1
|
Montserrat-Malagarriga M, Castillejos L, Salas-Mani A, Torre C, Martín-Orúe SM. Use of Different Synbiotic Strategies to Improve Gut Health in Dogs. Animals (Basel) 2024; 14:3366. [PMID: 39682332 DOI: 10.3390/ani14233366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
This study evaluated the effects of two synbiotic strategies on the intestinal microbiota and immune response in Beagle dogs. Twelve dogs were subjected to a crossover design with three diets: a control diet (CON), a diet supplemented with fiber and B. velezensis DSM 15544 (SYN), and the SYN diet with added porcine plasma (SYN+). Over three periods of seven weeks, fecal samples were analyzed for digestibility, short-chain fatty acids (SCFA), fecal markers, and microbiome composition, while blood samples were assessed for biochemical parameters, leucocytic counts including CD4/CD8 lymphocyte populations, and phagocytic activity. Both SYN and SYN+ diets increased the fecal volume without affecting the consistency and slightly reduced the organic matter and energy digestibility, while increasing SCFA concentrations and reducing branched-chain fatty acids. A microbiome analysis revealed no changes in the alpha diversity, but significant shifts in the beta diversity, with increases in beneficial taxa such as Faecalibacterium prausnitzii and reductions in potentially harmful bacteria like Prevotella copri. Immune response indicators showed increased fecal IgA and higher blood leukocyte counts, particularly lymphocytes and neutrophils, in the SYN diet group. Overall, both synbiotic strategies positively modulated the microbiota and immune response, though the addition of porcine plasma did not confer additional benefits.
Collapse
Affiliation(s)
- Miquel Montserrat-Malagarriga
- Nutrition and Welfare Service, Department of Animal and Food Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Lorena Castillejos
- Nutrition and Welfare Service, Department of Animal and Food Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Anna Salas-Mani
- Affinity Petcare, Hospitalet de Llobregat, 08902 Barcelona, Spain
| | - Celina Torre
- Affinity Petcare, Hospitalet de Llobregat, 08902 Barcelona, Spain
| | - Susana María Martín-Orúe
- Nutrition and Welfare Service, Department of Animal and Food Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
2
|
Li X, Chen K, Liu R, Zheng Z, Hou X. Antimicrobial neuropeptides and their therapeutic potential in vertebrate brain infectious disease. Front Immunol 2024; 15:1496147. [PMID: 39620214 PMCID: PMC11604648 DOI: 10.3389/fimmu.2024.1496147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
The defense mechanisms of the vertebrate brain against infections are at the forefront of immunological studies. Unlike other body parts, the brain not only fends off pathogenic infections but also minimizes the risk of self-damage from immune cell induced inflammation. Some neuropeptides produced by either nerve or immune cells share remarkable similarities with antimicrobial peptides (AMPs) in terms of size, structure, amino acid composition, amphiphilicity, and net cationic charge. These similarities extend to a wide range of antibacterial activities demonstrated in vitro, effectively protecting nerve tissue from microbial threats. This review systematically examines 12 neuropeptides, pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide (VIP), α-melanocyte stimulating hormone (α-MSH), orexin-B (ORXB), ghrelin, substance P (SP), adrenomedullin (AM), calcitonin-gene related peptide (CGRP), urocortin-II (UCN II), neuropeptide Y (NPY), NDA-1, and catestatin (CST), identified for their antimicrobial properties, summarizing their structural features, antimicrobial effectiveness, and action mechanisms. Importantly, the majority of these antimicrobial neuropeptides (9 out of 12) also possess significant anti-inflammatory properties, potentially playing a key role in preserving immune tolerance in various disorders. However, the connection between this anti-inflammatory property and the brain's infection defense strategy has rarely been explored. Our review suggests that the combined antimicrobial and anti-inflammatory actions of neuropeptides could be integral to the brain's defense strategy against pathogens, marking an exciting direction for future research.
Collapse
Affiliation(s)
- Xiaoke Li
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Kaiqi Chen
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Ruonan Liu
- College of Medical Engineering, Jining Medical University, Jining, China
| | - Zhaodi Zheng
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Xitan Hou
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
3
|
Bernabeu M, Prieto A, Salguero D, Miró L, Cabrera-Rubio R, Collado MC, Hüttener M, Pérez-Bosque A, Juárez A. Infection of mice by the enteroaggregative E. coli strain 042 and two mutant derivatives overexpressing virulence factors: impact on disease markers, gut microbiota and concentration of SCFAs in feces. Sci Rep 2024; 14:16945. [PMID: 39043759 PMCID: PMC11266498 DOI: 10.1038/s41598-024-67731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Several pathogenic Escherichia coli strains cause diarrhea. Enteroaggregative E. coli (EAEC) strains are one of the diarrheagenic pathotypes. EAEC cells form a "stacked-brick" arrangement over the intestinal epithelial cells. EAEC isolates express, among other virulence determinants, the AggR transcriptional activator and the aggregative adherence fimbriae (AAF). Overexpression of the aggR gene results in increased expression of virulence factors such as the aff genes, as well as several genes involved in specific metabolic pathways such as fatty acid degradation (fad) and arginine degradation (ast). To support the hypothesis that induction of the expression of some of these pathways may play a role in EAEC virulence, in this study we used a murine infection model to evaluate the impact of the expression of these pathways on infection parameters. Mice infected with a mutant derivative of the EAEC strain 042, characterized by overexpression of the aggR gene, showed increased disease symptoms compared to those exhibited by mice infected with the wild type (wt) strain 042. Several of these symptoms were not increased when the infecting mutant, which overexpressed aggR, lacked the fad and ast pathways. Therefore, our results support the hypothesis that different metabolic pathways contribute to EAEC virulence.
Collapse
Affiliation(s)
- M Bernabeu
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - A Prieto
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - D Salguero
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - L Miró
- Department of Biochemistry and Physiology, Universitat de Barcelona, Barcelona, Spain
- Institut de Nutrició I Seguretat Alimentària, Universitat de Barcelona, Barcelona, Spain
| | - R Cabrera-Rubio
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - M C Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - M Hüttener
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - A Pérez-Bosque
- Department of Biochemistry and Physiology, Universitat de Barcelona, Barcelona, Spain.
- Institut de Nutrició I Seguretat Alimentària, Universitat de Barcelona, Barcelona, Spain.
| | - A Juárez
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain.
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
4
|
Solà-Ginés M, Miró L, Bellver-Sanchis A, Griñán-Ferré C, Pallàs M, Pérez-Bosque A, Moretó M, Pont L, Benavente F, Barbosa J, Rodríguez C, Polo J. Nutritional, molecular, and functional properties of a novel enzymatically hydrolyzed porcine plasma product. PLoS One 2024; 19:e0301504. [PMID: 38728303 PMCID: PMC11086891 DOI: 10.1371/journal.pone.0301504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
In the present study, an enzymatically hydrolyzed porcine plasma (EHPP) was nutritionally and molecularly characterized. EHPP molecular characterization showed, in contrast to spray-dried plasma (SDP), many peptides with relative molecular masses (Mr) below 8,000, constituting 73% of the protein relative abundance. IIAPPER, a well-known bioactive peptide with anti-inflammatory and antioxidant properties, was identified. In vivo functionality of EHPP was tested in C. elegans and two different mouse models of intestinal inflammation. In C. elegans subjected to lipopolysaccharide exposure, EHPP displayed a substantial anti-inflammatory effect, enhancing survival and motility by 40% and 21.5%, respectively. Similarly, in mice challenged with Staphylococcus aureus enterotoxin B or Escherichia coli O42, EHPP and SDP supplementation (8%) increased body weight and average daily gain while reducing the percentage of regulatory Th lymphocytes. Furthermore, both products mitigated the increase of pro-inflammatory cytokines expression associated with these challenged mouse models. In contrast, some significant differences were observed in markers such as Il-6 and Tnf-α, suggesting that the products may present different action mechanisms. In conclusion, EHPP demonstrated similar beneficial health effects to SDP, potentially attributable to the immunomodulatory and antioxidant activity of its characteristic low Mr bioactive peptides.
Collapse
Affiliation(s)
| | - Lluïsa Miró
- APC Europe S.L.U., Granollers, Spain
- Departament de Bioquímica i Fisiologia (Secció de Fisiologia), Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona (INSA·UB), Barcelona, Spain
| | - Aina Bellver-Sanchis
- Departament de Farmacologia, Toxicologia i Química Terapèutica (Secció de Farmacologia) Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Neurociències (CIBERNED), Universitat de Barcelona, Barcelona, Spain
| | - Christian Griñán-Ferré
- Departament de Farmacologia, Toxicologia i Química Terapèutica (Secció de Farmacologia) Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Neurociències (CIBERNED), Universitat de Barcelona, Barcelona, Spain
| | - Mercè Pallàs
- Departament de Farmacologia, Toxicologia i Química Terapèutica (Secció de Farmacologia) Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Neurociències (CIBERNED), Universitat de Barcelona, Barcelona, Spain
| | - Anna Pérez-Bosque
- Departament de Bioquímica i Fisiologia (Secció de Fisiologia), Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona (INSA·UB), Barcelona, Spain
| | - Miquel Moretó
- Departament de Bioquímica i Fisiologia (Secció de Fisiologia), Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona (INSA·UB), Barcelona, Spain
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
- Serra Húnter Programe, Generalitat de Catalunya, Barcelona, Spain
| | | | - José Barbosa
- Serra Húnter Programe, Generalitat de Catalunya, Barcelona, Spain
| | | | | |
Collapse
|
5
|
Kazimierska K, Biel W. Chemical Composition and Functional Properties of Spray-Dried Animal Plasma and Its Contributions to Livestock and Pet Health: A Review. Animals (Basel) 2023; 13:2484. [PMID: 37570293 PMCID: PMC10416976 DOI: 10.3390/ani13152484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Spray-dried animal plasma (SDAP) is a functional ingredient derived from healthy animal blood, used as a nutritional additive in livestock and pet nutrition. SDAP is rich in macronutrients, micronutrients, and bioactive compounds such as immunoglobulins, albumin, growth factors, peptides, transferrin, and enzymes. This review focuses on the chemical composition of SDAP from porcine, bovine, and poultry sources, including protein quality and mineral profile. SDAP enhances performance and health in monogastric farm animals, aquaculture, and pets. It promotes growth rates and feed intake due to its high digestibility and superior amino acid profile compared to other protein sources. In pigs, SDAP's positive effects stem from tissue-specific actions in the gastrointestinal tract, impacting digestion, immunity, and barrier function. For poultry, SDAP shows promise as a substitute for antibiotic growth promoters, particularly in chick starter diets. SDAP contains functional proteins that regulate immune response, enhance intestinal health, and aid in stress conditions. It is also used as a binder in pet food, providing high protein content and other desirable properties. SDAP meets the dietary requirements of carnivorous pets, appealing to owners seeking animal-derived protein sources. Additionally, SDAP may help prevent cognitive impairment in senior dogs and cats.
Collapse
Affiliation(s)
| | - Wioletta Biel
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71270 Szczecin, Poland;
| |
Collapse
|
6
|
Vasconcellos RS, Henríquez LBF, Lourenço PDS. Spray-Dried Animal Plasma as a Multifaceted Ingredient in Pet Food. Animals (Basel) 2023; 13:1773. [PMID: 37889645 PMCID: PMC10252101 DOI: 10.3390/ani13111773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 08/13/2023] Open
Abstract
Plasma is a co-product from pork and beef obtained during the processing of animals for human consumption. The spray-drying process maintains the solubility of spray-dried animal plasma (SDAP) and its nutritional and functional properties, making this ingredient multifunctional in human and animal nutrition. In pet food, SDAP has been used in the production of wet foods (pates and chunks in gravy) as an emulsifying and binding agent, with the potential to replace hydrocolloids partially or totally, which have some negative implications for digestibility, fecal quality, and intestinal inflammation. From a nutritional point of view, SDAP has high digestibility and an amino acid profile compatible with high-quality ingredients, such as powdered eggs. Studies in companion animals, especially in cats, have shown that SDAP is an ingredient with high palatability. Despite the immunomodulatory, anti-inflammatory, prebiotic, and neuroprotective properties demonstrated in some animal models, there are still few publications demonstrating these effects in dogs and cats, which limits its use as a functional ingredient for these species. In this review, the potential use of SDAP in pet food, aspects related to the sustainability of this ingredient, and opportunities for studies in companion animals are discussed.
Collapse
Affiliation(s)
- Ricardo Souza Vasconcellos
- Department of Animal Science, State University of Maringá, Maringá 87020-900, Brazil; (L.B.F.H.); (P.d.S.L.)
| | | | | |
Collapse
|
7
|
Miró L, Rosell-Cardona C, Amat C, Polo J, Moretó M, Pérez-Bosque A. Dietary supplementation with spray-dried animal plasma improves vaccine protection in aged mice. Front Nutr 2023; 10:1050961. [PMID: 37032769 PMCID: PMC10080719 DOI: 10.3389/fnut.2023.1050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Background Senescence is characterized by an aggravated inflammatory state that reduces vaccine responsiveness. Dietary supplementation with spray-dried porcine plasma (SDP) exerts anti-inflammatory effects in different mucosal areas. We aimed to determine if the anti-inflammatory properties of SDP improve the efficiency of immunization in senescent animals. Methods Experiments were performed in 2-month-old and 6-month-old male SAMP8 mice fed control or SDP (8%) feeds for 4 months. The mice received nasal doses of 2.5 μg of Staphylococcus aureus enterotoxin B (SEB) or vehicle every 15 days (i.e., 3 times). Fifteen days after the last dose, a lethal shock was induced by intraperitoneal administration of SEB and LPS. Results Immunization increased anti-SEB IgA in intestinal and bronchoalveolar fluid (p < 0.05). After the lethal shock, all immunized aged mice that were supplemented with SDP survived, in contrast to only 66% of those fed the control feed (p < 0.05). Moreover, after the lethal challenge, aged mice showed higher expression levels of pro-inflammatory cytokines (Il-6, Tnf-α, Ifn-γ, and Il-1β) in jejunal and (Tnf-α, and Il-1β) in lung tissues (p < 0.05), which were reduced by SDP supplementation (p < 0.05). Furthermore, in senescent mice, SDP supplementation augmented Il-4 and Il-10 expression in both tissues (p < 0.05). Conclusion SDP reduces the mucosal inflammation associated with aging, improving vaccine protection in senescent mice.
Collapse
Affiliation(s)
- Lluïsa Miró
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristina Rosell-Cardona
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Concepció Amat
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), Barcelona, Spain
| | | | - Miquel Moretó
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Anna Pérez-Bosque
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
8
|
The Neuroprotective Effects of Spray-Dried Porcine Plasma Supplementation Involve the Microbiota-Gut-Brain Axis. Nutrients 2022; 14:nu14112211. [PMID: 35684013 PMCID: PMC9183112 DOI: 10.3390/nu14112211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Dietary supplementation with spray-dried porcine plasma (SDP) reduces the Alzheimer’s disease (AD) hallmarks in SAMP8 mice. Since gut microbiota can play a critical role in the AD progression, we have studied if the neuroprotective effects of SDP involve the microbiota−gut−brain axis. Experiments were performed on two-month-old SAMP8 mice fed a standard diet and on six-month-old SAMP8 mice fed a control diet or an 8% SDP supplemented diet for four months. Senescence impaired short- and long-term memory, reduced cortical brain-derived neurotrophic factor (BDNF) abundance, increased interleukin (Il)-1β, Il-6, and Toll-like receptor 2 (Tlr2) expression, and reduced transforming growth factor β (Tgf-β) expression and IL-10 concentration (all p < 0.05) and these effects were mitigated by SDP (all p < 0.05). Aging also increased pro-inflammatory cytokines in serum and colon (all p < 0.05). SDP attenuated both colonic and systemic inflammation in aged mice (all p < 0.05). SDP induced the proliferation of health-promoting bacteria, such as Lactobacillus and Pediococcus, while reducing the abundance of inflammation-associated bacteria, such as Johnsonella and Erysipelothrix (both q < 0.1). In conclusion, SDP has mucosal and systemic anti-inflammatory effects as well as neuroprotective properties in senescent mice; these effects are well correlated with SDP promotion of the abundance of probiotic species, which indicates that the gut−brain axis could be involved in the peripheral effects of SDP supplementation.
Collapse
|
9
|
Lillehoj EP, Luzina IG, Atamas SP. Mammalian Neuraminidases in Immune-Mediated Diseases: Mucins and Beyond. Front Immunol 2022; 13:883079. [PMID: 35479093 PMCID: PMC9035539 DOI: 10.3389/fimmu.2022.883079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Mammalian neuraminidases (NEUs), also known as sialidases, are enzymes that cleave off the terminal neuraminic, or sialic, acid resides from the carbohydrate moieties of glycolipids and glycoproteins. A rapidly growing body of literature indicates that in addition to their metabolic functions, NEUs also regulate the activity of their glycoprotein targets. The simple post-translational modification of NEU protein targets-removal of the highly electronegative sialic acid-affects protein folding, alters protein interactions with their ligands, and exposes or covers proteolytic sites. Through such effects, NEUs regulate the downstream processes in which their glycoprotein targets participate. A major target of desialylation by NEUs are mucins (MUCs), and such post-translational modification contributes to regulation of disease processes. In this review, we focus on the regulatory roles of NEU-modified MUCs as coordinators of disease pathogenesis in fibrotic, inflammatory, infectious, and autoimmune diseases. Special attention is placed on the most abundant and best studied NEU1, and its recently discovered important target, mucin-1 (MUC1). The role of the NEU1 - MUC1 axis in disease pathogenesis is discussed, along with regulatory contributions from other MUCs and other pathophysiologically important NEU targets.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Irina G. Luzina
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Research Service, Baltimore Veterans Affairs (VA) Medical Center, Baltimore, MD, United States
| | - Sergei P. Atamas
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Lee AH, Lin CY, Do S, Oba PM, Belchik SE, Steelman AJ, Schauwecker A, Swanson KS. Dietary supplementation with fiber, "biotics," and spray-dried plasma affects apparent total tract macronutrient digestibility and the fecal characteristics, fecal microbiota, and immune function of adult dogs. J Anim Sci 2022; 100:skac048. [PMID: 35180312 PMCID: PMC8956131 DOI: 10.1093/jas/skac048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
A variety of functional ingredients, including fibers, prebiotics, probiotics, and postbiotics may be added to pet foods to support gastrointestinal and immune health. While many of these ingredients have been tested individually, commercial foods often include blends that also require testing. This study was conducted to evaluate the effects of diets containing blends of fibers, "biotics," and/or spray-dried plasma on apparent total tract digestibility (ATTD), stool quality, fecal microbiota and metabolites, and immune health outcomes of adult dogs. A total of 12 healthy adult intact English pointer dogs (6 M, 6 F; age = 6.4 ± 2.0 yr; BW = 25.8 ± 2.6 kg) were used in a replicated 3 × 3 Latin square design to test diets formulated to: 1) contain a low concentration of fermentative substances (control diet, CT); 2) be enriched with a fiber-prebiotic-probiotic blend (FPPB); and 3) be enriched with a fiber-prebiotic-probiotic blend + immune-modulating ingredients (iFFPB). In each 28-d period, 22 d of diet adaptation was followed by a 5-d fecal collection phase and 1 d for blood sample collection. All data were analyzed using SAS 9.4, with significance being P < 0.05 and trends being P < 0.10. FPPB and iFPPB diets led to shifts in numerous outcome measures. Dry matter (DM), organic matter, fat, fiber, and energy ATTD were lower (P < 0.01), fecal scores were lower (P < 0.01; firmer stools), and fecal DM% was higher (P < 0.0001) in dogs fed FPPB or iFPPB than those fed CT. Serum triglycerides and cholesterol were lower (P < 0.01) in dogs fed FPPB or iFPPB than those fed CT. Fecal protein catabolites (isobutyrate, isovalerate, indole, and ammonia) and butyrate were lower (P < 0.05), while fecal immunoglobulin A (IgA) was higher (P < 0.01) in dogs fed FPPB and iFPPB than those fed CT. Fecal microbiota populations were affected by diet, with alpha-diversity being lower (P < 0.05) in dogs fed iFPPB and the relative abundance of 20 bacterial genera being altered in dogs fed FPPB or iFPPB compared with CT. The circulating helper T cell:cytotoxic T cell ratio was higher (P < 0.05) in dogs fed iFPPB than those fed CT. Circulating B cells were lower (P < 0.05) in dogs fed FPPB than those fed iFPPB, and lower (P < 0.05) in dogs fed iFPPB than those fed CT. Our results demonstrate that feeding a fiber-prebiotic-probiotic blend may provide many benefits to canine health, including improved stool quality, beneficial shifts to fecal microbiota and metabolite profiles, reduced blood lipids, and increased fecal IgA.
Collapse
Affiliation(s)
- Anne H Lee
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ching-Yen Lin
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sungho Do
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sara E Belchik
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amy Schauwecker
- PetSmart Proprietary Brand Product Development, Phoenix, AZ 85080, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Prieto A, Bernabeu M, Sánchez-Herrero JF, Pérez-Bosque A, Miró L, Bäuerl C, Collado C, Hüttener M, Juárez A. Modulation of AggR levels reveals features of virulence regulation in enteroaggregative E. coli. Commun Biol 2021; 4:1295. [PMID: 34785760 PMCID: PMC8595720 DOI: 10.1038/s42003-021-02820-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) strains are one of the diarrheagenic pathotypes. EAEC strains harbor a virulence plasmid (pAA2) that encodes, among other virulence determinants, the aggR gene. The expression of the AggR protein leads to the expression of several virulence determinants in both plasmids and chromosomes. In this work, we describe a novel mechanism that influences AggR expression. Because of the absence of a Rho-independent terminator in the 3'UTR, aggR transcripts extend far beyond the aggR ORF. These transcripts are prone to PNPase-mediated degradation. Structural alterations in the 3'UTR result in increased aggR transcript stability, leading to increased AggR levels. We therefore investigated the effect of increased AggR levels on EAEC virulence. Upon finding the previously described AggR-dependent virulence factors, we detected novel AggR-regulated genes that may play relevant roles in EAEC virulence. Mutants exhibiting high AggR levels because of structural alterations in the aggR 3'UTR show increased mobility and increased pAA2 conjugation frequency. Furthermore, among the genes exhibiting increased fold change values, we could identify those of metabolic pathways that promote increased degradation of arginine, fatty acids and gamma-aminobutyric acid (GABA), respectively. In this paper, we discuss how the AggR-dependent increase in specific metabolic pathways activity may contribute to EAEC virulence.
Collapse
Affiliation(s)
- Alejandro Prieto
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - Manuel Bernabeu
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | | | - Anna Pérez-Bosque
- Department of Biochemistry and Physiology, Universitat de Barcelona, Barcelona, Spain
- Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona, Barcelona, Spain
| | - Lluïsa Miró
- Department of Biochemistry and Physiology, Universitat de Barcelona, Barcelona, Spain
- Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona, Barcelona, Spain
| | - Christine Bäuerl
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Carmen Collado
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Mário Hüttener
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain.
| | - Antonio Juárez
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain.
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
12
|
Rosell-Cardona C, Griñan-Ferré C, Pérez-Bosque A, Polo J, Pallàs M, Amat C, Moretó M, Miró L. Reply to Nifli, A.-P. Comment on "Rosell-Cardona et al. Dietary Spray-Dried Porcine Plasma Reduces Neuropathological Alzheimer's Disease Hallmarks in SAMP8 Mice. Nutrients 2021, 13, 2369". Nutrients 2021; 13:4065. [PMID: 34836320 PMCID: PMC8625036 DOI: 10.3390/nu13114065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
Thank you for your comments on our recent work of the effects of supplementation with spray-dried porcine plasma (SDP) on neuropathological markers of Alzheimer's disease (AD) [...].
Collapse
Affiliation(s)
- Cristina Rosell-Cardona
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
| | - Christian Griñan-Ferré
- Department of Pharmacology, Toxicology, and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences, CIBERNED, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.G.-F.); (M.P.)
| | - Anna Pérez-Bosque
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
| | | | - Mercè Pallàs
- Department of Pharmacology, Toxicology, and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences, CIBERNED, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.G.-F.); (M.P.)
| | - Concepció Amat
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
| | - Miquel Moretó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
| | - Lluïsa Miró
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
- APC Europe S.L.U., 08403 Granollers, Spain;
| |
Collapse
|
13
|
Chuchird N, Rairat T, Keetanon A, Phansawat P, Chou CC, Campbell J. Effects of spray-dried animal plasma on growth performance, survival, feed utilization, immune responses, and resistance to Vibrio parahaemolyticus infection of Pacific white shrimp (Litopenaeus vannamei). PLoS One 2021; 16:e0257792. [PMID: 34559852 PMCID: PMC8462686 DOI: 10.1371/journal.pone.0257792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/13/2021] [Indexed: 12/04/2022] Open
Abstract
Spray-dried animal plasma (SDP) in feed for several animal species provides health benefits, but research about use of SDP in shrimp feed is very limited. The objectives of the present study were to investigate the effects of dietary SDP on growth performance, feed utilization, immune responses, and prevention of Vibrio parahaemolyticus infection in Pacific white shrimp (Litopenaeus vannamei). In Experiment 1, the post-larvae were divided into five groups (four tank/group and 80 shrimp/tank) and fed four times daily diets with porcine SDP at 0, 1.5, 3, 4.5, and 6% of the diet for 45 days. In Experiment 2, the surviving shrimp from Experiment 1 were redistributed into six groups: four SDP groups as in Experiment 1 plus the positive and negative controls (four tank/group and 30 shrimp/tank). They were then challenged with V. parahaemolyticus by immersion at 105 colony-forming units (CFU)/mL and were fed with the same diets for another 4 days. In Experiment 1, shrimp fed 4.5% or 6% SDP diets had significantly higher body weight, survival rate, and improved feed conversion ratio. The immune parameters (total hemocyte count and phagocytic, phenoloxidase, and superoxide dismutase activities) of the shrimp fed 3–6% SDP diets also showed significant enhancement compared to the control. In Experiment 2, the survival rates of the 3–6% SDP groups were significantly higher than the positive control at day 4 after the immersion challenge. Likewise, the histopathological study revealed milder signs of bacterial infection in the hepatopancreas of the 3–6% SDP groups compared to the challenged positive control and 1.5% SDP groups. In conclusion, shrimp fed diets with SDP, especially at 4.5–6% of the diet, showed significant improvement in overall health conditions and better resistance to V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Niti Chuchird
- Faculty of Fisheries, Department of Fishery Biology, Kasetsart University, Chatuchark, Bangkok, Thailand
- * E-mail:
| | - Tirawat Rairat
- Faculty of Fisheries, Department of Fishery Biology, Kasetsart University, Chatuchark, Bangkok, Thailand
| | - Arunothai Keetanon
- Faculty of Fisheries, Department of Fishery Biology, Kasetsart University, Chatuchark, Bangkok, Thailand
| | - Putsucha Phansawat
- Faculty of Fisheries, Department of Fishery Biology, Kasetsart University, Chatuchark, Bangkok, Thailand
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Joy Campbell
- APC LLC, 2425 SE Oak Tree Court, Ankeny, Iowa, United States of America
| |
Collapse
|
14
|
Rosell-Cardona C, Griñan-Ferré C, Pérez-Bosque A, Polo J, Pallàs M, Amat C, Moretó M, Miró L. Dietary Spray-Dried Porcine Plasma Reduces Neuropathological Alzheimer's Disease Hallmarks in SAMP8 Mice. Nutrients 2021; 13:2369. [PMID: 34371878 PMCID: PMC8308893 DOI: 10.3390/nu13072369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the aberrant processing of amyloid precursor protein (APP) and the accumulation of hyperphosphorylated tau, both of which are accompanied by neuroinflammation. Dietary supplementation with spray-dried porcine plasma (SDP) has anti-inflammatory effects in inflammation models. We investigated whether dietary supplementation with SDP prevents the neuropathological features of AD. The experiments were performed in 2- and 6-month-old SAMP8 mice fed a control diet, or a diet supplemented with 8% SDP, for 4 months. AD brain molecular markers were determined by Western blot and real-time PCR. Senescent mice showed reduced levels of p-GSK3β (Ser9) and an increase in p-CDK5, p-tau (Ser396), sAPPβ, and the concentration of Aβ40, (all p < 0.05). SDP prevented these effects of aging and reduced Bace1 levels (all p < 0.05). Senescence increased the expression of Mme1 and Ide1 and pro-inflammatory cytokines (Il-17 and Il-18; all p < 0.05); these changes were prevented by SDP supplementation. Moreover, SDP increased Tgf-β expression (p < 0.05). Furthermore, in aged mice, the gene expression levels of the microglial activation markers Trem2, Ym1, and Arg1 were increased, and SDP prevented these increases (all p < 0.05). Thus, dietary SDP might delay AD onset by reducing its hallmarks in senescent mice.
Collapse
Affiliation(s)
- Cristina Rosell-Cardona
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
| | - Christian Griñan-Ferré
- Department of Pharmacology, Toxicology, and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences, CIBERNED, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.G.-F.); (M.P.)
| | - Anna Pérez-Bosque
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
| | | | - Mercè Pallàs
- Department of Pharmacology, Toxicology, and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences, CIBERNED, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.G.-F.); (M.P.)
| | - Concepció Amat
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
| | - Miquel Moretó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
| | - Lluïsa Miró
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
- APC Europe S.L.U., 08403 Granollers, Spain;
| |
Collapse
|
15
|
Hernández-Chirlaque C, Aranda CJ, Ocón B, Polo J, Martínez-Augustin O, Sánchez de Medina F. Immunoregulatory Effects of Porcine Plasma Protein Concentrates on Rat Intestinal Epithelial Cells and Splenocytes. Animals (Basel) 2021; 11:ani11030807. [PMID: 33805697 PMCID: PMC7999696 DOI: 10.3390/ani11030807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Blood contains proteins which have interest as products that may regulate immune function. For this reason some protein-based products are currently used as nutritional supplements for animals, for instance two porcine concentrates, spray dried serum (SDS), and an immunoglobulin concentrate (IC). These products have shown to protect against colonic inflammation in rodents. In the present study we characterize the ability of these products to modulate immune function in isolated cells, namely intestinal epithelial cells (IEC18 cells) and rat spleen cells. Our data indicate that both porcine protein concentrates indeed alter immune cell function, based on the secretion of the modulators known as cytokines. In intestinal epithelial IEC18 cells they promoted the secretion of GROα and MCP-1 cytokines. In spleen cells they mainly inhibited the production of TNF, a key proinflammatory cytokine. In addition, the IC product augmented the release of IL-10, an anti-inflammatory cytokine. Taken together, our data indicate that the immunomodulatory effects observed in vivo are consistent with the direct actions of the protein concentrates on epithelial cells, T lymphocytes, and monocytes. Abstract Serum protein concentrates have been shown to exert in vivo anti-inflammatory effects. Specific effects on different cell types and their mechanism of action remain unraveled. We aimed to characterize the immunomodulatory effect of two porcine plasma protein concentrates, spray dried serum (SDS) and an immunoglobulin concentrate (IC), currently used as animal nutritional supplements with established in vivo immunomodulatory properties. Cytokine production by the intestinal epithelial cell line IEC18 and by primary cultures of rat splenocytes was studied. The molecular pathways involved were explored with specific inhibitors and gene knockdown. Our results indicate that both products induced GROα and MCP-1 production in IEC18 cells by a MyD88/NF-κB-dependent mechanism. Inhibition of TNF production was observed in rat primary splenocyte cultures. The immunoglobulin concentrate induced IL-10 expression in primary splenocytes and lymphocytes. The effect on TNF was independent of IL-10 production or the stimulation of NF-kB, MAPKs, AKT, or RAGE. In conclusion, SDS and IC directly regulate intestinal and systemic immune response in murine intestinal epithelial cells and in T lymphocytes and monocytes.
Collapse
Affiliation(s)
- Cristina Hernández-Chirlaque
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, CIBERehd, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain; (C.H.-C.); (C.J.A.)
| | - Carlos J. Aranda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, CIBERehd, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain; (C.H.-C.); (C.J.A.)
| | - Borja Ocón
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain; (B.O.); (F.S.d.M.)
| | | | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, CIBERehd, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain; (C.H.-C.); (C.J.A.)
- Correspondence: ; Tel.: +34-958-241-305
| | - Fermín Sánchez de Medina
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain; (B.O.); (F.S.d.M.)
| |
Collapse
|