1
|
Pillai SS, Pereira DG, Zhang J, Huang W, Beg MA, Knaack DA, de Souza Goncalves B, Sahoo D, Silverstein RL, Shapiro JI, Sodhi K, Chen Y. Contribution of adipocyte Na/K-ATPase α1/CD36 signaling induced exosome secretion in response to oxidized LDL. Front Cardiovasc Med 2023; 10:1046495. [PMID: 37180782 PMCID: PMC10174328 DOI: 10.3389/fcvm.2023.1046495] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Adipose tissue constantly secretes adipokines and extracellular vesicles including exosomes to crosstalk with distinct tissues and organs for whole-body homeostasis. However, dysfunctional adipose tissue under chronic inflammatory conditions such as obesity, atherosclerosis, and diabetes shows pro-inflammatory phenotypes accompanied by oxidative stress and abnormal secretion. Nevertheless, molecular mechanisms of how adipocytes are stimulated to secrete exosomes under those conditions remain poorly understood. Methods Mouse and human in vitro cell culture models were used for performing various cellular and molecular studies on adipocytes and macrophages. Statistical analysis was performed using Student's t-test (two-tailed, unpaired, and equal variance) for comparisons between two groups or ANOVA followed by Bonferroni's multiple comparison test for comparison among more than two groups. Results and discussion In this work, we report that CD36, a scavenger receptor for oxidized LDL, formed a signaling complex with another membrane signal transducer Na/K-ATPase in adipocytes. The atherogenic oxidized LDL induced a pro-inflammatory response in in vitro differentiated mouse and human adipocytes and also stimulated the cells to secrete more exosomes. This was largely blocked by either CD36 knockdown using siRNA or pNaKtide, a peptide inhibitor of Na/K-ATPase signaling. These results showed a critical role of the CD36/Na/K-ATPase signaling complex in oxidized LDL-induced adipocyte exosome secretion. Moreover, by co-incubation of adipocyte-derived exosomes with macrophages, we demonstrated that oxidized LDL-induced adipocyte-derived exosomes promoted pro-atherogenic phenotypes in macrophages, including CD36 upregulation, IL-6 secretion, metabolic switch to glycolysis, and mitochondrial ROS production. Altogether, we show here a novel mechanism through which adipocytes increase exosome secretion in response to oxidized LDL and that the secreted exosomes can crosstalk with macrophages, which may contribute to atherogenesis.
Collapse
Affiliation(s)
- Sneha S. Pillai
- Department of Surgery, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Duane G. Pereira
- Department of Surgery, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Jue Zhang
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Wenxin Huang
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Mirza Ahmar Beg
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Darcy A. Knaack
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bruno de Souza Goncalves
- Department of Surgery, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Roy L. Silverstein
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joseph I. Shapiro
- Department of Surgery, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Komal Sodhi
- Department of Surgery, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
2
|
Naryzhnaya NV, Koshelskaya OA, Kologrivova IV, Suslova TE, Kharitonova OA, Andreev SL, Gorbunov AS, Kurbatov BK, Boshchenko AA. Production of Reactive Oxygen Species by Epicardial Adipocytes Is Associated with an Increase in Postprandial Glycemia, Postprandial Insulin, and a Decrease in Serum Adiponectin in Patients with Severe Coronary Atherosclerosis. Biomedicines 2022; 10:biomedicines10082054. [PMID: 36009601 PMCID: PMC9405686 DOI: 10.3390/biomedicines10082054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/26/2022] Open
Abstract
Purpose. This work investigates the relations between the production of reactive oxygen species (ROS) by epicardial adipose tissue (EAT) adipocytes and parameters of glucose/insulin metabolism, circulating adipokines levels, and severity of coronary atherosclerosis in patients with coronary artery disease (CAD); establishing significant determinants describing changes in ROS EAT in this category of patients. Material and methods. This study included 19 patients (14 men and 5 women, 53−72 y.o., 6 patients with diabetes mellitus type 2; 5 patients with prediabetes), with CAD, who underwent coronary artery bypass graft surgery. EAT adipocytes were isolated by the enzymatic method from intraoperative explants obtained during coronary artery bypass grafting. The size of EAT adipocytes and ROS level were determined. Results. The production of ROS by EAT adipocytes demonstrated a direct correlation with the level of postprandial glycemia (rs = 0.62, p < 0.05), and an inverse correlation with serum adiponectin (rs = −0.50, p = 0.026), but not with general and abdominal obesity, EAT thickness, and dyslipidemia. Regression analysis demonstrated that the increase in ROS of EAT adipocytes occurs due to the interaction of the following factors: postprandial glycemia (β = 0.95), postprandial insulin (β = 0.24), and reduced serum adiponectin (β = −0.20). EAT adipocytes in patients with diabetes and prediabetes manifested higher ROS production than in patients with normoglycemia. Although there was no correlation between the production of ROS by EAT adipocytes and Gensini score in the total group of patients, higher rates of oxidative stress were observed in EAT adipocytes from patients with a Gensini score greater than median Gensini score values (≥70.55 points, Gr.B), compared to patients with less severe coronary atherosclerosis (<70.55 points, Gr.A). Of note, the frequency of patients with diabetes and prediabetes was higher among the patients with the most severe coronary atherosclerosis (Gr.B) than in the Gr.A. Conclusions. Our data have demonstrated for the first time that systemic impairments of glucose/insulin metabolism and a decrease in serum adiponectin are significant independent determinants of oxidative stress intensity in EAT adipocytes in patients with severe coronary atherosclerosis. The possible input of the interplay between oxidative stress in EAT adipocytes and metabolic disturbances to the severity of coronary atherosclerosis requires further investigation.
Collapse
|
3
|
Gao Y, Silva LND, Hurley JD, Fan X, Pierre SV, Sodhi K, Liu J, Shapiro JI, Tian J. Gene module regulation in dilated cardiomyopathy and the role of Na/K-ATPase. PLoS One 2022; 17:e0272117. [PMID: 35901050 PMCID: PMC9333241 DOI: 10.1371/journal.pone.0272117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/12/2022] [Indexed: 01/25/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a major cause of cardiac death and heart transplantation. It has been known that black people have a higher incidence of heart failure and related diseases compared to white people. To identify the relationship between gene expression and cardiac function in DCM patients, we performed pathway analysis and weighted gene co-expression network analysis (WGCNA) using RNA-sequencing data (GSE141910) from the NCBI Gene Expression Omnibus (GEO) database and identified several gene modules that were significantly associated with the left ventricle ejection fraction (LVEF) and DCM phenotype. Genes included in these modules are enriched in three major categories of signaling pathways: fibrosis-related, small molecule transporting-related, and immune response-related. Through consensus analysis, we found that gene modules associated with LVEF in African Americans are almost identical as in Caucasians, suggesting that the two groups may have more common rather than disparate genetic regulations in the etiology of DCM. In addition to the identified modules, we found that the gene expression level of Na/K-ATPase, an important membrane ion transporter, has a strong correlation with the LVEF. These clinical results are consistent with our previous findings and suggest the clinical significance of Na/K-ATPase regulation in DCM.
Collapse
Affiliation(s)
- Yingnyu Gao
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV, United States of America
| | - Lilian N. D. Silva
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV, United States of America
| | - John D. Hurley
- Department of Biomedical Sciences, Marshall University Joan C. Edwards Medical School, Huntington, WV, United States of America
| | - Xiaoming Fan
- Department of Medicine, University of Toledo, Toledo, OH, United States of America
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV, United States of America
| | - Komal Sodhi
- Department of Biomedical Sciences, Marshall University Joan C. Edwards Medical School, Huntington, WV, United States of America
| | - Jiang Liu
- Department of Biomedical Sciences, Marshall University Joan C. Edwards Medical School, Huntington, WV, United States of America
| | - Joseph I. Shapiro
- Department of Biomedical Sciences, Marshall University Joan C. Edwards Medical School, Huntington, WV, United States of America
| | - Jiang Tian
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV, United States of America
- Department of Biomedical Sciences, Marshall University Joan C. Edwards Medical School, Huntington, WV, United States of America
| |
Collapse
|
4
|
Khitan ZJ, Chin KV, Sodhi K, Kheetan M, Alsanani A, Shapiro JI. Gut microbiome and diet in populations with obesity: Role of the Na+/K+-ATPase transporter signaling in severe COVID-19. Obesity (Silver Spring) 2022; 30:869-873. [PMID: 35048549 PMCID: PMC8957587 DOI: 10.1002/oby.23387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/15/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The triad of obesity, a high-protein diet from animal sources, and disturbed gut microbiota have been linked to poor clinical outcomes in patients with COVID-19. In this report, the effect of oxidative stress resulting from the Na+ /K+ -ATPase transporter signaling cascade is explored as a driver of this poor clinical outcome. METHODS Protein-protein interactions with the SARS-CoV-2 proteome were identified from the interactome data for Na+ /K+ -transporting ATPase subunit α-1 (ATP1A1), epidermal growth factor receptor, and ERB-B2 receptor tyrosine kinase 2, using the curated data from the BioGRID Database of Protein Interactions. Data for the gene expression pattern of inflammatory response were from the Gene Expression Omnibus database for cardiomyocytes post SARS-CoV-2 infection (number GSE151879). RESULTS The ATP1A1 subunit of the Na+ /K+ -ATPase transporter is targeted by multiple SARS-CoV-2 proteins. Furthermore, receptor proteins associated with inflammatory response, including epidermal growth factor receptor and ERB-B2 receptor tyrosine kinase 2 (which interact with ATP1A1), are also targeted by some SARS-CoV-2 proteins. This heightened interaction likely triggers a cytokine release that increases the severity of the viral infection in individuals with obesity. CONCLUSIONS The similarities between the effects of SARS-CoV-2 proteins and indoxyl sulphate on the Na+ /K+ -ATPase transporter signaling cascade suggest the possibility of an augmentation of gene changes seen with COVID-19 infection that can result in a hyperinduction of cytokine release in individuals with obesity.
Collapse
Affiliation(s)
- Zeid J. Khitan
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, West Virginia, United States
| | - Khew-Voon Chin
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, West Virginia, United States
| | - Komal Sodhi
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, West Virginia, United States
| | - Murad Kheetan
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, West Virginia, United States
| | - Ahlim Alsanani
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, West Virginia, United States
| | - Joseph I. Shapiro
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, West Virginia, United States
| |
Collapse
|
5
|
Sodhi K, Pratt R, Wang X, Lakhani HV, Pillai SS, Zehra M, Wang J, Grover L, Henderson B, Denvir J, Liu J, Pierre S, Nelson T, Shapiro JI. Role of adipocyte Na,K-ATPase oxidant amplification loop in cognitive decline and neurodegeneration. iScience 2021; 24:103262. [PMID: 34755095 PMCID: PMC8564125 DOI: 10.1016/j.isci.2021.103262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
Recent studies suggest that a western diet may contribute to clinical neurodegeneration and dementia. Adipocyte-specific expression of the Na,K-ATPase signaling antagonist, NaKtide, ameliorates the pathophysiological consequences of murine experimental obesity and renal failure. In this study, we found that a western diet produced systemic oxidant stress along with evidence of activation of Na,K-ATPase signaling within both murine brain and peripheral tissues. We also noted this diet caused increases in circulating inflammatory cytokines as well as behavioral, and brain biochemical changes consistent with neurodegeneration. Adipocyte specific NaKtide affected by a doxycycline on/off expression system ameliorated all of these diet effects. These data suggest that a western diet produces cognitive decline and neurodegeneration through augmented Na,K-ATPase signaling and that antagonism of this pathway in adipocytes ameliorates the pathophysiology. If this observation is confirmed in humans, the adipocyte Na,K-ATPase may serve as a clinical target in the therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- Komal Sodhi
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Rebecca Pratt
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Xiaoliang Wang
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Sneha S. Pillai
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Mishghan Zehra
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jiayan Wang
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Lawrence Grover
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Brandon Henderson
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - James Denvir
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jiang Liu
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Sandrine Pierre
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Thomas Nelson
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Joseph I. Shapiro
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
6
|
Xie ZJ, Novograd J, Itzkowitz Y, Sher A, Buchen YD, Sodhi K, Abraham NG, Shapiro JI. The Pivotal Role of Adipocyte-Na K peptide in Reversing Systemic Inflammation in Obesity and COVID-19 in the Development of Heart Failure. Antioxidants (Basel) 2020; 9:E1129. [PMID: 33202598 PMCID: PMC7697697 DOI: 10.3390/antiox9111129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023] Open
Abstract
This review summarizes data from several laboratories that have demonstrated a role of the Na/K-ATPase, specifically its α1 subunit, in the generation of reactive oxygen species (ROS) via the negative regulator of Src. Together with Src and other signaling proteins, the Na/K-ATPase forms an oxidant amplification loop (NKAL), amplifies ROS, and participates in cytokines storm in obesity. The development of a peptide fragment of the α1 subunit, NaKtide, has been shown to negatively regulate Src. Several groups showed that the systemic administration of the cell permeable modification of NaKtide (pNaKtide) or its selective delivery to fat tissue-adipocyte specific expression of NaKtide-ameliorate the systemic elevation of inflammatory cytokines seen in chronic obesity. Severe acute respiratory syndrome - coronavirus 2 (SARS-CoV-2), the RNA Coronavirus responsible for the COVID-19 global pandemic, invades cells via the angiotensin converting enzyme 2 (ACE-2) receptor (ACE2R) that is appended in inflamed fat tissue and exacerbates the formation of the cytokines storm. Both obesity and heart and renal failure are well known risks for adverse outcomes in patients infected with COVID-19. White adipocytes express ACE-2 receptors in high concentration, especially in obese patients. Once the virus invades the white adipocyte cell, it creates a COVID19-porphyrin complex which degrades and produces free porphyrin and iron and increases ROS. The increased formation of ROS and activation of the NKAL results in a further potentiated formation of ROS production, and ultimately, adipocyte generation of more inflammatory mediators, leading to systemic cytokines storm and heart failure. Moreover, chronic obesity also results in the reduction of antioxidant genes such as heme oxygenase-1 (HO-1), increasing adipocyte susceptibility to ROS and cytokines. It is the systemic inflammation and cytokine storm which is responsible for many of the adverse outcomes seen with COVID-19 infections in obese subjects, leading to heart failure and death. This review will also describe the potential antioxidant drugs and role of NaKtide and their demonstrated antioxidant effect used as a major strategy for improving obesity and epicardial fat mediated heart failure in the context of the COVID pandemic.
Collapse
Affiliation(s)
- Zi-jian Xie
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| | - Joel Novograd
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Yaakov Itzkowitz
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Ariel Sher
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Yosef D. Buchen
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Komal Sodhi
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| | - Nader G. Abraham
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| |
Collapse
|