1
|
Ma J, Li J, Chen X, Ma Y. Ojeok-san enhances platinum sensitivity in ovarian cancer by regulating adipocyte paracrine IGF1 secretion. Adipocyte 2024; 13:2282566. [PMID: 37993991 PMCID: PMC10761029 DOI: 10.1080/21623945.2023.2282566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Platinum is a commonly used drug for ovarian cancer (OvCa) treatment, but drug resistance limits its clinical application. This study intended to delineate the effects of adipocytes on platinum resistance in OvCa. METHODS OvCa cells were maintained in the adipocyte-conditioned medium. Cell viability and apoptosis were detected by CCK-8 and flow cytometry, separately. Proliferation and apoptosis-related protein expression were assayed by western blot. The IC50 values of cisplatin and carboplatin were determined using CCK-8. IGF1 secretion and expression were assayed via ELISA and western blot, respectively. A xenograft model was established, and pathological changes were detected by H&E staining. Proliferation and apoptosis-associated protein expression was assessed via IHC. RESULTS Adipocytes promoted the viability and repressed cell apoptosis in OvCa, as well as enhancing platinum resistance, while the addition of IGF-1 R inhibitor reversed the effects of adipocytes on proliferation, apoptosis, and drug resistance of OvCa cells. Treatment with different concentrations of Ojeok-san (OJS) inhibited the adipocyte-induced platinum resistance in OvCa cells by suppressing IGF1. The combined treatment of OJS and cisplatin significantly inhibited tumour growth in vivo with good mouse tolerance. CONCLUSION In summary, OJS inhibited OvCa proliferation and platinum resistance by suppressing adipocyte paracrine IGF1 secretion.
Collapse
Affiliation(s)
- Jiong Ma
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Junyan Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Xuejun Chen
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Yanyan Ma
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Wang W, Sun X, Wang A, Lu Y, Han Y, Zhao J, Liu F, Tian Z. Expression and pathogenesis of insulin-like growth factor-1 and insulin-like growth factor binding protein 3 in a mouse model of ulcerative colitis. Heliyon 2024; 10:e34920. [PMID: 39166081 PMCID: PMC11333886 DOI: 10.1016/j.heliyon.2024.e34920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Background and aim Insulin-like growth factor-1 may be involved in the epithelial-to-mesenchymal transition process. It can mitigate adverse effects when interacting with insulin-like growth factor binding protein 3. This study aimed to explore alterations in the expression of these two factors in the colonic tissue of mice with ulcerative colitis. Method This study utilized animal models. Mice were randomly allocated into three distinct groups. Disease activity index assessment was performed first, followed by histological grading of colitis. Protein and mRNA expression levels were determined using Western blotting and RT-qPCR. Immunohistochemical detection was used to determine histochemistry scores. Pearson correlation and SPSS 25.0 software were used for data analysis. Results The findings indicated a reduction in the expression of the two investigated factors as well as in epithelial-to-mesenchymal transition epithelial markers during inflammation, while the expression of noninflammatory factors increased. These effects were notably amplified following treatment. Interestingly, the changes in epithelial-to-mesenchymal transition-inducing factors and mesenchymal markers contradicted this trend. Pearson correlation analysis revealed a correlation between molecular indicators of change and epithelial-to-mesenchymal transition. Conclusion Insulin-like growth factor-1 and insulin-like growth factor binding protein 3 may play a protective role in the development and progression of ulcerative colitis, potentially through their inhibition of the epithelial-to-mesenchymal transition. These factors hold promise as targets for the clinical diagnosis and treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Weihua Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Xuemei Sun
- Internal Medicine Department of Shangkou Central Health Hospital, Shandong, China
| | - Aina Wang
- Department of Gastroenterology, Shidao People's Hospital of Rongcheng, Shandong, China
| | - Yanyan Lu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Yue Han
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Jianjian Zhao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Fuguo Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Shandong, China
| |
Collapse
|
3
|
Chen W, Cheng J, Cai Y, Wang P, Jin J. The pyroptosis-related signature predicts prognosis and influences the tumor immune microenvironment in dedifferentiated liposarcoma. Open Med (Wars) 2024; 19:20230886. [PMID: 38221934 PMCID: PMC10787309 DOI: 10.1515/med-2023-0886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/21/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024] Open
Abstract
Background Dedifferentiated liposarcoma (DDL), a member of malignant mesenchymal tumors, has a high local recurrence rate and poor prognosis. Pyroptosis, a newly discovered programmed cell death, is tightly connected with the progression and outcome of tumor. Objective The aim of this study was to explore the role of pyroptosis in DDL. Methods We obtained the RNA sequencing data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression databases to identify different pyroptosis-related genes (PRGs) expression pattern. An unsupervised method for clustering based on PRGs was performed. Based on the result of cluster analysis, we researched clinical outcomes and immune microenvironment between clusters. The differentially expressed genes (DEGs) between the two clusters were used to develop a prognosis model by the LASSO Cox regression method, followed by the performance of functional enrichment analysis and single-sample gene set enrichment analysis. All of the above results were validated in the Gene Expression Omnibus (GEO) dataset. Results Forty-one differentially expressed PRGs were found between tumor and normal tissues. A consensus clustering analysis based on PRGs was conducted and classified DDL patients into two clusters. Cluster 2 showed a better outcome, higher immune scores, higher immune cells abundances, and higher expression levels in numerous immune checkpoints. DEGs between clusters were identified. A total of 5 gene signatures was built based on the DEGs and divided all DDL patients of the TCGA cohort into low-risk and high-risk groups. The low-risk group indicates greater inflammatory cell infiltration and better outcome. For external validation, the survival difference and immune landscape between the two risk groups of the GEO cohort were also significant. Receiver operating characteristic curves implied that the risk model could exert its function as an outstanding predictor in predicting DDL patients' prognoses. Conclusion Our findings revealed the clinical implication and key role in tumor immunity of PRGs in DDL. The risk model is a promising predictive tool that could provide a fundamental basis for future studies and individualized immunotherapy.
Collapse
Affiliation(s)
- Wenjing Chen
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| | - Jun Cheng
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| | - Yiqi Cai
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| | - Pengfei Wang
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| | - Jinji Jin
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| |
Collapse
|
4
|
Maleki F, Rashidi MR, Razmi H, Ghorbani M. Label-free electrochemical immunosensor for detection of insulin-like growth factor-1 (IGF-1) using a specific monoclonal receptor on electrospun Zein-based nanofibers/rGO-modified electrode. Talanta 2023; 265:124844. [PMID: 37352780 DOI: 10.1016/j.talanta.2023.124844] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
A novel electrochemical immunosensor was developed for ultrasensitive determination of the hormone insulin-like growth factor 1 (IGF-1) based on immobilization of a specific monoclonal antibody on the electrospun nanofibers of Polyacrylonitrile (PAN)/Zein-reduced graphene oxide (rGO) nanoparticle. The nanofibers deposited on glassy carbon electrode (GCE) showed good electrochemical behaviors with synergistic effects between PAN, Zein, and rGO. PAN/Zein nanofibers were used due to flexibility, high porosity, good mechanical strength, high specific surface area, and flexible structures, while rGO nanoparticles were used to improve the detection sensitivity and anti-IGF-1 immobilizing. Different characterization techniques were applied consisting of FE-SEM, FT-IR, and EDS for the investigation of morphological features and nanofiber size. The redox reactions of [Fe(CN)6]4-/3- on the modified electrode surface were probed for studying the immobilization and determination processes, using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Under optimal conditions, LOD (limit of detection) and LOQ (limit of quantification) were obtained as 55.72 fg/mL and 185.73 fg/mL respectively, and sensitivity was acquired 136.29 μA/cm2.dec. Moreover, a wide linear range was obtained ranging from 1 pg/mL to 10 ng/mL for IGF-1. Furthermore, the proposed method was applied for the analysis of IGF-1 in several human plasma samples with acceptable results, and it also exhibited high selectivity, stability, and reproducibility.
Collapse
Affiliation(s)
- Fatemeh Maleki
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, 53714-161, Tabriz, Iran
| | | | - Habib Razmi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, 53714-161, Tabriz, Iran.
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Liu Y, Duan M, Zhang D, Xie J. The role of mechano growth factor in chondrocytes and cartilage defects: a concise review. Acta Biochim Biophys Sin (Shanghai) 2023; 55:701-712. [PMID: 37171185 PMCID: PMC10281885 DOI: 10.3724/abbs.2023086] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/23/2022] [Indexed: 05/13/2023] Open
Abstract
Mechano growth factor (MGF), an isoform of insulin-like growth factor 1 (IGF-1), is recognized as a typical mechanically sensitive growth factor and has been shown to play an indispensable role in the skeletal system. In the joint cavity, MGF is highly expressed in chondrocytes, especially in the damaged cartilage tissue caused by trauma or degenerative diseases such as osteoarthritis (OA). Cartilage is an extremely important component of joints because it functions as a shock absorber and load distributer at the weight-bearing interfaces in the joint cavity, but it can hardly be repaired once injured due to its lack of blood vessels, lymphatic vessels, and nerves. MGF has been proven to play an important role in chondrocyte behaviors, including cell proliferation, migration, differentiation, inflammatory reactions and apoptosis, in and around the injury site. Moreover, under the normalized mechanical microenvironment in the joint cavity, MGF can sense and respond to mechanical stimuli, regulate chondrocyte activity, and maintain the homeostasis of cartilage tissue. Recent reports continue to explain its effects on various cell types and sport-related tissues, but its role in cartilage development, homeostasis and disease occurrence is still controversial, and its internal biological mechanism is still elusive. In this review, we summarize recent discoveries on the role of MGF in chondrocytes and cartilage defects, including tissue repair at the macroscopic level and chondrocyte activities at the microcosmic level, and discuss the current state of research and potential gaps in knowledge.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Mengmeng Duan
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Demao Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
- Institute of Biomedical EngineeringWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengdu610041China
| | - Jing Xie
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
- National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
6
|
Almawi WY, Zidi S, Sghaier I, El-Ghali RM, Daldoul A, Midlenko A. Novel Association of IGF2BP2 Gene Variants With Altered Risk of Breast Cancer and as Potential Molecular Biomarker of Triple Negative Breast Cancer. Clin Breast Cancer 2023; 23:272-280. [PMID: 36653207 DOI: 10.1016/j.clbc.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Several studies documented that insulin-like growth factor-2 mRNA-binding protein 2 (IGF2BP2) contributes to carcinogenesis, and 1 report documented the association of IGF2BP2 rs4402960 with increased risk of breast cancer (BC). This study investigated the association of rs4402960 and rs1470579 IGF2BP2 variants with BC and triple negative BC (TNBC). MATERIALS AND METHODS This case-control study included 488 BC patients comprising 130 TNBC and 358 non-TNBC patients, and 476 cancer-free controls. Genomic DNA was obtained from peripheral venous blood, and genotyping was done by allelic exclusion method on real-time PCR. RESULTS The rs440960, but not rs1470579, minor allele was significantly associated with BC, and significantly higher rs4402960 T/T genotype frequency was noted in BC patients than controls; the distribution of rs1470579 genotypes were comparable between BC patients and controls. In contrast, significantly lower rs1470579 minor allele frequency, and reduced rs1470579 A/C and C/C, and rs4402960 T/T genotype frequencies were seen in TNBC cases. Among TNBC cases, rs4402960 and rs1470579 correlated with menses pattern, histological type, breastfeeding, oral contraceptive use and hormonotherapy. Among non-TNBC patients, and rs1470579 correlated significantly with breast feeding, oral contraceptive use, hormonotherapy, and nodal status; rs4402960 also correlated with menses pattern. Two-locus (rs440960-rs1470579) haplotype analysis confirmed the positive association of TC, and negative association of GC and TA haplotypes with BC, while TC and GC haplotypes were negatively associated with TNBC. CONCLUSION Whereas rs440960 was positively associated with BC, both rs4402960 and rs1470579 were negatively associated with TNBC, suggesting potential diagnostic/prognostic role in BC and its complications.
Collapse
Affiliation(s)
- Wassim Y Almawi
- Faculty of Sciences, El Manar University, Tunis, Tunisia; Nazarbayev University School of Medicine, Astana, Kazakhstan.
| | - Sabrina Zidi
- Faculty of Sciences, El Manar University, Tunis, Tunisia
| | - Ikram Sghaier
- Faculty of Sciences, El Manar University, Tunis, Tunisia
| | - Rabeb M El-Ghali
- Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Amira Daldoul
- Department of Medical Oncology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Anna Midlenko
- Nazarbayev University School of Medicine, Astana, Kazakhstan
| |
Collapse
|
7
|
Orosz G, Szabó L, Bereti S, Zámbó V, Csala M, Kereszturi É. Molecular Basis of Unequal Alternative Splicing of Human SCD5 and Its Alteration by Natural Genetic Variations. Int J Mol Sci 2023; 24:ijms24076517. [PMID: 37047490 PMCID: PMC10095032 DOI: 10.3390/ijms24076517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Alternative splicing (AS) is a major means of post-transcriptional control of gene expression, and provides a dynamic versatility of protein isoforms. Cancer-related AS disorders have diagnostic, prognostic and therapeutic values. Changes in the expression and AS of human stearoyl-CoA desaturase-5 (SCD5) are promising specific tumor markers, although the transcript variants (TVs) of the gene have not yet been confirmed. Our in silico, in vitro and in vivo study focuses on the distribution of SCD5 TVs (A and B) in human tissues, the functionality of the relevant splice sites, and their modulation by certain single-nucleotide variations (SNVs). An order of magnitude higher SCD5A expression was found compared with SCD5B. This unequal splicing is attributed to a weaker recognition of the SCD5B-specific splicing acceptor site, based on predictions confirmed by an optimized minigene assay. The pronounced dominance of SCD5A was largely modified (rs1430176385_A, rs1011850309_A) or even inverted (rs1011850309_C) by natural SNVs at the TV-specific splice sites. Our results provide long missing data on the proportion of SCD5 TVs in human tissues and reveal mutation-driven changes in SCD5 AS, potentially affecting tumor-associated reprogramming of lipid metabolism, thus having prognostic significance, which may be utilized for novel and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Gabriella Orosz
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Luca Szabó
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Szanna Bereti
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Veronika Zámbó
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Éva Kereszturi
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
8
|
Messex JK, Byrd CJ, Thomas MU, Liou GY. Macrophages Cytokine Spp1 Increases Growth of Prostate Intraepithelial Neoplasia to Promote Prostate Tumor Progression. Int J Mol Sci 2022; 23:4247. [PMID: 35457063 PMCID: PMC9027984 DOI: 10.3390/ijms23084247] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/27/2022] Open
Abstract
Prostate cancer development and progression are associated with increased infiltrating macrophages. Prostate cancer is derived from prostatic intraepithelial neoplasia (PIN) lesions. However, the effects macrophages have on PIN progression remain unclear. Here, we showed that the recruited macrophages adjacent to PIN expressed M2 macrophage markers. In addition, high levels of Spp1 transcripts, also known as osteopontin, were identified in these macrophages. Extraneously added Spp1 accelerated PIN cell proliferation through activation of Akt and JNK in a 3D culture setting. We also showed that PIN cells expressed CD44, integrin αv, integrin β1, and integrin β3, all of which have been previously reported as receptors for Spp1. Finally, blockade of Akt and JNK activation through their specific inhibitor completely abolished macrophage Spp1-induced cell proliferation of PIN. Hence, our data revealed Spp1 as another macrophage cytokine/growth factor and its mediated mechanism to upregulate PIN cell growth, thus promoting prostate cancer development.
Collapse
Affiliation(s)
- Justin K. Messex
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA;
| | - Crystal J. Byrd
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA; (C.J.B.); (M.U.T.)
| | - Mikalah U. Thomas
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA; (C.J.B.); (M.U.T.)
| | - Geou-Yarh Liou
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA;
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA; (C.J.B.); (M.U.T.)
| |
Collapse
|
9
|
Zakharenko MV, Bozhenko VK, Kiseleva YY, Dzhikiya EL, Stanoevich US, Kulinich TM, Melnikova NV, Senchukova AL, Urakova AB, Grunin IB, Goncharov SV, Bliznyukov OP, Solodkiy VA. [The study of mRNA expression profiles of main cell function regulator genes in unchanged colonic mucosa from healthy donors]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:366-373. [PMID: 34414896 DOI: 10.18097/pbmc20216704366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A comparative analysis of molecular genetic phenotypes of mucous membrane cells in five anatomical regions of the colon in a group of healthy donors was conducted by comparing mRNA expression profiles of 62 genes involved in the regulation of vital cellular function. We used 181 biopsy samples of morphologically unchanged colonic mucosa, obtained from the colon (ascending, transverse-colon, descending, sigmoid) and rectum sections during prophylactic colonoscopy of 58 donors with no colon pathology. The mRNA levels for 62 genes involved in the regulation of apoptosis, proliferation, transcription, differentiation, cell-cell adhesion, and immune response were assessed by RT-PCR. Statistically significant differences were found for the molecular phenotypes of five sections of the colon. The results of the study can serve as a basis for creating a reference database (values of expression profiles), developing methods of differential diagnostics and screening of various pathologies of the colon.
Collapse
Affiliation(s)
- M V Zakharenko
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - V K Bozhenko
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - Ya Yu Kiseleva
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - E L Dzhikiya
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - U S Stanoevich
- Kursk Regional Clinical Oncology Center, Kislino, Russia
| | - T M Kulinich
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - N V Melnikova
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - A L Senchukova
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - A B Urakova
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - I B Grunin
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - S V Goncharov
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - O P Bliznyukov
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - V A Solodkiy
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| |
Collapse
|
10
|
Cowan DA, Moncrieffe DA. Procollagen type III amino-terminal propeptide and insulin-like growth factor I as biomarkers of growth hormone administration. Drug Test Anal 2021; 14:808-819. [PMID: 34418311 PMCID: PMC9545871 DOI: 10.1002/dta.3155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023]
Abstract
The acceptance in 2012 by the World Anti‐Doping Agency (WADA) of the biomarker test for human growth hormone (hGH) based on procollagen type III amino‐terminal propeptide (P‐III‐NP) and insulin‐like growth factor I (IGF‐I) was perhaps the first time that such a method has been used for forensic purposes. Developing a biomarker test to anti‐doping standards, where the strict liability principle applies, is discussed. An alternative WADA‐accepted approach is based on the measurement of different hGH isoforms, a method that suffers from the very short half‐life of hGH limiting the detection period. Modification or withdrawal of the immunoassays, on which the biomarker measurements largely depend, has necessitated revalidation of the assays, remeasurement of samples and adjustment of the decision limits above which an athlete will be assumed to have administered hGH. When a liquid chromatography coupled mass spectrometry (LC–MS) method became a reality for the measurement of IGF‐I, more consistency of results was assured. Measurement of P‐III‐NP is still dependent on immunoassays although work is underway to develop an LC–MS method. The promised long‐term detection time for the biomarker assay does not appear to have been realised in practice, and this is perhaps partly the result of decision limits being set too high. Nevertheless, more robust assays are needed before a further adjustment of the decision limit is warranted. In the meantime, WADA is considering using P‐III‐NP and IGF‐I as components of a biomarker passport system recording data from an individual athlete, rather than the population. Using this approach, smaller perturbations in the growth hormone (GH) score would mandate an investigation and possible action for hGH administration.
Collapse
Affiliation(s)
- David A Cowan
- Department of Analytical, Environmental and Forensic Science, King's College London, London, UK
| | - Danielle A Moncrieffe
- Department of Analytical, Environmental and Forensic Science, King's College London, London, UK.,Drug Control Centre, Department of Analytical, Environmental and Forensic Science, King's College London, London, UK
| |
Collapse
|
11
|
Perumal K, Ahmad S, Mohd-Zahid MH, Wan Hanaffi WN, Z.A. I, Six JL, Ferji K, Jaafar J, Boer JC, Plebanski M, Uskoković V, Mohamud R. Nanoparticles and Gut Microbiota in Colorectal Cancer. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.681760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent years have witnessed an unprecedented growth in the research area of nanomedicine. There is an increasing optimism that nanotechnology applied to medicine will bring significant advances in the diagnosis and treatment of various diseases, including colorectal cancer (CRC), a type of neoplasm affecting cells in the colon or the rectum. Recent findings suggest that the role of microbiota is crucial in the development of CRC and its progression. Dysbiosis is a condition that disturbs the normal microbial environment in the gut and is often observed in CRC patients. In order to detect and treat precancerous lesions, new tools such as nanotechnology-based theranostics, provide a promising option for targeted marker detection or therapy for CRC. Because the presence of gut microbiota influences the route of biomarker detection and the route of the interaction of nanoparticle/drug complexes with target cells, the development of nanoparticles with appropriate sizes, morphologies, chemical compositions and concentrations might overcome this fundamental barrier. Metallic particles are good candidates for nanoparticle-induced intestinal dysbiosis, but this aspect has been poorly explored to date. Herein, we focus on reviewing and discussing nanotechnologies with potential applications in CRC through the involvement of gut microbiota and highlight the clinical areas that would benefit from these new medical technologies.
Collapse
|
12
|
Insulin-Like Growth Factor 1 (IGF-1) Signaling in Glucose Metabolism in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22126434. [PMID: 34208601 PMCID: PMC8234711 DOI: 10.3390/ijms22126434] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common aggressive carcinoma types worldwide, characterized by unfavorable curative effect and poor prognosis. Epidemiological data re-vealed that CRC risk is increased in patients with metabolic syndrome (MetS) and its serum components (e.g., hyperglycemia). High glycemic index diets, which chronically raise post-prandial blood glucose, may at least in part increase colon cancer risk via the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway. However, the underlying mechanisms linking IGF-1 and MetS are still poorly understood. Hyperactivated glucose uptake and aerobic glycolysis (the Warburg effect) are considered as a one of six hallmarks of cancer, including CRC. However, the role of insulin/IGF-1 signaling during the acquisition of the Warburg metabolic phenotypes by CRC cells is still poorly understood. It most likely results from the interaction of multiple processes, directly or indirectly regulated by IGF-1, such as activation of PI3K/Akt/mTORC, and Raf/MAPK signaling pathways, activation of glucose transporters (e.g., GLUT1), activation of key glycolytic enzymes (e.g., LDHA, LDH5, HK II, and PFKFB3), aberrant expression of the oncogenes (e.g., MYC, and KRAS) and/or overexpression of signaling proteins (e.g., HIF-1, TGF-β1, PI3K, ERK, Akt, and mTOR). This review describes the role of IGF-1 in glucose metabolism in physiology and colorectal carcinogenesis, including the role of the insulin/IGF system in the Warburg effect. Furthermore, current therapeutic strategies aimed at repairing impaired glucose metabolism in CRC are indicated.
Collapse
|