1
|
Ma D, Xu J, Wu M, Zhang R, Hu Z, Ji CA, Wang Y, Zhang Z, Yu R, Liu X, Yang L, Li G, Shen D, Liu M, Yang Z, Zhang H, Wang P, Zhang Z. Phenazine biosynthesis protein MoPhzF regulates appressorium formation and host infection through canonical metabolic and noncanonical signaling function in Magnaporthe oryzae. THE NEW PHYTOLOGIST 2024; 242:211-230. [PMID: 38326975 PMCID: PMC10940222 DOI: 10.1111/nph.19569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Microbe-produced secondary metabolite phenazine-1-carboxylic acid (PCA) facilitates pathogen virulence and defense mechanisms against competitors. Magnaporthe oryzae, a causal agent of the devastating rice blast disease, needs to compete with other phyllosphere microbes and overcome host immunity for successful colonization and infection. However, whether M. oryzae produces PCA or it has any other functions remains unknown. Here, we found that the MoPHZF gene encodes the phenazine biosynthesis protein MoPhzF, synthesizes PCA in M. oryzae, and regulates appressorium formation and host virulence. MoPhzF is likely acquired through an ancient horizontal gene transfer event and has a canonical function in PCA synthesis. In addition, we found that PCA has a role in suppressing the accumulation of host-derived reactive oxygen species (ROS) during infection. Further examination indicated that MoPhzF recruits both the endoplasmic reticulum membrane protein MoEmc2 and the regulator of G-protein signaling MoRgs1 to the plasma membrane (PM) for MoRgs1 phosphorylation, which is a critical regulatory mechanism in appressorium formation and pathogenicity. Collectively, our studies unveiled a canonical function of MoPhzF in PCA synthesis and a noncanonical signaling function in promoting appressorium formation and host infection.
Collapse
Affiliation(s)
- Danying Ma
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayun Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruiming Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhao Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang-an Ji
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziqi Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Leiyun Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhixiang Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Martín-Cardoso H, Bundó M, Val-Torregrosa B, San Segundo B. Phosphate accumulation in rice leaves promotes fungal pathogenicity and represses host immune responses during pathogen infection. FRONTIERS IN PLANT SCIENCE 2024; 14:1330349. [PMID: 38298608 PMCID: PMC10827867 DOI: 10.3389/fpls.2023.1330349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
Rice is one of the most important crops in the world and a staple food for more than half of the world's population. At present, the blast disease caused by the fungus Magnaporthe oryzae poses a severe threat to food security through reduction of rice yields worldwide. High phosphate fertilization has previously been shown to increase blast susceptibility. At present, however, our knowledge on the mechanisms underpinning phosphate-induced susceptibility to M. oryzae infection in rice is limited. In this work, we conducted live cell imaging on rice sheaths inoculated with a M. oryzae strain expressing two fluorescently-tagged M. oryzae effectors. We show that growing rice under high phosphate fertilization, and subsequent accumulation of phosphate in leaf sheaths, promotes invasive growth of M. oryzae. Consistent with this, stronger expression of M. oryzae effectors and Pathogenicity Mitogen-activated Protein Kinase (PMK1) occurs in leaf sheaths of rice plants grown under high a phosphate regime. Down-regulation of fungal genes encoding suppressors of plant cell death and up-regulation of plant cell death-inducing effectors also occurs in sheaths of phosphate over-accumulating rice plants. Treatment with high Pi causes alterations in the expression of fungal phosphate transporter genes potentially contributing to pathogen virulence. From the perspective of the plant, Pi accumulation in leaf sheaths prevents H2O2 accumulation early during M. oryzae infection which was associated to a weaker activation of Respiratory Burst Oxidase Homologs (RBOHs) genes involved in reactive oxygen species (ROS) production. Further, a weaker activation of defense-related genes occurs during infection in rice plants over-accumulating phosphate. From these results, it can be concluded that phosphate fertilization has an effect on the two interacting partners, pathogen and host. Phosphate-mediated stimulation of fungal effector genes (e.g., potentiation of fungal pathogenicity) in combination with repression of pathogen-inducible immune responses (e.g., ROS accumulation, defense gene expression) explains higher colonization by M. oryzae in rice tissues accumulating phosphate. Phosphate content can therefore be considered as an important factor in determining the outcome of the rice/M. oryzae interaction. As fertilizers and pesticides are commonly used in rice cultivation to maintain optimal yield and to prevent losses caused by pathogens, a better understanding of how phosphate impacts blast susceptibility is crucial for developing strategies to rationally optimize fertilizer and pesticide use in rice production.
Collapse
Affiliation(s)
- Héctor Martín-Cardoso
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/de la Vall Moronta, CRAG Building, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/de la Vall Moronta, CRAG Building, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Beatriz Val-Torregrosa
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/de la Vall Moronta, CRAG Building, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/de la Vall Moronta, CRAG Building, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
3
|
Wei YY, Liang S, Zhu XM, Liu XH, Lin FC. Recent Advances in Effector Research of Magnaporthe oryzae. Biomolecules 2023; 13:1650. [PMID: 38002332 PMCID: PMC10669146 DOI: 10.3390/biom13111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Recalcitrant rice blast disease is caused by Magnaporthe oryzae, which has a significant negative economic reverberation on crop productivity. In order to induce the disease onto the host, M. oryzae positively generates many types of small secreted proteins, here named as effectors, to manipulate the host cell for the purpose of stimulating pathogenic infection. In M. oryzae, by engaging with specific receptors on the cell surface, effectors activate signaling channels which control an array of cellular activities, such as proliferation, differentiation and apoptosis. The most recent research on effector identification, classification, function, secretion, and control mechanism has been compiled in this review. In addition, the article also discusses directions and challenges for future research into an effector in M. oryzae.
Collapse
Affiliation(s)
- Yun-Yun Wei
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China;
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
| | - Xiao-Hong Liu
- Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
- Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
The Cytoskeleton in Plant Immunity: Dynamics, Regulation, and Function. Int J Mol Sci 2022; 23:ijms232415553. [PMID: 36555194 PMCID: PMC9779068 DOI: 10.3390/ijms232415553] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The plant cytoskeleton, consisting of actin filaments and microtubules, is a highly dynamic filamentous framework involved in plant growth, development, and stress responses. Recently, research has demonstrated that the plant cytoskeleton undergoes rapid remodeling upon sensing pathogen attacks, coordinating the formation of microdomain immune complexes, the dynamic and turnover of pattern-recognizing receptors (PRRs), the movement and aggregation of organelles, and the transportation of defense compounds, thus serving as an important platform for responding to pathogen infections. Meanwhile, pathogens produce effectors targeting the cytoskeleton to achieve pathogenicity. Recent findings have uncovered several cytoskeleton-associated proteins mediating cytoskeletal remodeling and defense signaling. Furthermore, the reorganization of the actin cytoskeleton is revealed to further feedback-regulate reactive oxygen species (ROS) production and trigger salicylic acid (SA) signaling, suggesting an extremely complex role of the cytoskeleton in plant immunity. Here, we describe recent advances in understanding the host cytoskeleton dynamics upon sensing pathogens and summarize the effectors that target the cytoskeleton. We highlight advances in the regulation of cytoskeletal remodeling associated with the defense response and assess the important function of the rearrangement of the cytoskeleton in the immune response. Finally, we propose suggestions for future research in this area.
Collapse
|
5
|
β-Carboline Alkaloids from Peganum harmala Inhibit Fusarium oxysporum from Codonopsis radix through Damaging the Cell Membrane and Inducing ROS Accumulation. Pathogens 2022; 11:pathogens11111341. [PMID: 36422593 PMCID: PMC9693454 DOI: 10.3390/pathogens11111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Fusarium oxysporum is a widely distributed soil-borne pathogenic fungus that can cause medicinal herbs and crops to wither or die, resulting in great losses and threat to public health. Due to the emergence of drug-resistance and the decline of the efficacy of antifungal pesticides, there is an urgent need for safe, environmentally friendly, and effective fungicides to control this fungus. Plant-derived natural products are such potential pesticides. Extracts from seeds of Peganum harmala have shown antifungal effects on F. oxysporum but their antifungal mechanism is unclear. In vitro antifungal experiments showed that the total alkaloids extract and all five β-carboline alkaloids (βCs), harmine, harmaline, harmane, harmalol, and harmol, from P. harmala seeds inhibited the growth of F. oxysporum. Among these βCs, harmane had the best antifungal activity with IC50 of 0.050 mg/mL and MIC of 40 μg/mL. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results revealed that the mycelia and spores of F. oxysporum were morphologically deformed and the integrity of cell membranes was disrupted after exposure to harmane. In addition, fluorescence microscopy results suggested that harmane induced the accumulation of ROS and increased the cell death rate. Transcriptomic analysis showed that the most differentially expressed genes (DEGs) of F. oxysporum treated with harmane were enriched in catalytic activity, integral component of membrane, intrinsic component of membrane, and peroxisome, indicating that harmane inhibits F. oxysporum growth possibly through damaging cell membrane and ROS accumulation via regulating steroid biosynthesis and the peroxisome pathway. The findings provide useful insights into the molecular mechanisms of βCs of P. harmala seeds against F. oxysporum and a reference for understanding the application of βCs against F. oxysporum in medicinal herbs and crops.
Collapse
|
6
|
Liang M, Dong L, Deng YZ. Circadian Redox Rhythm in Plant-Fungal Pathogen Interactions. Antioxid Redox Signal 2022; 37:726-738. [PMID: 35044223 DOI: 10.1089/ars.2021.0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Significance: Circadian-controlled cellular growth, differentiation, and metabolism are mainly achieved by a classical transcriptional-translational feedback loop (TTFL), as revealed by investigations in animals, plants, and fungi. Recent Advances: Recently, reactive oxygen species (ROS) have been reported as part of a cellular network synchronizing nontranscriptional oscillators with established TTFL components, adding complexity to regulatory mechanisms of circadian rhythm. Both circadian rhythm and ROS homeostasis have a great impact on plant immunity as well as fungal pathogenicity, therefore interconnections of these two factors are implicit in plant-fungus interactions. Critical Issues: In this review, we aim to summarize the recent advances in circadian-controlled ROS homeostasis, or ROS-modulated circadian clock, in plant-fungus pathosystems, particularly using the rice (Oryza sativa) blast fungus (Magnaporthe oryzae) pathosystem as an example. Understanding of such bidirectional interaction between the circadian timekeeping machinery and ROS homeostasis/signaling would provide a theoretical basis for developing disease control strategies for important plants/crops. Future Directions: Questions remain unanswered about the detailed mechanisms underlying circadian regulation of redox homeostasis in M. oryzae, and the consequent fungal differentiation and death in a time-of-day manner. We believe that the rice-M. oryzae pathobiosystem would provide an excellent platform for investigating such issues in circadian-ROS interconnections in a plant-fungus interaction context. Antioxid. Redox Signal. 37, 726-738.
Collapse
Affiliation(s)
- Meiling Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lihong Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yi Zhen Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Chen Y, Wang J, Nguyen NK, Hwang BK, Jwa NS. The NIN-Like Protein OsNLP2 Negatively Regulates Ferroptotic Cell Death and Immune Responses to Magnaporthe oryzae in Rice. Antioxidants (Basel) 2022; 11:antiox11091795. [PMID: 36139868 PMCID: PMC9495739 DOI: 10.3390/antiox11091795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Nodule inception (NIN)-like proteins (NLPs) have a central role in nitrate signaling to mediate plant growth and development. Here, we report that OsNLP2 negatively regulates ferroptotic cell death and immune responses in rice during Magnaporthe oryzae infection. OsNLP2 was localized to the plant cell nucleus, suggesting that it acts as a transcription factor. OsNLP2 expression was involved in susceptible disease development. ΔOsnlp2 knockout mutants exhibited reactive oxygen species (ROS) and iron-dependent ferroptotic hypersensitive response (HR) cell death in response to M. oryzae. Treatments with the iron chelator deferoxamine, lipid-ROS scavenger ferrostatin-1, actin polymerization inhibitor cytochalasin A, and NADPH oxidase inhibitor diphenyleneiodonium suppressed the accumulation of ROS and ferric ions, lipid peroxidation, and HR cell death, which ultimately led to successful M. oryzae colonization in ΔOsnlp2 mutants. The loss-of-function of OsNLP2 triggered the expression of defense-related genes including OsPBZ1, OsPIP-3A, OsWRKY104, and OsRbohB in ΔOsnlp2 mutants. ΔOsnlp2 mutants exhibited broad-spectrum, nonspecific resistance to diverse M. oryzae strains. These combined results suggest that OsNLP2 acts as a negative regulator of ferroptotic HR cell death and defense responses in rice, and may be a valuable gene source for molecular breeding of rice with broad-spectrum resistance to blast disease.
Collapse
Affiliation(s)
- Yafei Chen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Wang
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Nam Khoa Nguyen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Byung Kook Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 06213, Korea
| | - Nam Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
- Correspondence:
| |
Collapse
|
8
|
Huang Y, Ma H, Yue Y, Zhou T, Zhu Z, Wang C. Integrated transcriptomic and transgenic analyses reveal potential mechanisms of poplar resistance to Alternaria alternata infection. BMC PLANT BIOLOGY 2022; 22:413. [PMID: 36008749 PMCID: PMC9404672 DOI: 10.1186/s12870-022-03793-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Populus davidiana × P. bollena is a species of poplar from northeastern China that is characterized by cold resistance and fast growth but now suffers from pathogen infections. Leaf blight caused by Alternaria alternata has become a common poplar disease that causes serious economic impacts, but the molecular mechanisms of resistance to A. alternata in P. davidiana × P. bollena are still unclear. RESULTS In this study, the transcriptomic response of P. davidiana × P. bollena to A. alternata infection was determined via RNA-Seq. Twelve cDNA libraries were generated from RNA isolated from three biological replicates at four time points (0, 2, 3, and 4 d post inoculation), and a total of 5,930 differentially expressed genes (DEGs) were detected (| log2 fold change |≥ 1 and FDR values < 0.05). Functional analysis revealed that the DEGs were mainly enriched for the "plant hormone signal transduction" pathway, followed by the "phenylpropanoid biosynthesis" pathway. In addition, DEGs that encode defense-related proteins and are related to ROS metabolism were also identified. Numerous transcription factors, such as the bHLH, WRKY and MYB families, were also induced by A. alternata infection. Among these DEGs, those related to JA biosynthesis and JA signal transduction were consistently activated. Therefore, the lipoxygenase gene PdbLOX2, which is involved in JA biosynthesis, was selected for functional characterization. Overexpression of PdbLOX2 enhanced the resistance of P. davidiana × P. bollena to A. alternata, whereas silencing this gene enhanced susceptibility to A. alternata infection. CONCLUSIONS These results provide new insight into the molecular mechanisms of poplar resistance to A. alternata infection and provide candidate genes for breeding resistant cultivars using genetic engineering.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Huijun Ma
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Yuanzhi Yue
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Tianchang Zhou
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Zhenyu Zhu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| |
Collapse
|
9
|
Hu J, Liu M, Zhang A, Dai Y, Chen W, Chen F, Wang W, Shen D, Telebanco-Yanoria MJ, Ren B, Zhang H, Zhou H, Zhou B, Wang P, Zhang Z. Co-evolved plant and blast fungus ascorbate oxidases orchestrate the redox state of host apoplast to modulate rice immunity. MOLECULAR PLANT 2022; 15:1347-1366. [PMID: 35799449 PMCID: PMC11163382 DOI: 10.1016/j.molp.2022.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Apoplastic ascorbate oxidases (AOs) play a critical role in reactive oxygen species (ROS)-mediated innate host immunity by regulating the apoplast redox state. To date, little is known about how apoplastic effectors of the rice blast fungus Magnaporthe oryzae modulate the apoplast redox state of rice to subvert plant immunity. In this study, we demonstrated that M. oryzae MoAo1 is an AO that plays a role in virulence by modulating the apoplast redox status of rice cells. We showed that MoAo1 inhibits the activity of rice OsAO3 and OsAO4, which also regulate the apoplast redox status and plant immunity. In addition, we found that MoAo1, OsAO3, and OsAO4 all exhibit polymorphic variations whose varied interactions orchestrate pathogen virulence and rice immunity. Taken together, our results reveal a critical role for extracellular redox enzymes during rice blast infection and shed light on the importance of the apoplast redox state and its regulation in plant-pathogen interactions.
Collapse
Affiliation(s)
- Jiexiong Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ao Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ying Dai
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Weizhong Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Fang Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Wenya Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Danyu Shen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | | | - Bin Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Huanbin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Zhou
- Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
10
|
Qiu B, Chen H, Zheng L, Su L, Cui X, Ge F, Liu D. An MYB Transcription Factor Modulates Panax notoginseng Resistance Against the Root Rot Pathogen Fusarium solani by Regulating the Jasmonate Acid Signaling Pathway and Photosynthesis. PHYTOPATHOLOGY 2022; 112:1323-1334. [PMID: 34844417 DOI: 10.1094/phyto-07-21-0283-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Root rot of Panax notoginseng, a precious Chinese medicinal plant, seriously impacts its sustainable production. However, the molecular regulatory mechanisms employed by P. notoginseng against root rot pathogens, including Fusarium solani, are still unclear. In this study, the PnMYB2 gene was isolated, and its expression was affected by independent treatments with four signaling molecules (methyl jasmonate, ethephon, salicylic acid, and hydrogen peroxide) as assessed by quantitative real-time PCR. Moreover, the PnMYB2 expression level was induced by F. solani infection. The PnMYB2 protein localized to the nucleus and may function as a transcription factor. When overexpressed in transgenic tobacco, the PnMYB2 gene conferred resistance to F. solani. Jasmonic acid (JA) metabolism and disease resistance-related genes were induced in the transgenic tobacco, and the JA content significantly increased compared with in the wild type. Additionally, transcriptome sequencing, Kyoto Encyclopedia of Genes and Genomes annotation enrichment, and metabolic pathway analyses of the differentially expressed genes in the transgenic tobacco revealed that JA metabolic, photosynthetic, and defense response-related pathways were activated. In summary, PnMYB2 is an important transcription factor in the defense responses of P. notoginseng against root rot pathogens that acts by regulating JA signaling, photosynthesis, and disease-resistance genes.
Collapse
Affiliation(s)
- Bingling Qiu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650504 China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, Yunnan, 650504 China
| | - Hongjun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650504 China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, Yunnan, 650504 China
| | - Lilei Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650504 China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, Yunnan, 650504 China
| | - Linlin Su
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650504 China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, Yunnan, 650504 China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650504 China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, Yunnan, 650504 China
| | - Feng Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650504 China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650504 China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, Yunnan, 650504 China
| |
Collapse
|
11
|
Liang M, Ye H, Shen Q, Jiang X, Cui G, Gu W, Zhang LH, Naqvi NI, Deng YZ. Tangeretin inhibits fungal ferroptosis to suppress rice blast. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:2136-2149. [PMID: 34570416 DOI: 10.1111/jipb.13175] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Flavonoids are polyphenolic secondary metabolites that function as signaling molecules, allopathic compounds, phytoalexins, detoxifying agents and antimicrobial defensive compounds in plants. Blast caused by the fungus Magnaporthe oryzae is a serious disease affecting rice cultivation. In this study, we revealed that a natural flavonoid, tangeretin, substantially delays the formation of M. oryzae appressoria and blocks the development of blast lesions on rice plants. Our data suggest that tangeretin has antioxidant activity that interferes with conidial cell death/ferroptosis, which is critical for M. oryzae pathogenicity. Tangeretin showed a ferroptosis inhibition efficacy comparable to the well-established liproxstatin-1. Furthermore, overexpression of the NADPH oxidases NOX1 or NOX2 significantly decreased sensitivity toward tangeretin treatment, suggesting Nox-mediated lipid peroxidation as a possible target for tangeretin in regulating redox signaling and ferroptosis in M. oryzae. Our nursery and field tests showed that application of tangeretin can effectively mitigate overall disease symptoms and prevent leaf blast. Our study reveals the plant-derived fungal ferroptosis inhibitor tangeretin as a potential and novel antifungal agrochemical for the sustainable prevention of the devastating blast disease in important cereal crops.
Collapse
Affiliation(s)
- Meiling Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Huijuan Ye
- Zhaoqing Food Inspection Institute, Zhaoqing, 526000, China
| | - Qing Shen
- Temasek Life Sciences Laboratory, Singapore, 117604, Singapore
| | - Xianya Jiang
- Yangjiang Institute of Agricultural Sciences, Yangjiang, 529500, China
| | - Guobing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Wenxiang Gu
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Lian-Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Yi Zhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
12
|
Liu X, Zhang Z. A double-edged sword: reactive oxygen species (ROS) during the rice blast fungus and host interaction. FEBS J 2021; 289:5505-5515. [PMID: 34453409 DOI: 10.1111/febs.16171] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/07/2021] [Accepted: 09/26/2021] [Indexed: 01/04/2023]
Abstract
Magnaporthe oryzae is a hemibiotrophic fungus that also needs host nutrients for propagation during infection. During its interaction with rice, reactive oxygen species (ROS) mediate important signaling reactions impacting both the pathogen and the host. In M. oryzae, the accumulation of ROS is important for the formation and maturation of the infectious structure appressorium. On the other hand, upon M. oryzae infection, rice generates further ROS to restrict invasive hyphae (IH) spreading. Despite ROS receptors remaining to be identified, M. oryzae recruits several strategies to respond and suppress ROS accumulation through the secretion of various effector molecules. These findings suggest that the balance between the generation and scavenging of ROS is sophisticatedly controlled during M. oryzae-rice interaction. In this review, we discuss advances to understand the regulation mechanisms for the generation, accumulation, and transduction of ROS.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, China
| |
Collapse
|
13
|
Attia MS, Balabel NM, Ababutain IM, Osman MS, Nofel MM, Abd Elkodous M, Elkhatib WF, El-Sayyad GS, El-Batal AI. Protective Role of Copper Oxide-Streptomycin Nano-drug Against Potato Brown Rot Disease Caused by Ralstonia solanacearum. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02048-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|