1
|
Peng CH, Hwang TL, Hung SC, Tu HJ, Tseng YT, Lin TE, Lee CC, Tseng YC, Ko CY, Yen SC, Hsu KC, Pan SL, HuangFu WC. Identification, biological evaluation, and crystallographic analysis of coumestrol as a novel dual-specificity tyrosine-phosphorylation-regulated kinase 1A inhibitor. Int J Biol Macromol 2024; 282:136860. [PMID: 39481728 DOI: 10.1016/j.ijbiomac.2024.136860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease, with tau pathology caused by abnormally activated dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) being one of the culprits. Coumestrol, a phytoestrogen and natural antioxidant found in various plants, has been reported to alleviate AD, but the underlying mechanism remains unclear. We confirmed coumestrol as a novel DYRK1A inhibitor through enzyme-based assays, X-ray crystallography, and cell line experiments. Coumestrol exhibited minimal cytotoxicity at concentrations up to 100 μM in cell types such as N2A and SH-SY5Y and reduced DYRK1A-induced phosphorylated tau protein levels by >50 % at 60 μM. In the tau protein phosphorylation and microtubule assembly assay, coumestrol at 30 μM reduced phosphorylated tau by >50 % and restored the microtubule assembly process. Coumestrol also significantly reduced amyloid-β (Aβ)-induced oxidative stress in microglia at 1 μM. In zebrafish larvae co-overexpressing DYRK1A and tau, coumestrol mitigated neuronal damage and protected motor function at 48 h-postfertilization. Our results suggest that coumestrol has potential therapeutic effects in AD by inhibiting DYRK1A, lowering p-Tau levels, restoring microtubule assembly, and protecting microglia cells from Aβ-induced cell death, providing new insights into the development of coumestrol as a potential AD treatment.
Collapse
Affiliation(s)
- Chao-Hsiang Peng
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shao-Chi Hung
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Animal Science and Technology, National Taiwan University, Taiwan
| | - Huang-Ju Tu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Tzu Tseng
- Department of Animal Science and Technology, National Taiwan University, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chung Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chi Tseng
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chiung-Yuan Ko
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Chung Yen
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, People's Republic of China
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Abbas MKG, Rassam A, Karamshahi F, Abunora R, Abouseada M. The Role of AI in Drug Discovery. Chembiochem 2024; 25:e202300816. [PMID: 38735845 DOI: 10.1002/cbic.202300816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
The emergence of Artificial Intelligence (AI) in drug discovery marks a pivotal shift in pharmaceutical research, blending sophisticated computational techniques with conventional scientific exploration to break through enduring obstacles. This review paper elucidates the multifaceted applications of AI across various stages of drug development, highlighting significant advancements and methodologies. It delves into AI's instrumental role in drug design, polypharmacology, chemical synthesis, drug repurposing, and the prediction of drug properties such as toxicity, bioactivity, and physicochemical characteristics. Despite AI's promising advancements, the paper also addresses the challenges and limitations encountered in the field, including data quality, generalizability, computational demands, and ethical considerations. By offering a comprehensive overview of AI's role in drug discovery, this paper underscores the technology's potential to significantly enhance drug development, while also acknowledging the hurdles that must be overcome to fully realize its benefits.
Collapse
Affiliation(s)
- M K G Abbas
- Center for Advanced Materials, Qatar University, P.O. Box, 2713, Doha, Qatar
| | - Abrar Rassam
- Secondary Education, Educational Sciences, Qatar University, P.O. Box, 2713, Doha, Qatar
| | - Fatima Karamshahi
- Department of Chemistry and Earth Sciences, Qatar University, P.O. Box, 2713, Doha, Qatar
| | - Rehab Abunora
- Faculty of Medicine, General Medicine and Surgery, Helwan University, Cairo, Egypt
| | - Maha Abouseada
- Department of Chemistry and Earth Sciences, Qatar University, P.O. Box, 2713, Doha, Qatar
| |
Collapse
|
3
|
Yoon HR, Park GJ, Balupuri A, Kang NS. TWN-FS method: A novel fragment screening method for drug discovery. Comput Struct Biotechnol J 2023; 21:4683-4696. [PMID: 37841326 PMCID: PMC10568351 DOI: 10.1016/j.csbj.2023.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023] Open
Abstract
Fragment-based drug discovery (FBDD) is a well-established and effective method for generating diverse and novel hits in drug design. Kinases are suitable targets for FBDD due to their well-defined structure. Water molecules contribute to structure and function of proteins and also influence the environment within the binding pocket. Water molecules form a variety of hydrogen-bonded cyclic water-ring networks, collectively known as topological water networks (TWNs). Analyzing the TWNs in protein binding sites can provide valuable insights into potential locations and shapes for fragments within the binding site. Here, we introduce TWN-based fragment screening (TWN-FS) method, a novel screening method that suggests fragments through grouped TWN analysis within the protein binding site. We used this method to screen known CDK2, CHK1, IGF1R and ERBB4 inhibitors. Our findings suggest that TWN-FS method has the potential to effectively screen fragments. The TWN-FS method package is available on GitHub at https://github.com/pkj0421/TWN-FS.
Collapse
Affiliation(s)
- Hye Ree Yoon
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Gyoung Jin Park
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Anand Balupuri
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Nam Sook Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| |
Collapse
|
4
|
TWN-RENCOD: A novel method for protein binding site comparison. Comput Struct Biotechnol J 2022; 21:425-431. [PMID: 36618985 PMCID: PMC9798139 DOI: 10.1016/j.csbj.2022.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Several diverse proteins possess similar binding sites. Protein binding site comparison provides valuable insights for the drug discovery and development. Binding site similarities are useful in understanding polypharmacology, identifying potential off-targets and repurposing of known drugs. Many binding site analysis and comparison methods are available today, however, these methods may not be adequate to explain variation in the activity of a drug or a small molecule against a number of similar proteins. Water molecules surrounding the protein surface contribute to structure and function of proteins. Water molecules form diverse types of hydrogen-bonded cyclic water-ring networks known as topological water networks (TWNs). Analysis of TWNs in binding site of proteins may improve understanding of the characteristics of binding sites. We propose TWN-based residue encoding (TWN-RENCOD), a novel binding site comparison method which compares the aqueous environment in binding sites of similar proteins. As compared to other existing methods, results obtained using our method correlated better with differences in wide range of activity of a known drug (Sunitinib) against nine different protein kinases (KIT, PDGFRA, VEGFR2, PHKG2, ITK, HPK1, MST3, PAK6 and CDK2).
Collapse
|
5
|
Deboever E, Fistrovich A, Hulme C, Dunckley T. The Omnipresence of DYRK1A in Human Diseases. Int J Mol Sci 2022; 23:ijms23169355. [PMID: 36012629 PMCID: PMC9408930 DOI: 10.3390/ijms23169355] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 01/13/2023] Open
Abstract
The increasing population will challenge healthcare, particularly because the worldwide population has never been older. Therapeutic solutions to age-related disease will be increasingly critical. Kinases are key regulators of human health and represent promising therapeutic targets for novel drug candidates. The dual-specificity tyrosine-regulated kinase (DYRKs) family is of particular interest and, among them, DYRK1A has been implicated ubiquitously in varied human diseases. Herein, we focus on the characteristics of DYRK1A, its regulation and functional role in different human diseases, which leads us to an overview of future research on this protein of promising therapeutic potential.
Collapse
Affiliation(s)
- Estelle Deboever
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Correspondence: (E.D.); (T.D.)
| | - Alessandra Fistrovich
- Department of Chemistry and Biochemistry, College of Science, The University of Arizona, Tucson, AZ 85721, USA
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - Christopher Hulme
- Department of Chemistry and Biochemistry, College of Science, The University of Arizona, Tucson, AZ 85721, USA
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - Travis Dunckley
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Correspondence: (E.D.); (T.D.)
| |
Collapse
|
6
|
Rammohan M, Harris E, Bhansali RS, Zhao E, Li LS, Crispino JD. The chromosome 21 kinase DYRK1A: emerging roles in cancer biology and potential as a therapeutic target. Oncogene 2022; 41:2003-2011. [PMID: 35220406 PMCID: PMC8977259 DOI: 10.1038/s41388-022-02245-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 11/09/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) is a serine/threonine kinase that belongs to the DYRK family of proteins, a subgroup of the evolutionarily conserved CMGC protein kinase superfamily. Due to its localization on chromosome 21, the biological significance of DYRK1A was initially characterized in the pathogenesis of Down syndrome (DS) and related neurodegenerative diseases. However, increasing evidence has demonstrated a prominent role in cancer through its ability to regulate biologic processes including cell cycle progression, DNA damage repair, transcription, ubiquitination, tyrosine kinase activity, and cancer stem cell maintenance. DYRK1A has been identified as both an oncogene and tumor suppressor in different models, underscoring the importance of cellular context in its function. Here, we review mechanistic contributions of DYRK1A to cancer biology and its role as a potential therapeutic target.
Collapse
Affiliation(s)
- Malini Rammohan
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, IL, USA
| | - Ethan Harris
- University of Illinois at Chicago College of Medicine, Chicago, IL, USA
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rahul S Bhansali
- Department of Medicine, Division of Hematology/Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Zhao
- Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA
| | - Loretta S Li
- Molecular and Translational Cancer Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Division of Hematology, Oncology, and Stem Cell Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John D Crispino
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
7
|
Identification of Pharmacophoric Fragments of DYRK1A Inhibitors Using Machine Learning Classification Models. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061753. [PMID: 35335117 PMCID: PMC8954712 DOI: 10.3390/molecules27061753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 11/17/2022]
Abstract
Dual-specific tyrosine phosphorylation regulated kinase 1 (DYRK1A) has been regarded as a potential therapeutic target of neurodegenerative diseases, and considerable progress has been made in the discovery of DYRK1A inhibitors. Identification of pharmacophoric fragments provides valuable information for structure- and fragment-based design of potent and selective DYRK1A inhibitors. In this study, seven machine learning methods along with five molecular fingerprints were employed to develop qualitative classification models of DYRK1A inhibitors, which were evaluated by cross-validation, test set, and external validation set with four performance indicators of predictive classification accuracy (CA), the area under receiver operating characteristic (AUC), Matthews correlation coefficient (MCC), and balanced accuracy (BA). The PubChem fingerprint-support vector machine model (CA = 0.909, AUC = 0.933, MCC = 0.717, BA = 0.855) and PubChem fingerprint along with the artificial neural model (CA = 0.862, AUC = 0.911, MCC = 0.705, BA = 0.870) were considered as the optimal modes for training set and test set, respectively. A hybrid data balancing method SMOTETL, a combination of synthetic minority over-sampling technique (SMOTE) and Tomek link (TL) algorithms, was applied to explore the impact of balanced learning on the performance of models. Based on the frequency analysis and information gain, pharmacophoric fragments related to DYRK1A inhibition were also identified. All the results will provide theoretical supports and clues for the screening and design of novel DYRK1A inhibitors.
Collapse
|
8
|
Shen J, Zhang P, Li Y, Fan C, Lan T, Wang W, Yu SY. Neuroprotective effects of microRNA-211-5p on chronic stress-induced neuronal apoptosis and depression-like behaviours. J Cell Mol Med 2021; 25:7028-7038. [PMID: 34121317 PMCID: PMC8278121 DOI: 10.1111/jcmm.16716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022] Open
Abstract
Findings from recent studies have revealed that microRNAs (miRNAs) are related to numerous neurological disorders. However, whether miRNAs regulate neuronal anomalies involved in the pathogenesis of depression remain unclear. In the present study, we screened miRNA expression profiles in the CA1 hippocampus of a rat model of depression and found that a specific miRNA, microRNA-211-5p, was significantly down-regulated in depressed rats. When miR-211-5p was up-regulated in these rats, neuronal apoptosis within the CA1 area was suppressed, effects which were accompanied with an amelioration of depression-like behaviours in these rats. These neuroprotective effects of miR-211-5p in depressed rats appear to result through suppression of the Dyrk1A/ASK1/JNK signalling pathway within the CA1 area. In further support of this proposal are the findings that knock-down of miR-211-5p within the CA1 area of normal rats activated the Dyrk1A/ASK1/JNK pathway, resulting in the promotion of neuronal apoptosis and display of depression-like behaviours in these rats. Taken together, these results demonstrate that deficits in miR-211-5p contribute to neuronal apoptosis and thus depression-like behaviours in rats. Therefore, the miR-211-5p/Dyrk1A pathway may be critically involved in the pathogenesis of depression and serve as a potential therapeutic target for the treatment of depression.
Collapse
Affiliation(s)
- Jie Shen
- Department of NeurosurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Ping Zhang
- Department of NeurosurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Ye Li
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Cuiqin Fan
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Tian Lan
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Wenjing Wang
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Shu Yan Yu
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
- Shandong Key Laboratory of Mental DisordersSchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|