1
|
Liu DQ, Mei W, Zhou YQ, Xi H. Targeting TRPM channels for cerebral ischemia-reperfusion injury. Trends Pharmacol Sci 2024; 45:862-867. [PMID: 39019763 DOI: 10.1016/j.tips.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024]
Abstract
Transient receptor potential melastatin (TRPM) channels have emerged as potential therapeutic targets for cerebral ischemia-reperfusion (I/R) injury. We highlight recent findings on the involvement of TRPM channels in oxidative stress, mitochondrial dysfunction, inflammation, and calcium overload. We also discuss the challenges and future directions in targeting TRPM channels for cerebral I/R injury.
Collapse
Affiliation(s)
- Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hong Xi
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
2
|
Liu C, Wang G, Han W, Tian Q, Li M. Ferroptosis: a potential therapeutic target for stroke. Neural Regen Res 2024; 19:988-997. [PMID: 37862200 PMCID: PMC10749612 DOI: 10.4103/1673-5374.385284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 10/22/2023] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by massive iron accumulation and iron-dependent lipid peroxidation, differing from apoptosis, necroptosis, and autophagy in several aspects. Ferroptosis is regarded as a critical mechanism of a series of pathophysiological reactions after stroke because of iron overload caused by hemoglobin degradation and iron metabolism imbalance. In this review, we discuss ferroptosis-related metabolisms, important molecules directly or indirectly targeting iron metabolism and lipid peroxidation, and transcriptional regulation of ferroptosis, revealing the role of ferroptosis in the progression of stroke. We present updated progress in the intervention of ferroptosis as therapeutic strategies for stroke in vivo and in vitro and summarize the effects of ferroptosis inhibitors on stroke. Our review facilitates further understanding of ferroptosis pathogenesis in stroke, proposes new targets for the treatment of stroke, and suggests that more efforts should be made to investigate the mechanism of ferroptosis in stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenrui Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
3
|
Aziz N, Wal P, Sinha R, Shirode PR, Chakraborthy G, Sharma MC, Kumar P. A Comprehensive Review on the Significance of Cysteine in Various Metabolic Disorders; Particularly CVD, Diabetes, Renal Dysfunction, and Ischemic Stroke. Curr Protein Pept Sci 2024; 25:682-707. [PMID: 38766817 DOI: 10.2174/0113892037287215240424090908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 05/22/2024]
Abstract
Metabolic disorders have long been a challenge for medical professionals and are a leading cause of mortality in adults. Diabetes, cardiovascular disorders (CVD), renal dysfunction, and ischemic stroke are the most prevalent ailments contributing to a high mortality rate worldwide. Reactive oxygen species are one of the leading factors that act as a fundamental root cause of metabolic syndrome. All of these disorders have their respective treatments, which, to some degree, sabotage the pathological worsening of the disease and an inevitable death. However, they pose a perilous health hazard to humankind. Cysteine, a functional amino acid shows promise for the prevention and treatment of metabolic disorders, such as CVD, Diabetes mellitus, renal dysfunction, and ischemic stroke. In this review, we explored whether cysteine can eradicate reactive oxygen species and subsequently prevent and treat these diseases.
Collapse
Affiliation(s)
- Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur-209305, UP, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur-209305, UP, India
| | - Rishika Sinha
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur-209305, UP, India
| | | | | | | | - Pankaj Kumar
- Department of Pharmacology, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh 6 University, NH-7, Barnala Road, Bathinda 151001, India
| |
Collapse
|
4
|
TRPM2 Channel Inhibition Attenuates Amyloid β42-Induced Apoptosis and Oxidative Stress in the Hippocampus of Mice. Cell Mol Neurobiol 2023; 43:1335-1353. [PMID: 35840808 DOI: 10.1007/s10571-022-01253-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/01/2022] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) is characterized by the increase of hippocampal Ca2+ influx-induced apoptosis and mitochondrial oxidative stress (OS). The OS is a stimulator of TRPM2, although N-(p-amylcinnamoyl)anthranilic acid (ACA), 2-aminoethyl diphenylborinate (2/APB), and glutathione (GSH) are non-specific antagonists of TRPM2. In the present study, we investigated the protective roles of GSH and TRPM2 antagonist treatments on the amyloid β42 peptide (Aβ)-caused oxidative neurotoxicity and apoptosis in the hippocampus of mice with AD model. After the isolation of hippocampal neurons from the newborn mice, they were divided into five incubation groups as follows: control, ACA, Aβ, Aβ+ACA, and Aβ+GSH. The levels of apoptosis, hippocampus death, cytosolic ROS, cytosolic Zn2+, mitochondrial ROS, caspase-3, caspase-9, lipid peroxidation, and cytosolic Ca2+ were increased in the primary hippocampus cultures by treatments of Aβ, although their levels were decreased in the neurons by the treatments of GSH, PARP-1 inhibitors (PJ34 and DPQ), and TRPM2 blockers (ACA and 2/APB). The Aβ-induced decreases of cell viability, cytosolic GSH, reduced GSH, and GSH peroxidase levels were also increased in the groups of Aβ+ACA and Aβ+GSH by the treatments of ACA and GSH. However, the Aβ-caused changes were not observed in the hippocampus of TRPM2-knockout mice. In conclusion, the present data demonstrate that maintaining the activation of TRPM2 is not only important for the quenching OS and neurotoxicity in the hippocampal neurons of mice with experimental AD but also equally critical to the modulation of Aβ-induced apoptosis. The possible positive effects of GSH and TRPM2 antagonist treatments on the amyloid-beta (Aβ)-induced oxidative toxicity in the hippocampus of mice. The ADP-ribose (ADPR) is produced via the stimulation of PARP-1 in the nucleus of neurons. The NUT9 in the C terminus of TRPM2 channel acts as a key role for the activation of TRPM2. The antagonists of TRPM2 are glutathione (GSH), ACA, and 2/APB in the hippocampus. The Aβ incubation-mediated TRPM2 stimulation increases the concentration of cytosolic-free Ca2+ and Zn2+ in the hippocampus. In turn, the increased concentration causes the increase of mitochondrial membrane potential (ΔΨm), which causes the excessive generations of mitochondria ROS and the decrease of cytosolic GSH and GSH peroxidase (GSH-Px). The ROS production and GSH depletion are two main causes in the neurobiology of Alzheimer's disease. However, the effect of Aβ was not shown in the hippocampus of TRPM2-knockout mice. The Aβ and TRPM2 stimulation-caused overload Ca2+ entry cause apoptosis and cell death via the activations of caspase-3 (Casp/3) and caspase-9 (Casp/9) in the hippocampus. The actions of Aβ-induced oxidative toxicity were modulated in the primary hippocampus by the incubations of ACA, GSH, 2/APB, and PARP-1 inhibitors (PJ34 and DPQ). (↑) Increase. (↓) Decrease.
Collapse
|
5
|
Kang BS, Choi BY, Kho AR, Lee SH, Hong DK, Park MK, Lee SH, Lee CJ, Yang HW, Woo SY, Park SW, Kim DY, Park JB, Chung WS, Suh SW. Effects of Pyruvate Kinase M2 (PKM2) Gene Deletion on Astrocyte-Specific Glycolysis and Global Cerebral Ischemia-Induced Neuronal Death. Antioxidants (Basel) 2023; 12:491. [PMID: 36830049 PMCID: PMC9952809 DOI: 10.3390/antiox12020491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Ischemic stroke is caused by insufficient blood flow to the brain. Astrocytes have a role in bidirectionally converting pyruvate, generated via glycolysis, into lactate and then supplying it to neurons through astrocyte-neuron lactate shuttle (ANLS). Pyruvate kinase M2 (PKM2) is an enzyme that dephosphorylates phosphoenolpyruvate to pyruvate during glycolysis in astrocytes. We hypothesized that a reduction in lactate supply in astrocyte PKM2 gene deletion exacerbates neuronal death. Mice harboring a PKM2 gene deletion were established by administering tamoxifen to Aldh1l1-CreERT2; PKM2f/f mice. Upon development of global cerebral ischemia, mice were immediately injected with sodium l-lactate (250 mg/kg, i.p.). To verify our hypothesis, we compared oxidative damage, microtubule disruption, ANLS disruption, and neuronal death between the gene deletion and control subjects. We observed that PKM2 gene deletion increases the degree of neuronal damage and impairment of lactate metabolism in the hippocampal region after GCI. The lactate administration groups showed significantly reduced neuronal death and increases in neuron survival and cognitive function. We found that lactate supply via the ANLS in astrocytes plays a crucial role in maintaining energy metabolism in neurons. Lactate administration may have potential as a therapeutic tool to prevent neuronal damage following ischemic stroke.
Collapse
Affiliation(s)
- Beom-Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Bo-Young Choi
- Department of Physical Education, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Sport Science, Hallym University, Chuncheon 24252, Republic of Korea
| | - A-Ra Kho
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, College of Medicine, Johns Hopkins University School, Baltimore, MD 21205, USA
- Department of Neurology, College of Medicine, Johns Hopkins University School, Baltimore, MD 21205, USA
| | - Song-Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dae-Ki Hong
- Department of Pathology and Laboratory Medicine, College of Medicine, Emory University School, Atlanta, GA 30322, USA
| | - Min-Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Si-Hyun Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Chang-Juhn Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyeun-Wook Yang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Seo-Young Woo
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Se-Wan Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dong-Yeon Kim
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, College of Medicine, Chuncheon 24252, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34051, Republic of Korea
| | - Sang-Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
6
|
The Protective Role of Glutathione on Zinc-Induced Neuron Death after Brain Injuries. Int J Mol Sci 2023; 24:ijms24032950. [PMID: 36769273 PMCID: PMC9917832 DOI: 10.3390/ijms24032950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Glutathione (GSH) is necessary for maintaining physiological antioxidant function, which is responsible for maintaining free radicals derived from reactive oxygen species at low levels and is associated with improved cognitive performance after brain injury. GSH is produced by the linkage of tripeptides that consist of glutamic acid, cysteine, and glycine. The adequate supplementation of GSH has neuroprotective effects in several brain injuries such as cerebral ischemia, hypoglycemia, and traumatic brain injury. Brain injuries produce an excess of reactive oxygen species through complex biochemical cascades, which exacerbates primary neuronal damage. GSH concentrations are known to be closely correlated with the activities of certain genes such as excitatory amino acid carrier 1 (EAAC1), glutamate transporter-associated protein 3-18 (Gtrap3-18), and zinc transporter 3 (ZnT3). Following brain-injury-induced oxidative stress, EAAC1 function is negatively impacted, which then reduces cysteine absorption and impairs neuronal GSH synthesis. In these circumstances, vesicular zinc is also released into the synaptic cleft and then translocated into postsynaptic neurons. The excessive influx of zinc inhibits glutathione reductase, which inhibits GSH's antioxidant functions in neurons, resulting in neuronal damage and ultimately in the impairment of cognitive function. Therefore, in this review, we explore the overall relationship between zinc and GSH in terms of oxidative stress and neuronal cell death. Furthermore, we seek to understand how the modulation of zinc can rescue brain-insult-induced neuronal death after ischemia, hypoglycemia, and traumatic brain injury.
Collapse
|
7
|
Hall HK, Koh DW. Methods for Investigating Transient Receptor Potential Melastatin-2 (TRPM2): A Cation Channel Activated by ADP-Ribose and Involved in Cell Death. Methods Mol Biol 2022; 2609:213-226. [PMID: 36515838 DOI: 10.1007/978-1-0716-2891-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transient receptor potential melastatin-2 (TRPM2) is an emerging chemotherapeutic target due to its involvement in poly(ADP-ribose) metabolism and the ability to induce anticancer effects after antagonism of its functions. Normally functioning as a nonspecific cation channel that is activated by free ADP-ribose, TRPM2 is involved with many cellular processes, including the induction of cell death after oxidative stress. What is becoming clear is that antagonism of TRPM2 selectively induces anticancer effects in several types of cancer. We previously demonstrated decreased growth and proliferation, increased levels of DNA damage, and the selective induction of cell death in breast cancer and melanoma cells. Due to these effects, it appears that TRPM2 has a novel role in cancer cells. Further, this novel role appears to involve nuclear function, because our studies, as well as those from other independent groups, demonstrate a nuclear localization of TRPM2 in various types of cancers. Thus, as an emerging therapeutic target, it is important to describe research techniques that can be utilized to analyze TRPM2 function, determine its effects in cancerous and noncancerous cells, and provide molecular biological methods to inhibit or downregulate its function.
Collapse
Affiliation(s)
- Hannah K Hall
- Department of Pharmaceutical and Biomedical Sciences, Rudolph H. Raabe College of Pharmacy, Ohio Northern University, Ada, OH, USA
| | - David W Koh
- Department of Pharmaceutical and Biomedical Sciences, Rudolph H. Raabe College of Pharmacy, Ohio Northern University, Ada, OH, USA.
| |
Collapse
|
8
|
Hong DK, Eom JW, Kho AR, Lee SH, Kang BS, Lee SH, Koh JY, Kim YH, Choi BY, Suh SW. The Inhibition of Zinc Excitotoxicity and AMPK Phosphorylation by a Novel Zinc Chelator, 2G11, Ameliorates Neuronal Death Induced by Global Cerebral Ischemia. Antioxidants (Basel) 2022; 11:2192. [PMID: 36358564 PMCID: PMC9686920 DOI: 10.3390/antiox11112192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is necessary for maintaining a positive energy balance and essential cellular processes such as glycolysis, gene transcription, glucose uptake, and several other biological functions. However, brain injury-induced energy and metabolic stressors, such as cerebral ischemia, increase AMPK phosphorylation. Phosphorylated AMPK contributes to excitotoxicity, oxidative, and metabolic problems. Furthermore, brain disease-induced release of zinc from synaptic vesicles contributes to neuronal damage via mechanisms including ROS production, apoptotic cell death, and DNA damage. For this reason, we hypothesized that regulating zinc accumulation and AMPK phosphorylation is critical for protection against global cerebral ischemia (GCI). Through virtual screening based on the structure of AMPK subunit alpha 2, we identified a novel compound, 2G11. In this study, we verified that 2G11 administration has neuroprotective effects via the blocking of zinc translocation and AMPK phosphorylation after GCI. As a result, we demonstrated that 2G11 protected hippocampal neurons against GCI and OGD/R-derived cellular damage. In conclusion, we propose that AMPK inhibition and zinc chelation by 2G11 may be a promising tool for preventing GCI-induced hippocampal neuronal death.
Collapse
Affiliation(s)
- Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jae-Won Eom
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
| | - A Ra Kho
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Si Hyun Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jae-Young Koh
- Neural Injury Research Laboratory, Department of Neurology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yang-Hee Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Bo Young Choi
- Department of Physical Education, Hallym University, Chuncheon 24252, Korea
- Institute of Sport Science, Hallym University, Chuncheon 24252, Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
9
|
Wang Q, Liu N, Ni YS, Yang JM, Ma L, Lan XB, Wu J, Niu JG, Yu JQ. TRPM2 in ischemic stroke: Structure, molecular mechanisms, and drug intervention. Channels (Austin) 2021; 15:136-154. [PMID: 33455532 PMCID: PMC7833771 DOI: 10.1080/19336950.2020.1870088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/14/2023] Open
Abstract
Ischemic stroke has a high lethality rate worldwide, and novel treatments are limited. Calcium overload is considered to be one of the mechanisms of cerebral ischemia. Transient receptor potential melastatin 2 (TRPM2) is a reactive oxygen species (ROS)-sensitive calcium channel. Cerebral ischemia-induced TRPM2 activation triggers abnormal intracellular Ca2+ accumulation and cell death, which in turn causes irreversible brain damage. Thus, TRPM2 has emerged as a new therapeutic target for ischemic stroke. This review provides data on the expression, structure, and function of TRPM2 and illustrates its cellular and molecular mechanisms in ischemic stroke. Natural and synthetic TRPM2 inhibitors (both specific and nonspecific) are also summarized. The three-dimensional protein structure of TRPM2 has been identified, and we speculate that molecular simulation techniques will be essential for developing new drugs that block TRPM2 channels. These insights about TRPM2 may be the key to find potent therapeutic approaches for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qing Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Yuan-Shu Ni
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Jia-Mei Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Lin Ma
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Xiao-Bing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Jing Wu
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, China
| | - Jian-Guo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
10
|
Protective Role of Glutathione in the Hippocampus after Brain Ischemia. Int J Mol Sci 2021; 22:ijms22157765. [PMID: 34360532 PMCID: PMC8345998 DOI: 10.3390/ijms22157765] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Stroke is a major cause of death worldwide, leading to serious disability. Post-ischemic injury, especially in the cerebral ischemia-prone hippocampus, is a serious problem, as it contributes to vascular dementia. Many studies have shown that in the hippocampus, ischemia/reperfusion induces neuronal death through oxidative stress and neuronal zinc (Zn2+) dyshomeostasis. Glutathione (GSH) plays an important role in protecting neurons against oxidative stress as a major intracellular antioxidant. In addition, the thiol group of GSH can function as a principal Zn2+ chelator for the maintenance of Zn2+ homeostasis in neurons. These lines of evidence suggest that neuronal GSH levels could be a key factor in post-stroke neuronal survival. In neurons, excitatory amino acid carrier 1 (EAAC1) is involved in the influx of cysteine, and intracellular cysteine is the rate-limiting substrate for the synthesis of GSH. Recently, several studies have indicated that cysteine uptake through EAAC1 suppresses ischemia-induced neuronal death via the promotion of hippocampal GSH synthesis in ischemic animal models. In this article, we aimed to review and describe the role of GSH in hippocampal neuroprotection after ischemia/reperfusion, focusing on EAAC1.
Collapse
|
11
|
Neuroprotection: Rescue from Neuronal Death in the Brain. Int J Mol Sci 2021; 22:ijms22115525. [PMID: 34073797 PMCID: PMC8197180 DOI: 10.3390/ijms22115525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/21/2022] Open
|
12
|
Transient Global Ischemia-Induced Brain Inflammatory Cascades Attenuated by Targeted Temperature Management. Int J Mol Sci 2021; 22:ijms22105114. [PMID: 34066051 PMCID: PMC8151768 DOI: 10.3390/ijms22105114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Sudden cardiac arrest leads to a significantly increased risk of severe neurological impairment and higher mortality rates in survivors due to global brain tissue injury caused by prolonged whole-body ischemia and reperfusion. The brain undergoes various deleterious cascading events. Among these damaging mechanisms, neuroinflammation plays an especially crucial role in the exacerbation of brain damage. Clinical guidelines indicate that 33 °C and 36 °C are both beneficial for targeted temperature management (TTM) after cardiac arrest. To clarify the mechanistic relationship between TTM and inflammation in transient global ischemia (TGI) and determine whether 36 °C produces a neuroprotective effect comparable to 33 °C, we performed an experiment using a rat model. We found that TTM at 36 °C and at 33 °C attenuated neuronal cell death and apoptosis, with significant improvements in behavioral function that lasted for up to 72 h. TTM at 33 °C and 36 °C suppressed the propagation of inflammation including the release of high mobility group box 1 from damaged cells, the activation and polarization of the microglia, and the excessive release of activated microglia-induced inflammatory cytokines. There were equal neuroprotective effects for TTM at 36 °C and 33 °C. In addition, hypothermic complications and should be considered safe and effective after cardiac arrest.
Collapse
|
13
|
Wei S, Low SW, Poore CP, Chen B, Gao Y, Nilius B, Liao P. Comparison of Anti-oncotic Effect of TRPM4 Blocking Antibody in Neuron, Astrocyte and Vascular Endothelial Cell Under Hypoxia. Front Cell Dev Biol 2020; 8:562584. [PMID: 33195194 PMCID: PMC7604339 DOI: 10.3389/fcell.2020.562584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/30/2020] [Indexed: 12/31/2022] Open
Abstract
In stroke and other neurological diseases, Transient Receptor Potential Melastatin 4 (TRPM4) has been reported to cause oncotic cell death which is due to an excessive influx of sodium ions. Following stroke, hypoxia condition activates TRPM4 channel, and the sodium influx via TRPM4 is further enhanced by an increased TRPM4 expression. However, the effect of TRPM4 inhibition on oncotic cell death, particularly during the acute stage, remains largely unknown. Recently, we have developed a polyclonal antibody M4P that specifically inhibits TRPM4 channel. M4P blocks the channel via binding to a region close to the channel pore from extracellular space. Using M4P, we evaluated the acute effect of blocking TRPM4 in neurons, astrocytes, and vascular endothelial cells. In a rat stroke model, M4P co-localized with neuronal marker NeuN and endothelial marker vWF, whereas few GFAP positive astrocytes were stained by M4P in the ipsilateral hemisphere. When ATP was acutely depleted in cultured cortical neurons and microvascular endothelial cells, cell swelling was induced. Application of M4P significantly blocked TRPM4 current and attenuated oncosis. TUNEL assay, PI staining and western blot on cleaved Caspase-3 revealed that M4P could ameliorate apoptosis after 24 h hypoxia exposure. In contrast, acute ATP depletion in cultured astrocytes failed to demonstrate an increase of cell volume, and application of M4P or control IgG had no effect on cell volume change. When TRPM4 was overexpressed in astrocytes, acute ATP depletion successfully induced oncosis which could be suppressed by M4P treatment. Our results demonstrate that comparing to astrocytes, neurons, and vascular endothelial cells are more vulnerable to hypoxic injury. During the acute stage of stroke, blocking TRPM4 channel could protect neurons and vascular endothelial cells from oncotic cell death.
Collapse
Affiliation(s)
- Shunhui Wei
- Calcium Signaling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - See Wee Low
- Calcium Signaling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Charlene Priscilla Poore
- Calcium Signaling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Bo Chen
- Calcium Signaling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Yahui Gao
- Calcium Signaling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Bernd Nilius
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ping Liao
- Calcium Signaling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore
| |
Collapse
|