoxicity tests against the MCF-7 cell line were performed using in vitro MTT and flow cytometry tests. The results showed that the PAA-Starch-TiO2 carrying Cur was more effective through increasing the bioavailability and controlled release of the drug compared to the free Cur. Also, the death of cancer cells in the presence of this nanocomposite compared to free Cur occurred mainly through the induction of apoptosis, which indicates the programmed death of cancer cells and the high efficiency of the designed nanocarrier.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Tajiki
- Chemistry Department, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Majid Abdouss
- Chemistry Department, Amirkabir University of Technology, Tehran 1591634311, Iran.
| |
Collapse
|
9
|
New Oxazolo[5,4- d]pyrimidines as Potential Anticancer Agents: Their Design, Synthesis, and In Vitro Biological Activity Research. Int J Mol Sci 2022; 23:ijms231911694. [PMID: 36232997 PMCID: PMC9569971 DOI: 10.3390/ijms231911694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a large group of diseases in which the rapid proliferation of abnormal cells generally leads to metastasis to surrounding tissues or more distant ones through the lymphatic and blood vessels, making it the second leading cause of death worldwide. The main challenge in designing a modern anticancer therapy is to develop selective compounds that exploit specific molecular targets. In this work, novel oxazolo[5,4-d]pyrimidine derivatives were designed, synthesized, and evaluated in vitro for their cytotoxic activity against a panel of four human cancer cell lines (lung carcinoma: A549, breast adenocarcinoma: MCF7, metastatic colon adenocarcinoma: LoVo, primary colon adenocarcinoma: HT29), along with their P-glycoprotein-inhibitory ability and pro-apoptotic activity. These oxazolo[5,4-d]pyrimidine derivatives, which are structurally similar to nucleic purine bases in general, are characterized by the presence of a pharmacologically favorable isoxazole substituent at position 2 and aliphatic amino chains at position 7 of the condensed heterocyclic system. In silico analysis of the obtained compounds identified their potent inhibitory activity towards human vascular endothelial growth factor receptor-2 (VEGFR-2). Molecular docking was performed to assess the binding mode of new derivatives to the VEGFR-2 active site. Then, their physicochemical, pharmacokinetic, and pharmacological properties (i.e., ADME-administration, distribution, metabolism, and excretion) were also predicted to assess their druglikeness. In particular, compound 3g (with a 3-(N,N-dimethylamino)propyl substituent) was found to be the most potent against the HT29 cell line, with a 50% cytotoxic concentration (CC50) of 58.4 µM, exceeding the activity of fluorouracil (CC50 = 381.2 μM) and equaling the activity of cisplatin (CC50 = 47.2 µM), while being less toxic to healthy human cells (such as normal human dermal fibroblasts (NHDFs)) than these reference drugs. The results suggest that compound 3g is a potentially promising candidate for the treatment of primary colorectal cancer.
Collapse
|
10
|
Design, Synthesis, and Biological Evaluation of N14-Amino Acid-Substituted Tetrandrine Derivatives as Potential Antitumor Agents against Human Colorectal Cancer. Molecules 2022; 27:molecules27134040. [PMID: 35807286 PMCID: PMC9268013 DOI: 10.3390/molecules27134040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
As a typical dibenzylisoquinoline alkaloid, tetrandrine (TET) is clinically used for the treatment of silicosis, inflammatory pulmonary, and cardiovascular diseases in China. Recent investigations have demonstrated the outstanding anticancer activity of this structure, but its poor aqueous solubility severely restricts its further development. Herein, a series of its 14-N-amino acid-substituted derivatives with improved anticancer effects and aqueous solubility were designed and synthesized. Among them, compound 16 displayed the best antiproliferative activity against human colorectal cancer (HCT-15) cells, with an IC50 value of 0.57 μM. Compared with TET, 16 was markedly improved in terms of aqueous solubility (by 5-fold). Compound 16 significantly suppressed the colony formation, migration, and invasion of HCT-15 cells in a concentration-dependent manner, with it being more potent in this respect than TET. Additionally, compound 16 markedly impaired the morphology and motility of HCT-15 cells and induced the death of colorectal cancer cells in double-staining and flow cytometry assays. Western blot results revealed that 16 could induce the autophagy of HCT-15 cells by significantly decreasing the content of p62/SQSTM1 and enhancing the Beclin-1 level and the ratio of LC3-II to LC3-I. Further study showed that 16 effectively inhibited the proliferation, migration, and tube formation of umbilical vein endothelial cells, manifesting in a potent anti-angiogenesis effect. Overall, these results revealed the potential of 16 as a promising candidate for further preclinical studies.
Collapse
|
11
|
Krstic A, Pavic A, Avdovic E, Markovic Z, Stevanovic M, Petrovic I. Coumarin-Palladium(II) Complex Acts as a Potent and Non-Toxic Anticancer Agent against Pancreatic Carcinoma Cells. Molecules 2022; 27:2115. [PMID: 35408514 PMCID: PMC9000835 DOI: 10.3390/molecules27072115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/30/2022] Open
Abstract
Pancreatic carcinoma still represents one of the most lethal malignant diseases in the world although some progress has been made in treating the disease in the past decades. Current multi-agent treatment options have improved the overall survival of patients, however, more effective treatment strategies are still needed. In this paper we have characterized the anticancer potential of coumarin-palladium(II) complex against pancreatic carcinoma cells. Cells viability, colony formation and migratory potential of pancreatic carcinoma cells were assessed in vitro, followed by evaluation of apoptosis induction and in vivo testing on zebrafish. Presented results showed remarkable reduction in pancreatic carcinoma cells growth both in vitro and in vivo, being effective at micromolar concentrations (0.5 μM). Treatments induced apoptosis, increased BAX/BCL-2 ratio and suppressed the expression of SOX9 and SOX18, genes shown to be significantly up-regulated in pancreatic ductal adenocarcinoma. Importantly, treatments of the zebrafish-pancreatic adenocarcinoma xenografts resulted in significant reduction in tumor mass, without provoking any adverse toxic effects including hepatotoxicity. Presented results indicate the great potential of the tested compound and the perspective of its further development towards pancreatic cancer therapy.
Collapse
Affiliation(s)
- Aleksandra Krstic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.K.); (A.P.); (M.S.)
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.K.); (A.P.); (M.S.)
| | - Edina Avdovic
- Department of Science, Institute of Information Technologies, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia; (E.A.); (Z.M.)
| | - Zoran Markovic
- Department of Science, Institute of Information Technologies, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia; (E.A.); (Z.M.)
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.K.); (A.P.); (M.S.)
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
- Department of Chemical and Biological Sciences, Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia
| | - Isidora Petrovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.K.); (A.P.); (M.S.)
| |
Collapse
|
12
|
Yang HC, Xing ZK, Shao H, Tan XW, Wang EQ, Liao Y, Chen HJ, Wu XW, Chen XL, Zhang SJ. The expression of cytokeratin and apoptosis-related molecules in echinococcosis related liver injury. Mol Biochem Parasitol 2022; 248:111455. [PMID: 35016896 DOI: 10.1016/j.molbiopara.2022.111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 10/25/2022]
Abstract
The study aimed to investigate the expression of cytokeratin and apoptosis-related molecules in the livers of two types of hepatic echinococcosis mice models and to preliminarily explore the relationship between the expression of cytokeratin and apoptosis in echinococcosis related liver injury. We established a mouse model infected by Echinococcus granulosus and Echinococcus multilocularis and observed the expression of cytokeratin and apoptosis related proteins in the two types of hepatic echinococcosis tissues during different stages by immunohistochemical staining. A co-culture model was established using normal hepatocytes and different concentrations of E. granulosus and E. multilocularis protoscoleces. Cell Counting Kit-8 was used to detect cell proliferation, flow cytometry was used to detect hepatocyte apoptosis, and western blot was used to quantify cytokeratin and apoptosis-related proteins, such as caspase3, caspase9, Bcl-2, and Bax. Surgical specimens were obtained from patients with hepatic echinococcosis to analyze the expressions of cytokeratin, caspase3, caspase9, Bcl-2, and Bax by western blot. The expressions of cytokeratin and caspase3 were analyzed by immunohistochemistry. The qRT-PCR method was used to determine the expression of CK8 and CK18 in the liver tissues. In vivo experiments showed that compared to that in the control group, the cytokeratin and caspase3 proteins in the liver tissues of the two types of hepatic echinococcosis were strongly expressed around the lesions of liver echinococcosis; there was a difference between cytokeratin expression of the two different echinococcosis parasites in the liver. Echinococcus granulosus and Echinococcus multilocularis in the co-culture model in vitro could promote the expression of CK, caspase3, caspase9, and Bax protein, decrease the expression of Bcl-2, promote hepatocyte apoptosis, and inhibit cell proliferation; in clinical samples, we found that compared with that in the normal tissues, the expression of cytokeratin, caspase3, caspase9, and Bax in echinococcus tissues was high, but that in Bcl-2 was low. Furthermore, the expression of CK8 and CK18 mRNA were higher in echinococcus tissues than that in the normal tissues and immunohistochemistry analysis also showed that cytokeratin and caspase3 levels were higher in echinococcus tissues than that in the normal tissues. The expression of cytokeratin and apoptosis-related molecules, reflecting liver damage, is high in the liver and is caused due to hepatic echinococcosis. This study provides the first evidence of cytokeratin could be useful for evaluating liver tissue damage caused by echinococcus infection.
Collapse
Affiliation(s)
- H C Yang
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China; Department of Hepatobiliary Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - Z K Xing
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China; Department of Hepatobiliary Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - H Shao
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - X W Tan
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - E Q Wang
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - Y Liao
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - H J Chen
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - X W Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - X L Chen
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - S J Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China.
| |
Collapse
|
13
|
Luo L, Wang G, Wang Z, Ma J, He Y, He J, Wang L, Liu Y, Xiao H, Xiao Y, Lan T, Yang H, Deng O. Optimization of Fenton process on removing antibiotic resistance genes from excess sludge by single-factor experiment and response surface methodology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147889. [PMID: 34134394 DOI: 10.1016/j.scitotenv.2021.147889] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Excess sludge contains large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), posing a risk for human health. However, most current studies usually ignored their abundance and removal in excess sludge. Therefore, this study aimed to reduce ARGs/MGEs in sludge by Fenton process, and applied single-factor experiment (SFE) and response surface methodology (RSM) to optimize the Fenton reaction condition for higher removal rates of ARGs/MGEs. The results demonstrated that the removal rates of target genes by SFE optimized condition ranged from 10.91% to 66.86%, while the removal rates caused by RSM optimized condition were 48.02% - 76.36%, indicating RSM was a useful tool to improve the removal rates of ARGs in excess sludge. Additionally, the scanning electron microscope and cell apoptosis results suggested that the Fenton treatment altered the structure of sludge and reduced the numbers of normal cells, thus causing the reductions of target genes.
Collapse
Affiliation(s)
- Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Guolan Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zimu Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jianhua Ma
- Changning Agricultural and Rural Bureau, Changning 644300, PR China
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jinsong He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lilin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan Liu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yinling Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hua Yang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ouping Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China; College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
14
|
Tang J, Hu B, Zheng H, Qian X, Zhang Y, Zhu J, Xu G, Chen D, Jin X, Li W, Xu L. 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) activates Aryl hydrocarbon receptor (AhR) mediated ROS and NLRP3 inflammasome/p38 MAPK pathway inducing necrosis in cochlear hair cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112423. [PMID: 34146985 DOI: 10.1016/j.ecoenv.2021.112423] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 05/27/2023]
Abstract
Tetrabromodiphenyl ether (BDE-47) is widely used as commercial flame retardants that can be released into the environment and finally enter human body through the food chain. It has been identified to generate neurotoxicity, but little is known about auditory damage and the underlying mechanism following BDE-47 exposure. This study aimed to assess the cell viability with BDE-47 concentration ranging from 0 to 150 μM in mouse organ of Corti-derived cell lines (HEI-OC1). Aryl hydrocarbon receptor (AhR) as an environmental sensor, reactive oxygen species (ROS), NLRP3 inflammasome and p38 MAPK pathways were detected. Results: (1) BDE-47 inhibited the viability in a time- and dose-dependent way in HEI-OC1 cells. Cell cycle was arrested in G1 phase by BDE-47; (2) Elevated intracellular ROS, LDH levels and necrosis were found, which was alleviated by pretreatment with ROS scavenger N-acetylcysteine (NAC); (3) AhR plays an essential role in ligand-regulated transcription factor activation by exogenous environmental compounds. We found increased expression of AhR and decreased downstream targets of CYP 1A1 and CYP 1B1 in BDE-47-treated HEI-OC1 cells, which was reversed by the AhR antagonist CH-223191 for 2 h before BDE-47 exposure. No significant change was detected in CYP 2B; (4) Enhanced expressions of NLRP3 and caspase-1 were induced by BDE-47, with up-regulations of both pro-inflammatory factors for IL-1β, IL-6 and TNF-α, and anti-inflammatory factors for IL-4, IL-10 and IL-13, but down-regulation for IL-1α; (5) Additionally, the p38 MAPK signaling pathway was activated with increased phosphorylation levels of MKK/3/6, p38 MAPK and NF-kB. Overall, our findings illustrate a role of AhR in ROS-induced necrosis of cochlear hair cells by BDE-47 exposure, in which NLRP3 inflammasome and p38 MAPK signaling pathways are activated. The current study first elucidates the sense of hearing damage induced by BDE-47, and cell-specific or mixture exposures in vivo or human studies are needed to confirm this association.
Collapse
Affiliation(s)
- Jie Tang
- Department of Pathology, The Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, ZJ, China
| | - Bo Hu
- Department of Pathology, The Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, ZJ, China
| | - Huaping Zheng
- Department of Otolaryngology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, ZJ, China
| | - Xiaolan Qian
- Department of Pathology, The Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, ZJ, China
| | - Yi Zhang
- Department of Pathology, The Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, ZJ, China
| | - Jia Zhu
- Department of Immunopathology, Jiaxing University Medical College, Jiaxing 314001, ZJ, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing 314001, ZJ, China
| | - Deqing Chen
- Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing 314001, ZJ, China
| | - Xin Jin
- Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing 314001, ZJ, China
| | - Wanlu Li
- Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing 314001, ZJ, China
| | - Long Xu
- Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing 314001, ZJ, China; Department of Public Health, Jiaxing University Medical College, Jiaxing 314001, ZJ, China.
| |
Collapse
|
15
|
Sato A, Yamamoto A, Shimotsuma A, Ogino Y, Funayama N, Takahashi Y, Hiramoto A, Wataya Y, Kim HS. Intracellular microRNA expression patterns influence cell death fates for both necrosis and apoptosis. FEBS Open Bio 2020; 10:2417-2426. [PMID: 33022895 PMCID: PMC7609763 DOI: 10.1002/2211-5463.12995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that interact with target mRNAs at specific sites to induce cleavage of the mRNA or inhibit translation. Such miRNAs play a vital role in gene expression and in several other biological processes, including cell death. We have studied the mechanisms regulating cell death (necrosis in original F28‐7 cells and apoptosis in their variant F28‐7‐A cells) in the mouse mammary tumor cell line FM3A using the anticancer agent floxuridine (FUdR). We previously reported that inhibition of heat‐shock protein 90 by the specific inhibitor geldanamycin (GA) in F28‐7 cells causes a shift from necrosis to apoptosis. In this study, we investigated the intracellular miRNA expression profiles of FUdR‐treated F28‐7 cells (necrotic condition), GA plus FUdR‐treated F28‐7 cells (apoptotic condition), and FUdR‐treated F28‐7‐A cells (apoptotic condition) through miRNA microarray analysis. In addition, we knocked down Dicer, a key molecule for the expression of mature miRNAs, in F28‐7 cells to examine whether it modulates FUdR‐induced cell death. Our analysis revealed that the miRNA expression patterns differ significantly between these cell death conditions. Furthermore, we identified miRNA candidates that regulate cell death. Knockdown of Dicer in FUdR‐treated necrosis‐fated cells caused a partial shift from necrosis to apoptosis. These findings suggest that modulation of miRNA expression patterns influences the decision of cell death fate toward necrosis or apoptosis. Our findings may serve as a basis for further study of the functions of miRNAs in cell death mechanisms.
Collapse
Affiliation(s)
- Akira Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Akihiro Yamamoto
- Division of International Infectious Disease Control, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Akira Shimotsuma
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yoko Ogino
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.,Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Naoki Funayama
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yui Takahashi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Akiko Hiramoto
- Division of International Infectious Disease Control, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yusuke Wataya
- Division of International Infectious Disease Control, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hye-Sook Kim
- Division of International Infectious Disease Control, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|