1
|
Lu X, Wang Y, Pan M, Chen S, Li R, Geng M, Chen Y, Liu J, Guo J, Yao Y. Mutation of MeMinD increased amyloplast size with a changed starch granule morphologenesis and structures in cassava storage roots. Carbohydr Polym 2025; 348:122884. [PMID: 39567162 DOI: 10.1016/j.carbpol.2024.122884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
Amyloplasts are the sites of starch synthesis and accumulation. Little is known about amyloplast division and its effects on the size, structure, and physicochemical properties of starch granules. In this study, we created mutants of plastid division-related gene MeMinD by CRISPR/Cas9 technology, leading to the disruption of normal division of amyloplasts in cassava storage roots. The memind mutants exhibited significantly enlarged amyloplasts with an increased number of starch granules, and broader range of granule sizes. The loss of MeMinD function led to transcriptional reprogramming of gene expressions related to starch-synthesizing enzymes, affecting the fine structure of starch. Starch in memind mutant storage roots showed a significantly decreased proportion of shorter amylopectin chains and an increased proportion of medium and long chains, which ultimately led to a significant increase in apparent amylose content (AAC) in memind mutants compared to that in WT. The changes in starch granule size and structure resulted in a significant increase in onset temperature (To), peak temperature (Tp), and conclusion temperature (Tc) of the gelatinization process, extending the time to reach peak temperature. These data suggest that regulating amyloplast division affects starch accumulation in cassava, presenting an effective strategy for developing novel cassava starch.
Collapse
Affiliation(s)
- Xiaohua Lu
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yajie Wang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Mu Pan
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou 571101, China
| | - Ruimei Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Mengting Geng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yinhua Chen
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jiao Liu
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Jianchun Guo
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Yuan Yao
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
2
|
Lu X, Wang Y, Zhen X, Che Y, Yu H, Ge Y, Wang X, Li R, Geng M, Zhou B, Liu J, Guo J, Yao Y. Editing of the soluble starch synthase gene MeSSIII-1 enhanced the amylose and resistant starch contents in cassava. Carbohydr Polym 2025; 348:122903. [PMID: 39567138 DOI: 10.1016/j.carbpol.2024.122903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024]
Abstract
Foods with high amylose and resistant starch (RS) contents have great potential to enhance human health. In this study, cassava soluble starch synthase MeSSIII-1 gene mutants were generated using CRISPR/Cas9 system. The results showed that the storage roots of messiii-1 mutants had higher contents of amylose, RS, and total starch than those in CK. The rates of small and large-sized starch granules were increased. Additionally, amylopectin starch in messiii-1 mutants had a higher proportion of medium- and long- chains, and a lower proportion of short-chains than those in CK. The onset, peak, and conclusion temperatures of starch gelatinization in messiii-1 mutants were significantly lower than those in CK, and the peak viscosity, trough viscosity and final viscosity all increased. MeSSIII-1 mutation could increase the contents of sucrose, glucose, and fructose in cassava storage roots. We hypothesize that these soluble sugars serve a dual role: they provide the necessary carbon source for starch synthesis and act as sugar signals to trigger the transcriptional reprogramming of genes involved in starch biosynthesis. This process results in a collective enhancement of amylose, RS, and total starch contents, accompanied by changes in starch granule morphology, fine structure, and physicochemical properties.
Collapse
Affiliation(s)
- Xiaohua Lu
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yajie Wang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xinghou Zhen
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yannian Che
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Hui Yu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yujian Ge
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiangwen Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ruimei Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Mengting Geng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Bin Zhou
- Guilin Agricultural Science Research Centre, Guilin 541006, China
| | - Jiao Liu
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Jianchun Guo
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Yuan Yao
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
3
|
Compart J, Fettke J. Starch phosphorylation - A new perspective: A review. Int J Biol Macromol 2025; 298:139889. [PMID: 39818391 DOI: 10.1016/j.ijbiomac.2025.139889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
The phosphorylation of the storage carbohydrates, starch and glycogen, is a process that is fundamental to their physicochemical properties and their turnover. Therefore, the interest utilising phosphorylation as a biotechnological tool to customize polysaccharides has risen permanently. Today, the phosphoesterification of both carbohydrate forms is much better understood. In recent years, important new insights have been gained into the molecular mechanism of starch phosphoesterification and its effects. In the following, the current state of knowledge on starch phosphorylation is briefly summarized. In addition, protein structure predictions for GWD are presented and considered for the first time in the context of recently published analyses of starch phosphorylation, which have opened up novel perspectives on this process. Therefore, we focus on a detailed discussion of the molecular events that occur at the surface of starch granules and enable a revised and in-depth understanding of starch granule phosphorylation.
Collapse
Affiliation(s)
- Julia Compart
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam, Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam, Golm, Germany.
| |
Collapse
|
4
|
Bertoft E, Annor G, Vamadevan V, Lin AHM. On the Architecture of Starch Granules Revealed by Iodine Binding and Lintnerization. Part 2: Molecular Structure of Lintnerized Starches. Biopolymers 2025; 116:e23636. [PMID: 39404081 DOI: 10.1002/bip.23636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 12/21/2024]
Abstract
This investigation validated iodine binding in combination with lintnerization for studying the structural nature of the amorphous areas in starch granules. Lintners of four iodine vapor-stained and non-stained amylose-containing starches and their waxy counterparts were analyzed by high-performance anion-exchange chromatography (HPAEC). The composition of the lintners was strongly affected by the absence of amylose in barley and potato starch but not in maize and cassava starch. Iodine-stained waxy lintners possessed increased number of long B2 chains. β-Limit dextrins of the lintners were very variable in composition. Iodine inclusion complexes washed out from the granular residues in the lintners (mostly from amylose-containing barley and maize starches) were also analyzed. Acid-soluble complexes from both amylose-containing and waxy starches possessed a lot of material with a degree of polymerization (DP) around 60 and a periodicity in size of DP 8-12. Such long chains were only minor components in water-soluble complexes of amylose-containing barley and maize starch lintners, and they lacked the size periodicity. Models of the principal structure of the acid and water-soluble complexes are suggested. It is concluded that acid hydrolysis of iodine-stained starch granules is a useful tool in structural analyses of the molecular composition of amorphous parts of starch granules.
Collapse
Affiliation(s)
- Eric Bertoft
- Bi-State School of Food Science, University of Idaho, Moscow, Idaho, USA
| | - George Annor
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | | | - Amy Hui-Mei Lin
- Bi-State School of Food Science, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
5
|
Yao X, Yang X, Lu Y, Qiu Y, Zeng Q. Review of the Synthesis and Degradation Mechanisms of Some Biodegradable Polymers in Natural Environments. Polymers (Basel) 2024; 17:66. [PMID: 39795468 PMCID: PMC11723253 DOI: 10.3390/polym17010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/22/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
The escalating demand for sustainable materials has been fueling the rapid proliferation of the biopolymer market. Biodegradable polymers within natural habitats predominantly undergo degradation mediated by microorganisms. These microorganisms secrete enzymes that cleave long-chain polymers into smaller fragments for metabolic assimilation. This review is centered around dissecting the degradation mechanisms of specific biodegradable polymers, namely PLA, starch-based polymers, and plant fiber-based polymers. Recent investigations have unveiled that PLA exhibits augmented biocompatibility when combined with HA, and its degradation is subject to the influence of enzymatic and abiotic determinants. In the case of starch-based polymers, chemical or physical modifications can modulate their degradation kinetics, as evidenced by Wang et al.'s superhydrophobic starch-based nanocomposite cryogel. For plant fiber-based polymers, the effects of temperature, humidity, and cellulose degradation on their properties, along with the implications of various treatments and additives, are probed, as exemplified by Liu et al.'s study on jute/SiO2/PP composites. Specifically, with respect to PLA, the polymerization process and the role of catalysts such as SnCl2 in governing the structure and biodegradability are expounded in detail. The degradation of PLA in SBF and its interaction with β-TCP particles constitute crucial aspects. For starch-based polymers, the enzymatic degradation catalyzed by amylase and glucosidase and the environmental impacts of temperature and humidity, in addition to the structural ramifications of amylose and amylopectin, are further elucidated. In plant fiber-based polymers, the biodegradation of cellulose and the effects of plasma treatment, electron beam irradiation, nanoparticles, and crosslinking agents on water resistance and stability are explicated with experimental substantiation. This manuscript also delineates technological accomplishments. PLA incorporated with HA demonstrates enhanced biocompatibility and finds utility in drug delivery systems. Starch-based polymers can be engineered for tailored degradation. Plant fiber-based polymers acquire water resistance and durability through specific treatments or the addition of nanoparticles, thereby widening their application spectrum. Synthetic and surface modification methodologies can be harnessed to optimize these materials. This paper also consolidates reaction conditions, research techniques, their merits, and demerits and delves into the biodegradation reaction mechanisms of these polymers. A comprehensive understanding of these degradation mechanisms is conducive to their application and progression in the context of sustainable development and environmental conservation.
Collapse
Affiliation(s)
- Xiao Yao
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China; (X.Y.)
| | - Xue Yang
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China; (X.Y.)
| | - Yisang Lu
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China; (X.Y.)
| | - Yinyuan Qiu
- School of Mechanical and Automotive Engineering, Fujian University of Technology, Fuzhou 350118, China
- Fujian Special Equipment Inspection and Research Institute, Fuzhou 350008, China
| | - Qinda Zeng
- Fujian Special Equipment Inspection and Research Institute, Fuzhou 350008, China
| |
Collapse
|
6
|
Ahmad D, Ying Y, Bao J. Understanding starch biosynthesis in potatoes for metabolic engineering to improve starch quality: A detailed review. Carbohydr Polym 2024; 346:122592. [PMID: 39245484 DOI: 10.1016/j.carbpol.2024.122592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024]
Abstract
Potato tubers accumulate substantial quantities of starch, which serves as their primary energy reserve. As the predominant component of potato tubers, starch strongly influences tuber yield, processing quality, and nutritional attributes. Potato starch is distinguished from other food starches by its unique granule morphology and compositional attributes. It possesses large, oval granules with amylose content ranging from 20 to 33 % and high phosphorus levels, which collectively determine the unique physicochemical characteristics. These physicochemical properties direct the utility of potato starch across diverse food and industrial applications. This review synthesizes current knowledge on the molecular factors controlling potato starch biosynthesis and structure-function relationships. Key topics covered are starch granule morphology, the roles and regulation of major biosynthetic enzymes, transcriptional and hormonal control, genetic engineering strategies, and opportunities to tailor starch functionality. Elucidating the contributions of different enzymes in starch biosynthesis has enabled targeted modification of potato starch composition and properties. However, realizing the full potential of this knowledge faces challenges in optimizing starch quality without compromising plant vigor and yield. Overall, integrating multi-omics datasets with advanced genetic and metabolic engineering tools can facilitate the development of elite cultivars with enhanced starch yield and tailored functionalities.
Collapse
Affiliation(s)
- Daraz Ahmad
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yining Ying
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| |
Collapse
|
7
|
Pereira AEN, de Almeida EA, Kruger FR, da Silva-Filho EC, Muniz EC. Polyacrylamide Hydrogel Containing Starch and Sugarcane Bagasse Ash: Synthesis, Characterisation, and Application in Cement Pastes and Mortars. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5889. [PMID: 39685324 DOI: 10.3390/ma17235889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Internal curing is a process based on the addition of materials that function as water reservoirs in cementitious media. Superabsorbent hydrogels are an alternative that can be used as an internal curing agent, as they have the ability to absorb and release water in a controlled manner. In the present work, superabsorbent hydrogels based on crosslinked polyacrylamide in the presence of starch and sugarcane bagasse ash (SCBA) were developed and applied to mortars as an internal curing agent. The synthesized hydrogels were evaluated by SEM, FTIR, and swelling analysis. Cement pastes and mortars were produced using different amounts of hydrogel (0.03%, 0.06%, and 0.1% by weight). An analysis of the cement pastes and mortars revealed that hydrogel contributes to hydration, thus improving the quality of the product. Furthermore, the addition of 0.03% hydrogel by weight increased the mechanical resistance of the mortars in up to 26.8% at 28 days of curing as compared with reference (without hydrogel). To the best of our knowledge, this is the first study to use a hydrogel based on polyacrylamide crosslinked with starch and SCBA as a curing agent for mortars and cement pastes. This approach is environmentally friendly, because it uses a natural product (starch) and a byproduct from the sugarcane industry (SCBA).
Collapse
Affiliation(s)
| | - Edson Araujo de Almeida
- Chemistry Postgraduation Program, State University of Maringa-UEM, Maringá 87020-900, PR, Brazil
| | - Fábio Rodrigo Kruger
- Civil Construction Department, Federal University of Technology-Parana-UTFPR-CM, Campo Mourão 87301-889, PR, Brazil
| | | | - Edvani Curti Muniz
- Chemistry Postgraduation Program, Federal University of Piaui-UFPI, Teresina 64049-550, PI, Brazil
- Chemistry Postgraduation Program, State University of Maringa-UEM, Maringá 87020-900, PR, Brazil
- Materials Science Postgraduation Program, Federal University of Technology-Parana-UTFPR-LD, Londrina 86036-370, PR, Brazil
| |
Collapse
|
8
|
Bertoft E, Annor G, Vamadevan V, Lin AHM. On the architecture of starch granules revealed by iodine vapor binding and lintnerization. Part 1: Microscopic examinations. Biopolymers 2024; 115:e23610. [PMID: 38953406 DOI: 10.1002/bip.23610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
Structural nature of glucan chains in the amorphous part of granular starch was examined by iodine vapor treatment and lintnerization. Four iodine-stained amylose-containing normal starches and their waxy counterparts were examined under a microscope before, during, and after lintnerization. The presence of amylose retarded the lintnerization rate. The degree of retardation correlated with the structural type of the amylopectin component, suggesting that potato amylopectin (type 4 structure) interacts with amylose in the granules, whereas in barley granules (type 1 structure) the interaction is very weak. The inclusion complexes with iodine were not degraded by the acid treatment. Therefore, the iodine-glucan chain complex formation could be used to study the structural nature of the flexible, amorphous parts of the starch granules. Indeed, at the end of lintnerization, when 20%-30% of the granules remained, substantial amounts of blue-stained complexes were washed out from the granules especially from amylose-containing barley and maize starch, but also from both normal and waxy cassava and potato starch. The complexation with iodine did not affect the rate of lintnerization. This suggested that single helical structures were present during lintnerization also in the absence of iodine and this conformation was the reason for the acid resistance.
Collapse
Affiliation(s)
- Eric Bertoft
- Bi-State School of Food Science, University of Idaho, Moscow, Idaho, USA
| | - George Annor
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | | | - Amy Hui-Mei Lin
- Bi-State School of Food Science, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
9
|
Song B, Zheng Q, Xing J, Miao Z, Zheng M, Zhao C, Wu Y, Xu X, Liu J. Understanding the multiscale structure and in vitro digestibility changes of corn starch-ferulic acid complexes induced by high hydrostatic pressure. Int J Biol Macromol 2024; 279:135215. [PMID: 39216577 DOI: 10.1016/j.ijbiomac.2024.135215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
High hydrostatic pressure (HHP) was used to synthesize corn starch (CS) and ferulic acid (FA) complex (CS-FA). Its effects on the structure of the complex at multiple scales and its digestibility were examined. The results demonstrated that HHP significantly influenced the digestibility of the CS-FA complex, decreasing the content of rapidly digestible starch (RDS) while increasing slowly digestible starch (SDS) and resistant starch (RS). Notably, the combined SDS and RS content in the HHP-treated CS-FA complex with 2.0 % FA addition (38.13 %) was significantly higher (p < 0.05) than those in the CS-FA complex without HHP treatment (29.21 %) and pure CS (21.72 %). The results indicated that HHP treatment reduced the enthalpy change (ΔH), number of short-range order structures, and relative crystallinity (RC) while increasing the average particle size of these CS-FA complexes. This treatment also increased the proportion of amorphous starch regions and the degree of agglomeration between the starch and FA. HHP treatment-induced CS-FA complexes exhibited a denser fractal structure and higher short-range order, affecting the interaction sites between the starch and digestive enzymes. These findings suggest the potential application of HHP treatment and FA in modulating the postprandial glycemic response to starchy food.
Collapse
Affiliation(s)
- Bin Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Qihang Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jiayue Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Zhengchi Miao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Chengbin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Yuzhu Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Xiuying Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
10
|
Gong Q, Qu X, Zhao Y, Zhang X, Cao S, Wang X, Song Y, Mackay CR, Wang Q. Indole-3-Acetic Acid Esterified with Waxy, Normal, and High-Amylose Maize Starches: Comparative Study on Colon-Targeted Delivery and Intestinal Health Impact. Nutrients 2024; 16:3446. [PMID: 39458442 PMCID: PMC11510046 DOI: 10.3390/nu16203446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Accumulating research suggests that metabolites produced by gut microbiota are essential for maintaining a balanced gut and immune system. Indole-3-acetic acid (IAA), one of tryptophan metabolites from gut microbiota, is critical for gut health through mechanisms such as activating aryl hydrocarbon receptor. Delivery of IAA to colon is beneficial for treatment of gastrointestinal diseases, and one promising strategy is IAA esterified starch, which is digested by gut microbes in colon and releases loaded IAA. Amylose content is a key structural characteristic that controls the physicochemical properties and digestibility of starch. METHODS In the current study, IAA was esterified with three typical starches with distinct amylose content to obtain indolyl acetylated waxy maize starch (WMSIAA), indolyl acetylated normal maize starch (NMSIAA), and indolyl acetylated high-amylose maize starch (HAMSIAA). The study comparatively analyzed their respective physicochemical properties, how they behave under in vitro digestion conditions, their ability to deliver IAA directly to the colon, and their effects on the properties of the gut microbiota. RESULTS The new characteristic peak of 1H NMR at 10.83 ppm, as well as the new characteristic peak of FTIR spectra at 1729 cm-1, represented the successful esterification of IAA on starch backbone. The following in vitro digestion study further revealed that treatment with indolyl acetylation significantly elevated the resistant starch content in the starch samples. In vivo experimental results demonstrated that WMSIAA exhibited the most significant increase in IAA levels in the stomach, whereas HAMSIAA and NMSIAA demonstrated the most remarkable increases in IAA levels in the small intestine and colon, respectively. The elevated IAA levels in the colon are conducive to promoting the growth of beneficial intestinal bacteria and significantly alleviating DSS-induced colitis. CONCLUSIONS This research presents innovative insights and options for the advancement of colon-specific drug delivery systems aimed at preventing and curing gastrointestinal disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yingying Song
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China (Y.Z.); (X.W.)
| | - Charles R. Mackay
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China (Y.Z.); (X.W.)
| | - Quanbo Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China (Y.Z.); (X.W.)
| |
Collapse
|
11
|
Liu Q, Zhou Y, Flores Castellanos J, Fettke J. The maltose-related starch degradation pathway promotes the formation of large and spherical transitory starch granules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:712-728. [PMID: 39254098 DOI: 10.1111/tpj.17016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
Previously, in Arabidopsis thaliana, we found atypical spherical starch granules in dpe2ss4 and dpe2phs1ss4. However, the mechanism of such abnormal morphogenesis is still obscure. By tracking starch granule length and thickness with leaf ageing, we reported that the starch granules in dpe2phs1ss4 gradually change to a spherical shape over time. In comparison, Col-0 and the parental line ss4 did not exhibit macroscopic morphological alteration. In this study, firstly, we specify that the additional lack of DPE2 resulted in the gradual alteration of starch granule morphology over time. Similar gradual morphological alterations were also found in dpe2, mex1, and sex4 but not in the other starch degradation-related mutants, such as sex1-8, pwd, and bam3. The gradual alteration of starch morphology can be eliminated by omitting the dark phase, suggesting that the particular impaired starch degradation in dpe2- and mex1-related mutants influences starch morphology. Secondly, we observed that spherical starch morphology generation was accompanied by prominent elevated short glucan chains of amylopectin and an increased amylose proportion. Thirdly, the interplay between soluble starch synthase 2 and branching enzymes was affected and resulted in the formation of spherical starch granules. The resulting spherical starch granules allow for elevated starch synthesis efficiency. Fourthly, the starch phosphate content at the granule surface correlated with the morphology alteration of the starch granules. Herewith, we propose a model that spherical starch granules, accumulated in mutants with a misbalance of the starch degradation pathway, are result of elevated starch synthesis to cope with overloaded carbohydrates.
Collapse
Affiliation(s)
- Qingting Liu
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, 14476, Potsdam-Golm, Germany
| | - Yuan Zhou
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Junio Flores Castellanos
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, 14476, Potsdam-Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, 14476, Potsdam-Golm, Germany
| |
Collapse
|
12
|
Bertoft E, Blennow A, Hamaker BR. Perspectives on Starch Structure, Function, and Synthesis in Relation to the Backbone Model of Amylopectin. Biomacromolecules 2024; 25:5389-5401. [PMID: 39149775 DOI: 10.1021/acs.biomac.4c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Understanding functionality of polysaccharides such as starch requires molecular representations that account for their functional characteristics, such as those related to gelatinization, gelation, and crystallization. Starch macromolecules are inherently very complex, and precise structures can only be deduced from large data sets to generate relational models. For amylopectin, the major, well-organized, branched part of starch, two main molecular representations describe its structure: the classical cluster model and the more recent backbone model. Continuously emerging data call for inspection of these models, necessary revisions, and adoption of the preferred representation. The accumulated molecular and functional data support the backbone model and it well accommodates our present knowledge related to the biosynthesis of starch. This Perspective focuses on our current knowledge of starch structure and functionality directly in relation to the backbone model of amylopectin.
Collapse
Affiliation(s)
- Eric Bertoft
- Bertoft Solutions, Gamla Sampasvägen 18, 20960 Turku, Finland
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, Indiana 47907-2009, United States
| |
Collapse
|
13
|
Matsushima R, Hisano H, Kim JS, McNelly R, Oitome NF, Seung D, Fujita N, Sato K. Mutations in starch BRANCHING ENZYME 2a suppress the traits caused by the loss of ISOAMYLASE1 in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:212. [PMID: 39217239 PMCID: PMC11365852 DOI: 10.1007/s00122-024-04725-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
KEY MESSAGE The hvbe2a mutations restore the starch-deficient phenotype caused by the hvisa1 and hvflo6 mutations in barley endosperm. The genetic interactions among starch biosynthesis genes can be exploited to alter starch properties, but they remain poorly understood due to the various combinations of mutations to be tested. Here, we isolated two novel barley mutants defective in starch BRANCHING ENZYME 2a (hvbe2a-1 and hvbe2a-2) based on the starch granule (SG) morphology. Both hvbe2a mutants showed elongated SGs in the endosperm and increased resistant starch content. hvbe2a-1 had a base change in HvBE2a gene, substituting the amino acid essential for its enzyme activity, while hvbe2a-2 is completely missing HvBE2a due to a chromosomal deletion. Further genetic crosses with barley isoamylase1 mutants (hvisa1) revealed that both hvbe2a mutations could suppress defects in endosperm caused by hvisa1, such as reduction in starch, increase in phytoglycogen, and changes in the glucan chain length distribution. Remarkably, hvbe2a mutations also transformed the endosperm SG morphology from the compound SG caused by hvisa1 to bimodal simple SGs, resembling that of wild-type barley. The suppressive impact was in competition with floury endosperm 6 mutation (hvflo6), which could enhance the phenotype of hvisa1 in the endosperm. In contrast, the compound SG formation induced by the hvflo6 hvisa1 mutation in pollen was not suppressed by hvbe2a mutations. Our findings provide new insights into genetic interactions in the starch biosynthetic pathway, demonstrating how specific genetic alterations can influence starch properties and SG morphology, with potential applications in cereal breeding for desired starch properties.
Collapse
Affiliation(s)
- Ryo Matsushima
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
- John Innes Centre, Norwich Research Park, Norwich,, NR4 7UH, UK.
| | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - June-Sik Kim
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Rose McNelly
- John Innes Centre, Norwich Research Park, Norwich,, NR4 7UH, UK
| | - Naoko F Oitome
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich,, NR4 7UH, UK
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| |
Collapse
|
14
|
Compart J, Apriyanto A, Fettke J. Starch phosphorylation-A needle in a haystack. PLANT METHODS 2024; 20:112. [PMID: 39068466 PMCID: PMC11282765 DOI: 10.1186/s13007-024-01237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
Phosphoesterification is the only naturally occurring covalent starch modification identified to date, and it has a major impact on overall starch metabolism. The incorporation of phosphate groups mediated by dikinases [α-glucan, water dikinase (GWD), EC 2.7.9.4; phosphoglucan, water dikinase (PWD), EC 2.7.9.5] massively alters the starch granule properties; however, previous studies did not determine whether the starch-related dikinases bind the phosphate to the glucosyl units within the amylopectin molecules in a specific pattern or randomly. In order to answer this challenging question, a number of approaches were initially pursued until a protocol could be established that enabled a massive step forward in the in vitro analysis of phosphorylated glucan chains obtained from starch. For this purpose, phosphorylation by GWD was investigated, including the final state of phosphorylation i.e., the state of substrate saturation when GWD lacks further free hydroxyl groups at OH-C6 for the catalysis of monophosphate esters. Since the separated phosphorylated glucan chains were required for the analysis, isoamylase digestion was performed to cleave the α-1,6-glycosidic bonds and to allow for the removal of the huge number of existing neutral chains by means of anion exchange chromatography. Via Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) MS and MALDI-MS/MS, the phosphorylated α-glucan chains were analysed, and the position of the phosphate group within the chain in relation to the reducing end was determined. Here, we demonstrate a protocol that enables the analysis of phosphorylated oligosaccharides, even in small quantities.
Collapse
Affiliation(s)
- Julia Compart
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl- Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Ardha Apriyanto
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl- Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
- Research and Development, PT. Astra Agro Lestari Tbk. Jl. Puloayang Raya Blok OR I, Kawasan Industri Pulogadung, Jakarta Timur, Indonesia
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl- Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany.
| |
Collapse
|
15
|
Li S, He R, Liu J, Chen Y, Yang T, Pan K. Rod-Shaped Starch from Galanga: Physicochemical Properties, Fine Structure and In Vitro Digestibility. Foods 2024; 13:1784. [PMID: 38891012 PMCID: PMC11171565 DOI: 10.3390/foods13111784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
This work investigated the physicochemical properties, structural characteristics, and digestive properties of two non-conventional starches extracted from Galanga: Alpinia officinarum Hance starch (AOS) and Alpinia galanga Willd starch (AGS). The extraction rates of the two starches were 22.10 wt% and 15.73 wt%, which is lower than widely studied ginger (Zingiber officinale, ZOS). But they contained similar amounts of basic constituents. AOS and AGS showed a smooth, elongated shape, while ZOS was an oval sheet shape. AOS and ZOS were C-type starches, and AGS was an A-type starch. AOS showed the highest crystallinity (35.26 ± 1.02%) among the three starches, possessed a higher content of amylose (24.14 ± 0.73%) and a longer amylose average chain length (1419.38 ± 31.28) than AGS. AGS starch exhibits the highest viscosity at all stages, while AOS starch shows the lowest pasting temperature, and ZOS starch, due to its high amylose content, displays lower peak and trough viscosities. Significant differences were also found in the physicochemical properties of the three starches, including the swelling power, solubility, thermal properties, and rheological properties of the three starches. The total content of resistant starch (RS) and slowly digestible starch (SDS) in AOS (81.05%), AGS (81.46%), and ZOS (82.58%) are considered desirable. These findings proved to be valuable references for further research and utilization of ginger family starch.
Collapse
Affiliation(s)
- Shanshan Li
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (S.L.); (R.H.); (J.L.); (T.Y.)
| | - Rui He
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (S.L.); (R.H.); (J.L.); (T.Y.)
| | - Jiaqi Liu
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (S.L.); (R.H.); (J.L.); (T.Y.)
| | - Ying Chen
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Tao Yang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (S.L.); (R.H.); (J.L.); (T.Y.)
| | - Kun Pan
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (S.L.); (R.H.); (J.L.); (T.Y.)
| |
Collapse
|
16
|
Jayarathna S, Hofvander P, Péter-Szabó Z, Andersson M, Andersson R. GBSS mutations in an SBE mutated background restore the potato starch granule morphology and produce ordered granules despite differences to native molecular structure. Carbohydr Polym 2024; 331:121860. [PMID: 38388056 DOI: 10.1016/j.carbpol.2024.121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Potato starch with mutations in starch branching enzyme genes (SBEI, SBEII) and granule-bound starch synthase gene (GBSS) was characterized for molecular and thermal properties. Mutations in GBSS were here stacked to a previously developed SBEI and SBEII mutation line. Additionally, mutations in the GBSS gene alone were induced in the wild-type variety for comparison. The parental line with mutations in the SBE genes showed a ∼ 40 % increase in amylose content compared with the wild-type. Mutations in GBSS-SBEI-SBEII produced non-waxy, low-amylose lines compared with the wild-type. An exception was a line with one remaining GBSS wild-type allele, which displayed ∼80 % higher amylose content than wild-type. Stacked mutations in GBSS in the SBEI-SBEII parental line caused alterations in amylopectin chain length distribution and building block size categories of whole starch. Correlations between size categories of building blocks and unit chains of amylopectin were observed. Starch in GBSS-SBEI-SBEII mutational lines had elevated peak temperature of gelatinization, which was positively correlated with large building blocks.
Collapse
Affiliation(s)
- Shishanthi Jayarathna
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-23422 Lomma, Sweden
| | - Zsuzsanna Péter-Szabó
- Division of Glycoscience, Department of Chemistry, KTH-Royal Institute of Technology, SE-10621 Stockholm, Sweden
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-23422 Lomma, Sweden
| | - Roger Andersson
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| |
Collapse
|
17
|
Lai S, Xie H, Hu H, Ouyang K, Li G, Zhong J, Hu X, Xiong H, Zhao Q. V-type granular starches prepared by maize starches with different amylose contents: An investigation in structure, physicochemical properties and digestibility. Int J Biol Macromol 2024; 266:131092. [PMID: 38527678 DOI: 10.1016/j.ijbiomac.2024.131092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
V-type granular starches (VGSs) were prepared via an ethanol-alkaline (EA) method using maize starch with different amylose contents, specifically, high amylose (HAM), normal maize starch (MS), and waxy maize starch (WS). The X-ray diffraction pattern of the native starch was completely transformed into a V-type pattern after the EA treatment, indicating a structural change in the starch granules. The VGSs prepared by HAM had highest relative crystallinity (31.8°), while the VGSs prepared by WS showed amorphous diffraction pattern. Excessive NaOH, however, would disrupt the formation of V-type structures and cause granular shape rupture. The quantity of double-helical structures, particularly those formed by amylopectin at the starch granules' periphery, significantly decreased. Conversely, single-helical structures formed by amylose increased. A notable rise in the relative crystallinity of V crystals. Four VGS samples, characterized by granular integrity, were chosen for the next investigation of physicochemical and digestive properties. VGS prepared from HAM exhibited higher granular integrity, lower cold-water swelling extent (59.0 and 161.0 cP), improved thermal stability (the value of breakdown as lower as 57.67 and 186.67 cP), and higher resistance to digestion (RS content was up to 10.38 % and 9.00 % higher than 5.86 % and 5.66 % of VGS prepared from WS and MS). The results confirmed that amylose content has a substantial impact on the microstructural and physicochemical properties of VGSs.
Collapse
Affiliation(s)
- Sixing Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hexiang Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hao Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Kefan Ouyang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Genyuan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Junbai Zhong
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Xing Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
18
|
Zhang B, Bai Y, Li X, Wang Y, Dong J, Jin Z. Enhancing the anti-thixotropic properties of waxy maize starch modified by different α-amylases and its underlying molecular mechanism. Int J Biol Macromol 2024; 266:131234. [PMID: 38554902 DOI: 10.1016/j.ijbiomac.2024.131234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The large thixotropy of the starch-thickened foods is often unfavorable in many applications. This study examined the contribution of the proportion of amylopectin chain length to time-dependence of starch gels. The α-amylase (AM) from Bacillus stearothermophilus and maltogenic α-amylase (MA) from Bacillus subtilis were used to trim amylopectin in different reaction patterns. HPLC, HPAEC and IBC data suggested AM attacked B-chains (DP 12-36), causing an increment in number of the chains with DP 6-12, whereas MA primarily trimmed the short B-chains (DP 12-18) and partial A-chains (DP 9-12) to generate short chains with DP 6-9. Interestingly, the recovery of AM-gels was faster than MA-gels at the same degree of hydrolysis when subjected to shear according to the linear correlation analysis. When releasing the same mass of sugar, shortening of the long internal chains played an important role in reducing time dependence of starch gel rather than the external side chains. Possible models were proposed to illustrate the differences in the mechanism of rapid-recovery caused by different side-chain distributions. The outcome provided a new perspective to regulate the thixotropy behavior of starch through enzyme strategies in the granular state.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanli Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingjing Dong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
19
|
Zhang K, Nakamura S, Ohtsubo KI, Mitsui T. Morphological, Molecular Structural and Physicochemical Characterization of Starch Granules Formed in Endosperm of Rice with Ectopic Overexpression of α-Amylase. J Appl Glycosci (1999) 2024; 71:23-32. [PMID: 38799415 PMCID: PMC11116087 DOI: 10.5458/jag.jag.jag-2023_0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/23/2023] [Indexed: 05/29/2024] Open
Abstract
The objective of this study was to characterize the endosperm starch in rice that ectopically overexpressed the α-amylase. Transgenic rice plants, transformed with cauliflower mosaic virus 35S promoter driven AmyI-1 (35S::AmyI-1) and AmyII-4 (35S::AmyII-4), and 10 kDa prolamin promoter driven AmyI-1 (P10::AmyI-1), were cultivated under standard conditions (23 °C, 12 h in the dark/ 26 °C, 12 h in the light), and brown grains were subsequently harvested. Each grain displayed characteristic chalkiness, while electron microanalyzer (EPMA)-SEM images disclosed numerous small pits on the surface of the starch granules, attributable to α-amylase activity. Fluorescence labeling and capillary electrophoresis analysis of starch chain length distribution revealed no significant alterations in the starches of 35S::AmyI-1 and 35S::AmyII-4 transgenic rice compared to the wild-type. Conversely, the extremely short α-glucan chains (DP 2-8) exhibited a dramatic increase in the P10::AmyI-1 starch. Rapid visco-analyzer analysis also identified variations in the chain length distribution of P10::AmyI-1 starch, manifesting as changes in viscosity. Moreover, 1H-NMR analysis uncovered dynamic modifications in the molecular structure of starch in rice grain transformed with P10::AmyI-1, which was found to possess unprecedented structural characteristics.
Collapse
Affiliation(s)
- Kuo Zhang
- Graduate School of Science and Technology, Niigata University
| | - Sumiko Nakamura
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences
| | - Ken-ichi Ohtsubo
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences
| | - Toshiaki Mitsui
- Graduate School of Science and Technology, Niigata University
| |
Collapse
|
20
|
Kaur J, Manchanda P, Kaur H, Kumar P, Kalia A, Sharma SP, Taggar MS. In-Silico Identification, Characterization and Expression Analysis of Genes Involved in Resistant Starch Biosynthesis in Potato (Solanum tuberosum L.) Varieties. Mol Biotechnol 2024:10.1007/s12033-024-01121-w. [PMID: 38509332 DOI: 10.1007/s12033-024-01121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
Potato (Solanum tuberosum L.), an important horticultural crop is a member of the family Solanaceae and is mainly grown for consumption at global level. Starch, the principal component of tubers, is one of the significant elements for food and non-food-based applications. The genes associated with biosynthesis of starch have been investigated extensively over the last few decades. However, a complete regulation pathway of constituent of amylose and amylopectin are still not deeply explored. The current in-silico study of genes related to amylose and amylopectin synthesis and their genomic organization in potato is still lacking. In the current study, the nucleotide and amino acid arrangement in genome and twenty-two genes linked to starch biosynthesis pathway in potato were analysed. The genomic structure analysis was also performed to find out the structural pattern and phylogenetic relationship of genes. The genome mining and structure analysis identified ten specific motifs and phylogenetic analysis of starch biosynthesis genes divided them into three different clades on the basis of their functioning and phylogeny. Quantitative real-time PCR (qRT-PCR) of amylose biosynthesis pathway genes in three contrast genotypes revealed the down-gene expression that leads to identify potential cultivar for functional genomic approaches. These potential lines may help to achieve higher content of resistant starch.
Collapse
Affiliation(s)
- Jaspreet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Pooja Manchanda
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Harleen Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Pankaj Kumar
- Department of Microbiology, Adesh Medical College & Hospital, Mohri, Kurukshetra, Haryana, 136135, India
| | - Anu Kalia
- Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Sat Pal Sharma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Monica Sachdeva Taggar
- Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
21
|
Kumar P, Madhawan A, Sharma A, Sharma V, Das D, Parveen A, Fandade V, Sharma D, Roy J. A sucrose non-fermenting-1-related protein kinase 1 gene from wheat, TaSnRK1α regulates starch biosynthesis by modulating AGPase activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108407. [PMID: 38340690 DOI: 10.1016/j.plaphy.2024.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Major portion of wheat grain consist of carbohydrate, mainly starch. The proportion of amylose and amylopectin in starch greatly influence the end product quality. Advancement in understanding starch biosynthesis pathway and modulating key genes has enabled the genetic modification of crops resulting in enhanced starch quality. However, the regulation of starch biosynthesis genes still remains unexplored. So, to expand the limited knowledge, here, we characterized a Ser/Thr kinase, SnRK1α in wheat and determined its role in regulating starch biosynthesis. SnRK1 is an evolutionary conserved protein kinase and share homology to yeast SNF1. Yeast complementation assay suggests TaSnRK1α restores growth defect and promotes glycogen accumulation. Domain analysis and complementation assay with truncated domain proteins suggest the importance of ATP-binding and UBA domain in TaSnRK1α activity. Sub-cellular localization identified nuclear and cytoplasmic localization of TaSnRK1α in tobacco leaves. Further, heterologous over-expression (O/E) of TaSnRK1α in Arabidopsis not only led to increase in starch content but also enlarges the starch granules. TaSnRK1α was found to restore starch accumulation in Arabidopsis kin10. Remarkably, TaSnRK1α O/E increases the AGPase activity suggesting the direct regulation of rate limiting enzyme AGPase involved in starch biosynthesis. Furthermore, in vitro and in vivo interaction assay reveal that TaSnRK1α interacts with AGPase large sub-unit. Overall, our findings indicate that TaSnRK1α plays a role in starch biosynthesis by regulating AGPase activity.
Collapse
Affiliation(s)
- Prashant Kumar
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon 8 Expressway, Faridabad, Haryana, 121001, India.
| | - Akansha Madhawan
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon 8 Expressway, Faridabad, Haryana, 121001, India.
| | - Akshya Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India.
| | - Vinita Sharma
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| | - Deepak Das
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon 8 Expressway, Faridabad, Haryana, 121001, India.
| | - Afsana Parveen
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| | - Vikas Fandade
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon 8 Expressway, Faridabad, Haryana, 121001, India.
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India.
| | - Joy Roy
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| |
Collapse
|
22
|
Li G, Chen J, Zhu F. Comparative study of rheological properties and Pickering emulsion stabilizing capacity of nonenyl succinic anhydride and octenyl succinic anhydride modified amaranth starches. Int J Biol Macromol 2023; 253:126606. [PMID: 37652318 DOI: 10.1016/j.ijbiomac.2023.126606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Functional properties and ability to stabilize Pickering emulsions of amaranth starch with the novel nonenyl succinic anhydride (NSA) modification and the widely used octenyl succinic anhydride (OSA) modification were compared. The NSA modification was more effective in altering the rheological properties of amaranth starches. NSA-modified amaranth starch showed significantly higher peak viscosity (7.13 Pa·s at DS of 0.02209) than the OSA-modified amaranth starch (6.10 Pa·s at DS of 0.03042). The gelatinization temperature, gelatinization enthalpy, and relative crystallinity of amaranth starch were more affected by the OSA than the NSA. The Pickering emulsions stabilized with NSA-modified starches had higher stability than those with the OSA-modified starches as characterized by particle size distribution, morphological, and rheological approaches. A lower degree of substitution by NSA than by OSA is needed to achieve a similar emulsification capacity. Thus, the NSA modification could be an efficient alternative to OSA modification in tailoring physicochemical and rheological functions, as well as stabilizing Pickering emulsions.
Collapse
Affiliation(s)
- Guantian Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiating Chen
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
23
|
Compart J, Apriyanto A, Fettke J. Glucan, water dikinase (GWD) penetrates the starch granule surface and introduces C6 phosphate in the vicinity of branching points. Carbohydr Polym 2023; 321:121321. [PMID: 37739543 DOI: 10.1016/j.carbpol.2023.121321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/24/2023]
Abstract
Starch phosphorylation mediated by α-glucan, water dikinase is an integral part of starch metabolism. So far however, it is not fully understood. For getting deeper insights, several in vitro assays and intensive mass spectrometry analyses were performed. Such analyses allowed us to determine the phosphorylation position within the amylopectin in detail. Thus, unique features of the starch structure and GWD action were correlated. Therefore, recombinant potato GWD (Solanum tuberosum L.; StGWD) was used for detailed analyses of the phosphorylation pattern of various starches. Additionally, oil palm (Elaeis guineensis Jacq.; EgGWD) GWD was cloned and characterized, representing the first characterization of GWD of a monocot species. The distribution patterns of single phosphorylated glucan chains catalyzed by both GWDs were compared. The phosphorylation distribution patterns of both GWDs varied for different starches. It was proven that GWD phosphorylates different positions within the amylopectin of native starch granules. GWD enters the starch granule surface and phosphorylates the glucosyl units in the proximity of branching points to convert the highly ordered glucan chains into a less ordered state and to render them accessible for the downstream acting hydrolases. This enables deciphering the GWD actions and the related structural properties of starch granules.
Collapse
Affiliation(s)
- Julia Compart
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Golm, Potsdam, Germany.
| | - Ardha Apriyanto
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Golm, Potsdam, Germany.
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Golm, Potsdam, Germany.
| |
Collapse
|
24
|
Launay H, Avilan L, Gérard C, Parsiegla G, Receveur-Brechot V, Gontero B, Carriere F. Location of the photosynthetic carbon metabolism in microcompartments and separated phases in microalgal cells. FEBS Lett 2023; 597:2853-2878. [PMID: 37827572 DOI: 10.1002/1873-3468.14754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Carbon acquisition, assimilation and storage in eukaryotic microalgae and cyanobacteria occur in multiple compartments that have been characterised by the location of the enzymes involved in these functions. These compartments can be delimited by bilayer membranes, such as the chloroplast, the lumen, the peroxisome, the mitochondria or monolayer membranes, such as lipid droplets or plastoglobules. They can also originate from liquid-liquid phase separation such as the pyrenoid. Multiple exchanges exist between the intracellular microcompartments, and these are reviewed for the CO2 concentration mechanism, the Calvin-Benson-Bassham cycle, the lipid metabolism and the cellular energetic balance. Progress in microscopy and spectroscopic methods opens new perspectives to characterise the molecular consequences of the location of the proteins involved, including intrinsically disordered proteins.
Collapse
Affiliation(s)
- Hélène Launay
- Aix Marseille Univ, CNRS, BIP, UMR7281, Marseille, France
| | - Luisana Avilan
- Aix Marseille Univ, CNRS, BIP, UMR7281, Marseille, France
| | - Cassy Gérard
- Aix Marseille Univ, CNRS, BIP, UMR7281, Marseille, France
| | | | | | | | | |
Collapse
|
25
|
Boehlein SK, Pfister B, Hennen-Bierwagen TA, Liu C, Ritter M, Hannah LC, Zeeman SC, Resende MFR, Myers AM. Soluble and insoluble α-glucan synthesis in yeast by enzyme suites derived exclusively from maize endosperm. PLANT PHYSIOLOGY 2023; 193:1456-1478. [PMID: 37339339 PMCID: PMC10517254 DOI: 10.1093/plphys/kiad358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023]
Abstract
Molecular mechanisms that distinguish the synthesis of semi-crystalline α-glucan polymers found in plant starch granules from the synthesis of water-soluble polymers by nonplant species are not well understood. To address this, starch biosynthetic enzymes from maize (Zea mays L.) endosperm were isolated in a reconstituted environment using yeast (Saccharomyces cerevisiae) as a test bed. Ninety strains were constructed containing unique combinations of 11 synthetic transcription units specifying maize starch synthase (SS), starch phosphorylase (PHO), starch branching enzyme (SBE), or isoamylase-type starch debranching enzyme (ISA). Soluble and insoluble branched α-glucans accumulated in varying proportions depending on the enzyme suite, with ISA function stimulating distribution into the insoluble form. Among the SS isoforms, SSIIa, SSIII, and SSIV individually supported the accumulation of glucan polymer. Neither SSI nor SSV alone produced polymers; however, synergistic effects demonstrated that both isoforms can stimulate α-glucan accumulation. PHO did not support α-glucan production by itself, but it had either positive or negative effects on polymer content depending on which SS or a combination thereof was present. The complete suite of maize enzymes generated insoluble particles resembling native starch granules in size, shape, and crystallinity. Ultrastructural analysis revealed a hierarchical assembly starting with subparticles of approximately 50 nm diameter that coalesce into discrete structures of approximately 200 nm diameter. These are assembled into semi-crystalline α-glucan superstructures up to 4 μm in length filling most of the yeast cytosol. ISA was not essential for the formation of such particles, but their abundance was increased dramatically by ISA presence.
Collapse
Affiliation(s)
- Susan K Boehlein
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32601, USA
| | - Barbara Pfister
- Institute of Molecular Plant Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Tracie A Hennen-Bierwagen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Chun Liu
- Institute of Molecular Plant Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Maximilian Ritter
- Institute for Building Materials, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich 8093, Switzerland
| | - L Curtis Hannah
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32601, USA
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Marcio F R Resende
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32601, USA
| | - Alan M Myers
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
26
|
Jayarathna S, Jin Y, Dotsenko G, Fei M, Andersson M, Andersson AAM, Sun C, Andersson R. High fructan barley lines produced by selective breeding may alter β-glucan and amylopectin molecular structure. Carbohydr Polym 2023; 316:121030. [PMID: 37321727 DOI: 10.1016/j.carbpol.2023.121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023]
Abstract
Six cross-bred barley lines developed by a breeding strategy with the target to enhance the fructan synthesis activity and reduce the fructan hydrolysis activity were analyzed together with their parental lines, and a reference line (Gustav) to determine whether the breeding strategy also affected the content and molecular structure of amylopectin and β-glucan. The highest fructan and β-glucan content achieved in the novel barley lines was 8.6 % and 12 %, respectively (12.3-fold and 3.2-fold higher than in Gustav). The lines with low fructan synthesis activity had higher starch content, smaller building blocks in amylopectin, and smaller structural units of β-glucans than the lines with high-fructan synthesis activity. Correlation analysis confirmed that low starch content was associated with high amylose, fructan, and β-glucan content, and larger building blocks in amylopectin.
Collapse
Affiliation(s)
- Shishanthi Jayarathna
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Yunkai Jin
- Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-750 07 Uppsala, Sweden.
| | - Gleb Dotsenko
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Mingliang Fei
- Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-750 07 Uppsala, Sweden; Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden.
| | - Annica A M Andersson
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Chuanxin Sun
- Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-750 07 Uppsala, Sweden.
| | - Roger Andersson
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
27
|
Shoaib N, Mughal N, Liu L, Raza A, Shen L, Yu G. Site-Directed Mutations at Phosphorylation Sites in Zea mays PHO1 Reveal Modulation of Enzymatic Activity by Phosphorylation at S566 in the L80 Region. PLANTS (BASEL, SWITZERLAND) 2023; 12:3205. [PMID: 37765369 PMCID: PMC10536461 DOI: 10.3390/plants12183205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Starch phosphorylase (PHO) is a pivotal enzyme within the GT35-glycogen-phosphorylase (GT; glycosyltransferases) superfamily. Despite the ongoing debate surrounding the precise role of PHO1, evidence points to its substantial influence on starch biosynthesis, supported by its gene expression profile and subcellular localization. Key to PHO1 function is the enzymatic regulation via phosphorylation; a myriad of such modification sites has been unveiled in model crops. However, the functional implications of these sites remain to be elucidated. In this study, we utilized site-directed mutagenesis on the phosphorylation sites of Zea mays PHO1, replacing serine residues with alanine, glutamic acid, and aspartic acid, to discern the effects of phosphorylation. Our findings indicate that phosphorylation exerts no impact on the stability or localization of PHO1. Nonetheless, our enzymatic assays unveiled a crucial role for phosphorylation at the S566 residue within the L80 region of the PHO1 structure, suggesting a potential modulation or enhancement of PHO1 activity. These data advance our understanding of starch biosynthesis regulation and present potential targets for crop yield optimization.
Collapse
Affiliation(s)
- Noman Shoaib
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Nishbah Mughal
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Lun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ali Raza
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Leiyang Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Guowu Yu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
28
|
Li C, Wu A, Gilbert RG. Critical examination of the characterization techniques, and the evidence, for the existence of extra-long amylopectin chains. Compr Rev Food Sci Food Saf 2023; 22:4053-4073. [PMID: 37458307 DOI: 10.1111/1541-4337.13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 09/13/2023]
Abstract
It has been suggested that amylopectin can contain small but significant amounts of extra-long chains (ELCs), which could affect functional properties, and also would have implications for the mechanism of starch biosynthesis. However, current evidence for the existence of ELCs is ambiguous. The amylose/amylopectin separation and the characterization techniques used for the investigation of ELCs are reviewed, problems in those techniques are examined, and studies of ELCs of amylopectin are discussed. A model for the biosynthesis of amylopectin chains in terms of conventional biosynthesis enzymes, which provides an excellent fit to a large amount of experimental data, is used to provide a rigorous definition of ELCs. In addition, current investigations of ELCs, involving separation, is hindered by the lack of a method to quantitatively separate all the amylopectin from starch without any traces of residual amylose (which would have long chains). Unambiguous evidence for the existence of ELCs can be obtained using two-dimensional (2D) characterization, these dimensions being the degree of polymerization of a chain and the size of the whole molecule. Available 2D data indicate that there are no ELCs present in currently detectable quantities in native rice starches. However, concluding this more rigorously requires improvements in the resolution of current 2D methods.
Collapse
Affiliation(s)
- Changfeng Li
- Department of Food Science and Engineering, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Alex Wu
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Robert G Gilbert
- Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, China
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| |
Collapse
|
29
|
Castellanos JF, Khan A, Fettke J. Gradual Analytics of Starch-Interacting Proteins Revealed the Involvement of Starch-Phosphorylating Enzymes during Synthesis of Storage Starch in Potato ( Solanum tuberosum L.) Tubers. Molecules 2023; 28:6219. [PMID: 37687048 PMCID: PMC10489031 DOI: 10.3390/molecules28176219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The complete mechanism behind starch regulation has not been fully characterized. However, significant progress can be achieved through proteomic approaches. In this work, we aimed to characterize the starch-interacting proteins in potato (Solanum tuberosum L. cv. Desiree) tubers under variable circumstances. Starch-interacting proteins were extracted from developing tubers of wild type and transgenic lines containing antisense inhibition of glucan phosphorylases. Further, proteins were separated by SDS-PAGE and characterized through mass spectrometry. Additionally, starch-interacting proteins were analyzed in potato tubers stored at different temperatures. Most of the proteins strongly interacting with the potato starch granules corresponded to proteins involved in starch metabolism. GWD and PWD, two dikinases associated with starch degradation, were consistently found bound to the starch granules. This indicates that their activity is not only restricted to degradation but is also essential during storage starch synthesis. We confirmed the presence of protease inhibitors interacting with the potato starch surface as previously revealed by other authors. Starch interacting protein profiles of transgenic tubers appeared differently from wild type when tubers were stored under different temperatures, indicating a differential expression in response to changing environmental conditions.
Collapse
Affiliation(s)
| | | | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, 14476 Potsdam-Golm, Germany; (J.F.C.); (A.K.)
| |
Collapse
|
30
|
Sharma S, Friberg M, Vogel P, Turesson H, Olsson N, Andersson M, Hofvander P. Pho1a (plastid starch phosphorylase) is duplicated and essential for normal starch granule phenotype in tubers of Solanum tuberosum L. FRONTIERS IN PLANT SCIENCE 2023; 14:1220973. [PMID: 37636090 PMCID: PMC10450146 DOI: 10.3389/fpls.2023.1220973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
Reserve starch from seeds and tubers is a crucial plant product for human survival. Much research has been devoted to quantitative and qualitative aspects of starch synthesis and its relation to abiotic factors of importance in agriculture. Certain aspects of genetic factors and enzymes influencing carbon assimilation into starch granules remain elusive after many decades of research. Starch phosphorylase (Pho) can operate, depending on metabolic conditions, in a synthetic and degradative pathway. The plastidial form of the enzyme is one of the most highly expressed genes in potato tubers, and the encoded product is imported into starch-synthesizing amyloplasts. We identified that the genomic locus of a Pho1a-type starch phosphorylase is duplicated in potato. Our study further shows that the enzyme is of importance for a normal starch granule phenotype in tubers. Null mutants created by genome editing display rounded starch granules in an increased number that contained a reduced ratio of apparent amylose in the starch.
Collapse
Affiliation(s)
- Shrikant Sharma
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | | | | | | | | | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
31
|
Chen C, Li G, Corke H, Zhu F. Molecular structure of lotus seed amylopectins and their beta-limit dextrins. Int J Biol Macromol 2023:125105. [PMID: 37257534 DOI: 10.1016/j.ijbiomac.2023.125105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/30/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Investigation on amylopectin molecular structure is gaining importance for understanding the properties of starch. Lotus seeds are a novel starch source with high apparent amylose content. Current understanding on the molecular structure of amylopectin in lotus seed starch is scarce. This study compared the molecular structure of a range of lotus seed amylopectins with those of maize and potato amylopectins. Internal structures of these amylopectins were compared via investigating the chain length distribution of their β-limit dextrins. The average lengths and molar compositions of unit chains in lotus seed amylopectins and their β-limit dextrins fell generally between those of maize and potato. The average chain lengths of lotus seed, maize, and potato amylopectins were 19.95 (on average), 19.11, and 21.19 glucosyl units, respectively. Lotus seed amylopectins had higher weight proportion of clustered unsubstituted chains (44.94 % on average) than those of potato (43.99 %) and maize amylopectins (42.95 %). Results of correlation analysis indicated that apparent amylose content of LS were related to structural characteristics of its amylopectin due to the presence of long external chains. The results of this study are of fundamental importance for the utilization of lotus seed starch as a novel starch source.
Collapse
Affiliation(s)
- Chuanjie Chen
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Guantian Li
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Harold Corke
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
32
|
Lu Y, Lv D, Zhou L, Yang Y, Hao W, Huang L, Fan X, Zhao D, Li Q, Zhang C, Liu Q. Combined effects of SSII-2RNAi and different Wx alleles on rice grain transparency and physicochemical properties. Carbohydr Polym 2023; 308:120651. [PMID: 36813343 DOI: 10.1016/j.carbpol.2023.120651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Near-isogenic lines Nip(Wxb/SSII-2), Nip(Wxb/ss2-2), Nip(Wxmw/SSII-2), Nip(Wxmw/ss2-2), Nip(Wxmp/SSII-2) and Nip(Wxmp/ss2-2) in the Nipponbare (Nip) background containing the SSII-2RNAi cassette combined with different Waxy (Wx) alleles were investigated in terms of rice grain transparency and quality profiles. Rice lines carrying the SSII-2RNAi cassette displayed downregulation of SSII-2, SSII-3 and Wx genes. Introduction of the SSII-2RNAi cassette decreased apparent amylose content (AAC) in all transgenic lines, but grain transparency differed between low AAC rice lines. Grains from Nip(Wxb/SSII-2) and Nip(Wxb/ss2-2) were transparent, while those of rice were increasingly translucent with decreasing moisture due to cavities within starch granules. Rice grain transparency was positively correlated with grain moisture and AAC, but negatively correlated with cavity area within starch granules. Starch fine structure analysis revealed a marked increase in short amylopectin chains with DP 6-12, but a decrease in intermediate chains with DP 13-24, resulting in decreased gelatinisation temperature. Starch crystalline structure analysis showed that the transgenic rice starches have lower crystallinity and lamellar repeat distance than controls due to differences in starch fine structure. The results highlight the molecular basis underpinning rice grain transparency, and provide strategies for improving rice grain transparency.
Collapse
Affiliation(s)
- Yan Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Dongjing Lv
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Lian Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yong Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Weizhuo Hao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Xiaolei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Dongsheng Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
33
|
Laffargue T, Moulis C, Remaud-Simeon M. Phosphorylated polysaccharides: Applications, natural abundance, and new-to-nature structures generated by chemical and enzymatic functionalization. Biotechnol Adv 2023; 65:108140. [PMID: 36958536 DOI: 10.1016/j.biotechadv.2023.108140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
Polysaccharides are foreseen as serious candidates for the future generation of polymers, as they are biosourced and biodegradable materials. Their functionalisation is an attractive way to modify their properties, thereby increasing their range of applications. Introduction of phosphate groups in polysaccharide chains for the stimulation of the immune system was first described in the nineteen seventies. Since then, the use of phosphorylated polysaccharides has been proposed in various domains, such as healthcare, water treatment, cosmetic, biomaterials, etc. These alternative usages capitalize on newly acquired physico-chemical or biological properties, leading to materials as diverse as flame-resistant agents or drug delivery systems. Phosphorylated polysaccharides are found in Nature and need to be extracted to assess their biological potential. However, they are not abundant, often present complex backbones hard to characterize, and most of them have a low phosphate content. These drawbacks have pushed forward the development of chemical phosphorylation employing a wide variety of phosphorylating agents to obtain polysaccharides with a large range of phosphate content. Chemical phosphorylation requires the use of harsh conditions and toxic, petroleum-based solvents, which hinders their exploitation in the food and health industry. Over the last 20 years, although enzymes are regiospecific catalysts that work in aqueous and mild conditions, enzymatic phosphorylation has been little investigated. To date, only three families of enzymes have been used for the in vitro phosphorylation of polysaccharides. Considering the number of unresolved metabolic pathways leading to phosphorylated polysaccharides, the huge diversity of kinase sequences, and the recent progress in protein engineering one can envision native and engineered kinases as promising tools for polysaccharide phosphorylation.
Collapse
Affiliation(s)
- Thibaud Laffargue
- Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, CEDEX 04, F-31077 Toulouse, France
| | - Claire Moulis
- Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, CEDEX 04, F-31077 Toulouse, France
| | - Magali Remaud-Simeon
- Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, CEDEX 04, F-31077 Toulouse, France.
| |
Collapse
|
34
|
Chen K, Yin Y, Ding Y, Chao H, Li M. Characterization of Oil Body and Starch Granule Dynamics in Developing Seeds of Brassica napus. Int J Mol Sci 2023; 24:ijms24044201. [PMID: 36835614 PMCID: PMC9967339 DOI: 10.3390/ijms24044201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Brassica napus is the most important oilseed crop in the world, and the lipid was stored in the oil body (OB) in the form of triacylglycerol. At present, most of studies on the relationship between oil body morphology and seed oil content in B. napus was focused on mature seeds. In the present study, the OBs in different developing seeds of B. napus with relatively high oil content (HOC) of about 50% and low oil content (LOC) of about 39% were analyzed. It was revealed that the size of OBs was first increased and then decreased in both materials. And in late seed developmental stages, the average OB size of rapeseed with HOC was higher than that of LOC, while it was reversed in the early seed developmental stages. No significant difference was observed on starch granule (SG) size in HOC and LOC rapeseed. Further results indicated that the expression of genes that involved in malonyl-CoA metabolism, fatty acid carbon chain extension, lipid metabolism, and starch synthesis in the rapeseed with HOC was higher than that of rapeseed with LOC. These results give some new insight for understanding the dynamics of OBs and SGs in embryos of B. napus.
Collapse
Affiliation(s)
- Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Yiran Ding
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
- Correspondence:
| |
Collapse
|
35
|
Zhao S, Ren Y, Wei C. Staining Starch with Iodine Solution. Methods Mol Biol 2023; 2566:281-290. [PMID: 36152260 DOI: 10.1007/978-1-0716-2675-7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Starch is important material in plant tissues, especially for storage tissues. Starches from different plant resources or tissues vary in morphology, content, and physicochemical properties. Starch and iodine can bind specifically to present the shapes and sizes of starch granules in plant tissues. Here, we describe some methods for staining starch in leaf, pollen grain, and starchy seeds with iodine solution. In addition, the isolated starch can also be stained with iodine solution to exhibit its shape and size.
Collapse
Affiliation(s)
- Shengnan Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yinhui Ren
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
36
|
Insights into high hydrostatic pressure pre-treatment generating a more efficient catalytic mode of maltogenic α-amylase: Effect of multi-level structure on retrogradation properties of maize starch. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
37
|
Processing of semolina, a wonder resource for resistant starch production: In vitro digestibility and biochemical evaluation. Int J Biol Macromol 2022; 222:1918-1924. [DOI: 10.1016/j.ijbiomac.2022.09.281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
38
|
Chavez-Esquivel G, Cervantes-Cuevas H, Vera-Ramírez MA. Effect of dual modification with citric acid combined with ultrasonication on hydrolysis kinetics, morphology and structure of corn starch dispersions. Int J Biol Macromol 2022; 222:1688-1699. [PMID: 36179871 DOI: 10.1016/j.ijbiomac.2022.09.218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/30/2022] [Accepted: 09/24/2022] [Indexed: 11/25/2022]
Abstract
Corn starch dispersions (CSD) were hydrolyzed with citric acid and compared with CSD co-treated with citric acid combined with ultrasonication for 1 to 18 days, which are designated as single modification (CSD-SM) and dual modification (CSD-DM), respectively. The logistic functions monitor the dynamics of the hydrolysis advance (%) of the CSD-SM and CSD-DM as a function of time, where the zones most vulnerable to the single-treatment and/or co-treatment of the corn starch granules (CSG) are the amorphous or disordered regions. The characterization results of CSD-DM suggest that the structural changes caused by dual modification affected the morphology, sequence, and microstructure of the CSG. The heterogeneous changes caused by the dual modification changed the configuration of the CSG, generating a kind of destemming of the amorphous lamellae (depolymerization), an increase in the percentage of relative crystallinity of the CSD-DM and an active rearrangement of the intralamellar chains that promoted the relative amount of double helix for 18 days of double modification. The synergistic effect of the dual modification for CSD by the sequential combination of a chemical treatment followed by a physical one improved the hydrolyzed advance by 12 %, the relative crystallinity by 10 %, and the promotion of double helices by 25 % during 18 days of co-treatment.
Collapse
Affiliation(s)
- G Chavez-Esquivel
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Colonia Reynosa Tamaulipas, Azcapotzalco, Ciudad de México, 02200, Mexico.
| | - H Cervantes-Cuevas
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Colonia Reynosa Tamaulipas, Azcapotzalco, Ciudad de México, 02200, Mexico
| | - M A Vera-Ramírez
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Colonia Leyes de Reforma 1ra Sección, Iztapalapa, Ciudad de México 09340, Mexico
| |
Collapse
|
39
|
Honda C, Kaneko A, Katsuta R, Tokuoka M. Adjacent double branches exist in the branching structure of starch. Carbohydr Res 2022; 519:108628. [DOI: 10.1016/j.carres.2022.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
|
40
|
Cluster Size of Amylopectin and Nanosized Amylopectin Fragments Characterized by Pyrene Excimer Formation. Polymers (Basel) 2022; 14:polym14163418. [PMID: 36015675 PMCID: PMC9412863 DOI: 10.3390/polym14163418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 01/26/2023] Open
Abstract
Amylopectin from waxy corn and the three nanosized amylopectin fragments (NAFs)—NAF(56), NAF(20), and NAF(8)—from waxy corn starch with a hydrodynamic diameter of 227, 56, 20, and 8 nm, respectively, were randomly labeled with 1-pyrenebutyric acid. The efficiency of these pyrene-labeled amylopectin-based polysaccharides (Py-AbPS) for pyrene excimer formation (PEF) upon diffusive encounter between an excited and a ground-state pyrene increased with increasing concentration of unlabeled NAF(56) in Py-AbPS dispersions in DMSO. Fluorescence decay analysis of the Py-AbPS dispersions in DMSO prepared with increasing [NAF(56)] yielded the maximum number (Nblobexp) of anhydroglucose units (AGUs) separating two pyrene-labeled AGUs while still allowing PEF. Comparison of Nblobexp with Nblobtheo, obtained by conducting molecular mechanics optimizations on helical oligosaccharide constructs with HyperChem, led to a relationship between the interhelical distance (dh-h) in a cluster of oligosaccharide helices, [NAF(56)], and the number of helices in a cluster. It was found that the AbPSs were composed of building blocks made of 3.5 (±0.9) helices that self-assembled into increasingly larger clusters with increasing [NAF(56)]. The ability of PEF-based experiments to yield the cluster size of AbPSs provides a new experimental means to probe the interior of AbPSs at the molecular level.
Collapse
|
41
|
Song J, Mavraganis I, Shen W, Yang H, Cram D, Xiang D, Patterson N, Zou J. Transcriptome dissection of candidate genes associated with lentil seed quality traits. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:815-826. [PMID: 35395134 DOI: 10.1111/plb.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Lentils provide a rich plant-based protein source and staple food in many parts of the world. Despite numerous nutritional benefits, lentil seeds also possess undesirable elements, such as anti-nutritional factors. Understanding the genetic networks of seed metabolism is of great importance for improving the seed nutritional profile. We applied RNA sequencing analysis to survey the transcriptome of developing lentil seeds and compared this with that of the pod shells and leaves. In total, we identified 2622 genes differentially expressed among the tissues examined. Genes preferentially expressed in seeds were enriched in the Gene Ontology (GO) terms associated with development, nitrogen and carbon (N/C) metabolism and lipid synthesis. We further categorized seed preferentially expressed genes based on their involvement in storage protein production, starch accumulation, lipid and suberin metabolism, phytate, saponin and phenylpropanoid biosynthesis. The availability of transcript profile datasets on lentil seed metabolism and a roadmap of candidate genes presented here will be of great value for breeding strategies towards further improvement of lentil seed quality traits.
Collapse
Affiliation(s)
- J Song
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - I Mavraganis
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - W Shen
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - H Yang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - D Cram
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - D Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - N Patterson
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - J Zou
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
42
|
Wu W, Qu J, Blennow A, Herburger K, Hebelstrup KH, Guo K, Xue J, Xu R, Zhu C, Zhong Y, Guo D. The effects of drought treatments on biosynthesis and structure of maize starches with different amylose content. Carbohydr Polym 2022; 297:120045. [DOI: 10.1016/j.carbpol.2022.120045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
|
43
|
Zhong Y, Qu JZ, Liu X, Ding L, Liu Y, Bertoft E, Petersen BL, Hamaker BR, Hebelstrup KH, Blennow A. Different genetic strategies to generate high amylose starch mutants by engineering the starch biosynthetic pathways. Carbohydr Polym 2022; 287:119327. [DOI: 10.1016/j.carbpol.2022.119327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 01/14/2023]
|
44
|
Sergeeva EM, Larichev KT, Salina EA, Kochetov AV. Starch metabolism in potato <i>Solanum tuberosum</i> L. Vavilovskii Zhurnal Genet Selektsii 2022; 26:250-263. [PMID: 35774362 PMCID: PMC9168746 DOI: 10.18699/vjgb-22-32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
Starch is a major storage carbohydrate in plants. It is an important source of calories in the human and animal diet. Also, it is widely used in various industries. Native starch consists of water-insoluble semicrystalline granules formed by natural glucose polymers amylose and amylopectin. The physicochemical properties of starch are determined by the amylose:amylopectin ratio in the granule and degrees of their polymerization and phosphorylation. Potato Solanum tuberosum L. is one of the main starch-producing crops. Growing industrial needs necessitate the breeding of plant varieties with increased starch content and specified starch properties. This task demands detailed information on starch metabolism in the producing plant. It is a complex process, requiring the orchestrated work of many enzymes, transporter and targeting proteins, transcription factors, and other regulators. Two types of starch are recognized with regard to their biological functions. Transitory starch is synthesized in chloroplasts of photosynthetic organs and degraded in the absence of light, providing carbohydrates for cell needs. Storage starch is synthesized and stored in amyloplasts of storage organs: grains and tubers. The main enzymatic reactions of starch biosynthesis and degradation, as well as carbohydrate transport and metabolism, are well known in the case of transitory starch of the model plant Arabidopsis thaliana. Less is known about features of starch metabolism in storage organs, in particular, potato tubers. Several issues remain obscure: the roles of enzyme isoforms and different regulatory factors in tissues at various plant developmental stages and under different environmental conditions; alternative enzymatic processes; targeting and transport proteins. In this review, the key enzymatic reactions of plant carbohydrate metabolism, transitory and storage starch biosynthesis,
and starch degradation are discussed, and features specific for potato are outlined. Attention is also paid to the
known regulatory factors affecting starch metabolism
Collapse
Affiliation(s)
- E. M. Sergeeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - K. T. Larichev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - E. A. Salina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - A. V. Kochetov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
45
|
Muntaha SN, Li X, Compart J, Apriyanto A, Fettke J. Carbon pathways during transitory starch degradation in Arabidopsis differentially affect the starch granule number and morphology in the dpe2/phs1 mutant background. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 180:35-41. [PMID: 35378390 DOI: 10.1016/j.plaphy.2022.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
The Arabidopsis knockout mutant lacking both the cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) had a dwarf-growth phenotype, a reduced and uneven distribution of starch within the plant rosettes, and a lower starch granule number per chloroplast under standard growth conditions. In contrast, a triple mutant impaired in starch degradation by its additional lack of the glucan, water dikinase (GWD) showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to the wild type. We concluded that ongoing starch degradation is mainly responsible for the observed phenotype of dpe2/phs1. Next, we generated two further triple mutants lacking either the phosphoglucan, water dikinase (PWD), or the disproportionating enzyme 1 (DPE1) in the background of the double mutant. Analysis of the starch metabolism revealed that even minor ongoing starch degradation observed in dpe2/phs1/pwd maintained the double mutant phenotype. In contrast, an additional blockage in the glucose pathway of starch breakdown, as in dpe2/phs1/dpe1, resulted in a nearly starch-free phenotype and massive chloroplast degradation. The characterized mutants were discussed in the context of starch granule formation.
Collapse
Affiliation(s)
- Sidratul Nur Muntaha
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Xiaoping Li
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Julia Compart
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Ardha Apriyanto
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany.
| |
Collapse
|
46
|
Falua KJ, Pokharel A, Babaei-Ghazvini A, Ai Y, Acharya B. Valorization of Starch to Biobased Materials: A Review. Polymers (Basel) 2022; 14:polym14112215. [PMID: 35683888 PMCID: PMC9183024 DOI: 10.3390/polym14112215] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
Many concerns are being expressed about the biodegradability, biocompatibility, and long-term viability of polymer-based substances. This prompted the quest for an alternative source of material that could be utilized for various purposes. Starch is widely used as a thickener, emulsifier, and binder in many food and non-food sectors, but research focuses on increasing its application beyond these areas. Due to its biodegradability, low cost, renewability, and abundance, starch is considered a "green path" raw material for generating porous substances such as aerogels, biofoams, and bioplastics, which have sparked an academic interest. Existing research has focused on strategies for developing biomaterials from organic polymers (e.g., cellulose), but there has been little research on its polysaccharide counterpart (starch). This review paper highlighted the structure of starch, the context of amylose and amylopectin, and the extraction and modification of starch with their processes and limitations. Moreover, this paper describes nanofillers, intelligent pH-sensitive films, biofoams, aerogels of various types, bioplastics, and their precursors, including drying and manufacturing. The perspectives reveal the great potential of starch-based biomaterials in food, pharmaceuticals, biomedicine, and non-food applications.
Collapse
Affiliation(s)
- Kehinde James Falua
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Department of Agricultural & Biosystems Engineering, University of Ilorin, Ilorin PMB 1515, Nigeria
| | - Anamol Pokharel
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Correspondence:
| |
Collapse
|
47
|
Nakamura Y, Kainuma K. On the cluster structure of amylopectin. PLANT MOLECULAR BIOLOGY 2022; 108:291-306. [PMID: 34599732 DOI: 10.1007/s11103-021-01183-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/15/2021] [Indexed: 05/21/2023]
Abstract
Two opposing models for the amylopectin structure are historically and comprehensively reviewed, which leads us to a better understanding of the specific fine structure of amylopectin. Amylopectin is a highly branched glucan which accounts for approximately 65-85 of starch in most plant tissues. However, its fine structure is still not fully understood due to the limitations of current methodologies. Since the 1940 s, many scientists have attempted to elucidate the distinct structure of amylopectin. One of the most accepted concepts is that amylopectin has a structural element known as "cluster", in which neighboring side chains with a degree of polymerization of ≥ 10 in the region of their non-branched segments form double helices. The double helical structures are arranged in inter- and intra-clusters and are the origin of the distinct physicochemical and crystalline properties of starch granules. Several models of the cluster structure have been proposed by starch scientists worldwide during the progress of analytical methods, whereas no direct evidence so far has been provided. Recently, Bertoft and colleagues proposed a new model designated as "the building block and backbone (BB) model". The BB model sharply contrasts with the cluster model in that the structural element for the BB model is the building block, and that long chains are separately synthesized and positioned from short chains constituting the building block. In the present paper, we conduct the historical review of the cluster concept detailing how and when the concept was established based on experimental results by many scientists. Then, differences between the two opposing concepts are explained and both models are critically discussed, particularly from the point of view of the biochemical regulation of amylopectin biosynthesis.
Collapse
Affiliation(s)
- Yasunori Nakamura
- Starch Technologies, Co., Ltd, Akita Prefectural University, Shimoshinjo-Nakano, Akita-city, Akita, 010-0195, Japan.
- Akita Natural Science Laboratory, 25-44 Oiwake-Nishi, Tennoh, Katagami, Akita, 010-0101, Japan.
| | - Keiji Kainuma
- Science Academy of Tsukuba, 2-20-3 Takezono, Tsukuba, Ibaraki, 305-0032, Japan
| |
Collapse
|
48
|
Plant Cell and Organism Development 2.0. Int J Mol Sci 2022; 23:ijms23031885. [PMID: 35163807 PMCID: PMC8836925 DOI: 10.3390/ijms23031885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022] Open
|
49
|
Fu Y, Jiang E, Yao Y. New Techniques in Structural Tailoring of Starch Functionality. Annu Rev Food Sci Technol 2022; 13:117-143. [PMID: 35080964 DOI: 10.1146/annurev-food-102821-035457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inherent characteristics of native starches such as water insolubility, retrogradation and syneresis, and instability in harsh processing conditions (e.g., high temperature and shearing, low pH) limit their industrial applications. As starch properties mainly depend on starch composition and structure, structural tailoring of starch has been important for overcoming functional limitations and expanding starch applications in different fields. In this review, we first introduce the basics of starch structure, properties, and functionalities and then describe the interactions of starch with lipids, polysaccharides, and phenolics. After reviewing genetic, chemical, and enzymatic modifications of starch, we describe current progress in the areas of porous starch and starch-based nanoparticles. New techniques, such as using the CRISPR-Cas9 technique to tailor starch structures and using an emulsion-assisted approach in forming functional starch nanoparticles, are only feasible when they are established based on fundamental knowledge of starch. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yezhi Fu
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania
| | - Evelyn Jiang
- Department of Food Science, Purdue University, West Lafayette, Indiana; .,Lincolnshire, Illinois
| | - Yuan Yao
- Department of Food Science, Purdue University, West Lafayette, Indiana;
| |
Collapse
|
50
|
The Physicochemical Properties of Starch Are Affected by Wxlv in Indica Rice. Foods 2021; 10:foods10123089. [PMID: 34945643 PMCID: PMC8701004 DOI: 10.3390/foods10123089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Amylose largely determines rice grain quality profiles. The process of rice amylose biosynthesis is mainly driven by the waxy (Wx) gene, which also affects the diversity of amylose content. The present study assessed the grain quality profiles, starch fine structure, and crystallinity characteristics of the near-isogenic lines Q11(Wxlv), NIL(Wxa), and NIL(Wxb) in the indica rice Q11 background containing different Wx alleles. Q11(Wxlv) rice contained a relatively higher amylose level but very soft gel consistency and low starch viscosity, compared with rice lines carrying Wxa and Wxb. In addition, starch fine structure analysis revealed a remarkable decrease in the relative area ratio of the short amylopectin fraction but an increased amylose fraction in Q11(Wxlv) rice. Chain length distribution analysis showed that Q11(Wxlv) rice contained less amylopectin short chains but more intermediate chains, which decreased the crystallinity and lamellar peak intensity, compared with those of NIL(Wxa) and NIL(Wxb) rice. Additionally, the starches in developing grains showed different accumulation profiles among the three rice lines. Moreover, significant differences in starch gelatinization and retrogradation characteristics were observed between near-isogenic lines, which were caused by variation in starch fine structure. These findings revealed the effects of Wxlv on rice grain quality and the fine structure of starch in indica rice.
Collapse
|