1
|
Li Q, Ye J, Li Z, Xiao Q, Tan S, Hu B, Jin H. The role of neutrophils in tPA thrombolysis after stroke: a malicious troublemaker. Front Immunol 2024; 15:1477669. [PMID: 39606238 PMCID: PMC11598929 DOI: 10.3389/fimmu.2024.1477669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Acute ischemic stroke represents a critical, life-threatening condition affecting the central nervous system. Intravenous thrombolysis with tissue plasminogen activator (tPA) remains a cornerstone for achieving vascular recanalization in such patients; however, its therapeutic utility is limited, with only approximately 10% of patients benefiting due to the narrow therapeutic window and significant risk of hemorrhagic transformation. Enhancing the efficacy of tPA thrombolysis is therefore imperative. Neutrophils have been identified as key modulators of thrombolytic outcomes, interacting with tPA post-stroke to influence treatment effectiveness. The binding of tPA to low-density lipoprotein receptor-related protein 1 (LRP-1) on neutrophil surfaces induces degranulation and formation of neutrophil extracellular traps (NETs). Conversely, neutrophils impede the thrombolytic action of tPA by obstructing its interaction with fibrin and activating platelets. These findings suggest that targeting neutrophils may hold promise for improving thrombolysis outcomes. This review explores the role of neutrophils in tPA-mediated thrombolysis following acute ischemic stroke, examines neutrophil-associated biomarkers, and outlines potential strategies for enhancing tPA efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Ferreira C, Vieira P, Sá H, Malva J, Castelo-Branco M, Reis F, Viana S. Polyphenols: immunonutrients tipping the balance of immunometabolism in chronic diseases. Front Immunol 2024; 15:1360065. [PMID: 38558823 PMCID: PMC10978763 DOI: 10.3389/fimmu.2024.1360065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Helena Sá
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - João Malva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)/Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Viana
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| |
Collapse
|
3
|
Seillier C, Lesec L, Hélie P, Marie C, Vivien D, Docagne F, Le Mauff B, Toutirais O. Tissue-plasminogen activator effects on the phenotype of splenic myeloid cells in acute inflammation. J Inflamm (Lond) 2024; 21:4. [PMID: 38355547 PMCID: PMC10865617 DOI: 10.1186/s12950-024-00375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Tissue-plasminogen activator (tPA) is a serine protease well known for its fibrinolytic function. Recent studies indicate that tPA could also modulate inflammation via plasmin generation and/or by receptor mediated signalling in vitro. However, the contribution of tPA in inflammatory processes in vivo has not been fully addressed. Therefore, using tPA-deficient mice, we have analysed the effect of lipopolysaccharide (LPS) challenge on the phenotype of myeloid cells including neutrophils, macrophages and dendritic cells (DCs) in spleen. We found that LPS treatment upregulated the frequency of major histocompatibility class two (MHCII+) macrophages but also, paradoxically, induced a deep downregulation of MHCII molecule level on macrophages and on conventional dendritic cells 2 (cDC2). Expression level of the CD11b integrin, known as a tPA receptor, was upregulated by LPS on MHCII+ macrophages and cDC2, suggesting that tPA effects could be amplified during inflammation. In tPA-/- mice under inflammatory conditions, expression of costimulatory CD86 molecules on MHCII+ macrophages was decreased compared to WT mice, while in steady state the expression of MHCII molecules was higher on macrophages. Finally, we reported that tPA deficiency slightly modified the phenotype of DCs and T cells in acute inflammatory conditions. Overall, our findings indicate that in vivo, LPS injection had an unexpectedly bimodal effect on MHCII expression on macrophages and DCs that consequently might affect adaptive immunity. tPA could also participate in the regulation of the T cell response by modulating the levels of CD86 and MHCII molecules on macrophages.
Collapse
Affiliation(s)
- Célia Seillier
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
| | - Léonie Lesec
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
| | - Pauline Hélie
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
- Present address: Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Charlotte Marie
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
- UAR 3408-US50 / Centre Universitaire de Ressources Biologiques (CURB), GIP Cyceron, Caen, France
| | - Denis Vivien
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
- Department of Clinical Research, Caen University Hospital, CHU Caen, France
| | - Fabian Docagne
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
- Present Address: INSERM, Département de L'information Scientifique Et de La Communication (DISC), 75654, Paris Cedex 13, France
| | - Brigitte Le Mauff
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
- Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU Caen, France
| | - Olivier Toutirais
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France.
- Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU Caen, France.
| |
Collapse
|
4
|
Ramos C, Oehler R. Clearance of apoptotic cells by neutrophils in inflammation and cancer. Cell Death Discov 2024; 10:26. [PMID: 38218739 PMCID: PMC10787834 DOI: 10.1038/s41420-024-01809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024] Open
Abstract
When a cell dies of apoptosis, it is eliminated either by neighbouring cells or by attracted professional phagocytes. Although it was generally believed that neutrophils also have the ability to perform efferocytosis, their contribution to the clearance of apoptotic cells was considered less important compared with macrophages. Therefore, this ability of neutrophils remained unexplored for a long time. Over the past decade, it has been shown that during inflammation, neutrophils contribute significantly to the clearance of apoptotic neutrophils that accumulate in large numbers at the site of tissue damage. This "neutrophil cannibalism" is accompanied by inhibition of pro-inflammatory activities of these cells, such as respiratory burst and formation of neutrophil extracellular traps (NETs). Furthermore, efferocytosing neutrophils secrete anti-inflammatory mediators and mitogens including hepatocyte growth factor (HGF), fibroblast growth factor 2 (FGF2), vascular endothelial growth factors (VEGF), and transforming growth factor beta (TGFβ). Thus, efferocytosis by neutrophils is involved in resolution of inflammation. Recent research indicates that it plays also a role in cancer. Many different solid tumours contain aggregates of dead tumour cells that have undergone spontaneous apoptosis. Their extent correlates with poor clinical outcome in most cancer types. These clusters of apoptotic tumour cells are strongly infiltrated by tumour-associated neutrophils (TANs) that acquired an anti-inflammatory and pro-resolving polarization state. This review summarizes the potential consequences discussed in the current literature. Although the picture of the role of efferocytosis by neutrophils in inflammation and cancer is becoming clearer, many questions are still unexplored.
Collapse
Affiliation(s)
- Cristiano Ramos
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Rudolf Oehler
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Maïer B, Di Meglio L, Desilles JP, Solo Nomenjanahary M, Delvoye F, Kyheng M, Boursin P, Ollivier V, Dupont S, Rambaud T, Hamdani M, Labreuche J, Blanc R, Piotin M, Halimi JM, Mazighi M, Ho-Tin-Noe B. Neutrophil activation in patients treated with endovascular therapy is associated with unfavorable outcomes and mitigated by intravenous thrombolysis. J Neurointerv Surg 2024; 16:131-137. [PMID: 37068937 DOI: 10.1136/jnis-2022-020020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/25/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Accumulating evidence indicates that neutrophil activation (NA) contributes to microvascular thromboinflammation in acute ischemic stroke (AIS) due to a large vessel occlusion. Preclinical data have suggested that intravenous thrombolysis (IVT) before endovascular therapy (EVT) could dampen microvascular thromboinflammation. In this study we investigated the association between NA dynamics and stroke outcome, and the impact of IVT on NA in patients with AIS treated with EVT. METHODS A single-center prospective study was carried out, including patients treated with EVT for whom three blood samples (before, within 1 hour, 24 hours post-EVT) were drawn to measure plasma myeloperoxidase (MPO) concentration as a marker of NA. Unfavorable outcome was defined as a modified Rankin score of 3-6 at 3 months. RESULTS Between 2016 and 2020, 179 patients were included. The plasma MPO concentration peaked significantly 1 hour post-EVT (median increase 21.0 ng/mL (IQR -2.1-150)) and returned to pre-EVT baseline values 24 hours after EVT (median change from baseline -0.8 ng/mL (IQR -7.6-6.7)). This peak was strongly associated with unfavorable outcomes at 3 months (aOR 0.53 (95% CI 0.34 to 0.84), P=0.007). IVT before EVT abolished this 1 hour post-EVT MPO peak. Changes in plasma MPO concentration (baseline to 1 hour post-EVT) were associated with unfavorable outcomes only in patients not treated with IVT before EVT (aOR 0.54 (95% CI 0.33 to 0.88, P=0.013). However, we found no significant heterogeneity in the associations between changes in plasma MPO concentration and outcomes. CONCLUSIONS A peak in plasma MPO concentration occurs early after EVT and is associated with unfavorable outcomes. IVT abolished the post-EVT MPO peak and may modulate the association between NA and outcomes.
Collapse
Affiliation(s)
- Benjamin Maïer
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
- UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France, Université de Paris Cité, Inserm, Paris, France
- Neurology Department, Hôpital Saint-Joseph, Paris, France
- FHU NeuroVasc, Paris, France
| | - Lucas Di Meglio
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
- UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France, Université de Paris Cité, Inserm, Paris, France
| | - Jean-Philippe Desilles
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
- UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France, Université de Paris Cité, Inserm, Paris, France
- FHU NeuroVasc, Paris, France
| | - Mialitiana Solo Nomenjanahary
- UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France, Université de Paris Cité, Inserm, Paris, France
| | - François Delvoye
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
| | - Maeva Kyheng
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
| | - Perrine Boursin
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
| | - Véronique Ollivier
- UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France, Université de Paris Cité, Inserm, Paris, France
| | - Sébastien Dupont
- UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France, Université de Paris Cité, Inserm, Paris, France
| | - Thomas Rambaud
- UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France, Université de Paris Cité, Inserm, Paris, France
| | - Mylène Hamdani
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
| | | | - Raphaël Blanc
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
| | - Michel Piotin
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
| | - Jean-Michel Halimi
- Nephrology Department, Tours Hospital, Tours, France
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, Tours, France
| | - Mikaël Mazighi
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
- UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France, Université de Paris Cité, Inserm, Paris, France
- FHU NeuroVasc, Paris, France
- Department of Neurology, Lariboisiere Hospital, Université Paris Cité, Paris, France
| | - Benoit Ho-Tin-Noe
- UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France, Université de Paris Cité, Inserm, Paris, France
| |
Collapse
|
6
|
Xue L, Deng J, Zhu L, Shen F, Wei J, Wang L, Chen Q, Wang L. Effects of predictive nursing intervention on cognitive impairment and neurological function in ischemic stroke patients. Brain Behav 2023; 13:e2890. [PMID: 36738135 PMCID: PMC10013941 DOI: 10.1002/brb3.2890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/20/2022] [Accepted: 12/24/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Ischemic stroke is a clinical emergency caused by insufficient intracranial blood supply, which eventually leads to brain tissue necrosis and neurological impairment. Predictive nursing intervention has achieved impressive success in the nursing of multiple surgeries. However, the role of predictive nursing intervention in the care of patients with ischemic stroke remains unclear. METHODS This study was a randomized controlled trial. Based on the inclusion and exclusion criteria, 126 patients were randomly assigned into two groups, namely the control group and the predictive nursing intervention group. Both groups were treated with thrombolytic therapy with alteplase. The patients in the control group were given routine nursing intervention and the predictive nursing intervention group received additional predictive care. Neurologic functions and cognitive impairment were evaluated by National Institutes of Health Stroke Scale (NIHSS), Fugl-Meyer assessment (FMA), Montreal cognitive assessment (MoCA), and mini-mental state examination (MMSE) scales, respectively. Door-to-Needle Times, venous thromboembolism (VTE)-related parameters, and complications were recorded. RESULTS Predictive nursing intervention significantly shortened the Door-to-Needle Times and enhanced the peak/average femoral venous blood flow and femoral venous diameter. In addition, predictive nursing intervention improved the NIHSS, FMA, MMSE, and MoCA scores and remarkably reduced the recurrence of ischemic stroke, deep vein thrombosis and gingival bleeding. CONCLUSION Predictive nursing intervention is beneficial to improve the effects of thrombolytic therapy in patients with ischemic stroke, which improves the neurological, cognitive and motor functions of patients, and reduces the occurrence of complications, suggesting an important clinical application value.
Collapse
Affiliation(s)
- Lianyu Xue
- Department of Nursing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Xuhui District, Shanghai, China
| | - Jiangshan Deng
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Xuhui District, Shanghai, China
| | - Lingyan Zhu
- Department of Nursing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Xuhui District, Shanghai, China
| | - Feifei Shen
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Xuhui District, Shanghai, China
| | - Jiewei Wei
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Xuhui District, Shanghai, China
| | - Lihui Wang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Xuhui District, Shanghai, China
| | - Qinqin Chen
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Xuhui District, Shanghai, China
| | - Lan Wang
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Xuhui District, Shanghai, China
| |
Collapse
|
7
|
Sizova O, John LS, Ma Q, Molldrem JJ. Multi-faceted role of LRP1 in the immune system. Front Immunol 2023; 14:1166189. [PMID: 37020553 PMCID: PMC10069629 DOI: 10.3389/fimmu.2023.1166189] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Graft versus host disease (GVHD) represents the major complication after allogeneic hematopoietic stem cell transplantation (Allo-SCT). GVHD-prone patients rely on GVHD prophylaxis (e.g. methotrexate) and generalized anti-GVHD medical regimen (glucocorticoids). New anti-GVHD therapy strategies are being constantly explored, however there is an urgent need to improve current treatment, since GVHD-related mortality reaches 22% within 5 years in patients with chronic GVHD. This review is an attempt to describe a very well-known receptor in lipoprotein studies - the low-density lipoprotein receptor related protein 1 (LRP1) - in a new light, as a potential therapeutic target for GVHD prevention and treatment. Our preliminary studies demonstrated that LRP1 deletion in donor murine T cells results in significantly lower GVHD-related mortality in recipient mice with MHC (major histocompatibility complex) -mismatched HSCT. Given the importance of T cells in the development of GVHD, there is a significant gap in scientific literature regarding LRP1's role in T cell biology. Furthermore, there is limited research interest and publications on this classical receptor molecule in other immune cell types. Herein, we endeavor to summarize existing knowledge about LRP1's role in various immune cells to demonstrate the possibility of this receptor to serve as a novel target for anti-GVHD treatment.
Collapse
Affiliation(s)
- Olga Sizova
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisa St. John
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qing Ma
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jeffrey J. Molldrem
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- ECLIPSE, Therapeutic Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Jeffrey J. Molldrem,
| |
Collapse
|
8
|
Liu Z, Andraska E, Akinbode D, Mars W, Alvidrez RIM. LRP1 in the Vascular Wall. CURRENT PATHOBIOLOGY REPORTS 2022. [DOI: 10.1007/s40139-022-00231-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Double-Gene Copromoting Expression Analysis in tPA/GH Transgenic Goat Mammary Epithelial Cells and Thrombolytic Activity of tPA In Vitro. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6484073. [PMID: 35572725 PMCID: PMC9106445 DOI: 10.1155/2022/6484073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/13/2022] [Indexed: 11/17/2022]
Abstract
Human tissue-plasminogen activator (tPA) is a thrombolytic drug widely used in the treatment of stroke, pulmonary thrombosis, acute myocardial infarction, and other thrombotic diseases. The double genes cointegrated into the organisms and cells can produce a synergistic effect, which will improve the expression level of the target gene. However, the study of the integration of the GH and tPA genes to improve the expression level of tPA has not yet been reported. In order to elucidate this, we generated monoclonal goat mammary epithelial cell lines with tPA/GH double-gene integration and analyzed the tPA expression level in single- and double-gene integrated cells. We selected the mammary gland-specific expressing vectors BLC14/tPA and BLC14/GH with the β-lactoglobulin gene as a regulatory sequence in our previous research. The tPA and GH genes were electronically cotransfected into goat mammary epithelial cells. Resistant cell lines were screened by G418, and transgenic monoclonal cell lines were confirmed by PCR. The tPA expression was induced by prolactin and detected in the cell induction solution after 48 h by ELISA and Western blotting. We detected the tPA biological activity in vitro by fibrin agarose plate assay (FAPA). The results showed that a total of 207 resistant monoclonal cells were obtained, including 126 cell lines with tPA monogenic integration and 51 cell lines with tPA/GH double-gene integration. The rate of double-gene integration was 24.6% (51/207). A total of 48 cells expressed tPA, of which 25.3% (19/75) cells expressed single gene, and 56.9% (29/51) cells expressed double genes. The concentration of tPA in single-gene-expressing cells was 8.0-64.0 μg/mL, and the tPA level in double-gene-expressing cells was significantly higher (200-7200 μg/mL). In addition, the tPA had a relatively strong in vitro thrombolytic activity determined by FAPA. The results showed that goat mammary epithelial cell lines with tPA/GH gene integration were successfully established by electrotransfection, and the expression level of tPA in double-gene integrated cell lines was significantly increased. This study provided a new way for the preparation of a transgenic goat and other animal with high tPA expression by somatic cell nuclear transfer. The findings also laid a foundation for efficient production of pharmaceutical proteins in transgenic animal mammary gland bioreactors in the future.
Collapse
|
10
|
Wang R, Zhu Y, Liu Z, Chang L, Bai X, Kang L, Cao Y, Yang X, Yu H, Shi MJ, Hu Y, Fan W, Zhao BQ. Neutrophil extracellular traps promote tPA-induced brain hemorrhage via cGAS in mice with stroke. Blood 2021; 138:91-103. [PMID: 33881503 PMCID: PMC8288643 DOI: 10.1182/blood.2020008913] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/07/2021] [Indexed: 02/07/2023] Open
Abstract
Intracerebral hemorrhage associated with thrombolytic therapy with tissue plasminogen activator (tPA) in acute ischemic stroke continues to present a major clinical problem. Here, we report that infusion of tPA resulted in a significant increase in markers of neutrophil extracellular traps (NETs) in the ischemic cortex and plasma of mice subjected to photothrombotic middle cerebral artery occlusion. Peptidylarginine deiminase 4 (PAD4), a critical enzyme for NET formation, is also significantly upregulated in the ischemic brains of tPA-treated mice. Blood-brain barrier (BBB) disruption after ischemic challenge in an in vitro model of BBB was exacerbated after exposure to NETs. Importantly, disruption of NETs by DNase I or inhibition of NET production by PAD4 deficiency restored tPA-induced loss of BBB integrity and consequently decreased tPA-associated brain hemorrhage after ischemic stroke. Furthermore, either DNase I or PAD4 deficiency reversed tPA-mediated upregulation of the DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). Administration of cGAMP after stroke abolished DNase I-mediated downregulation of the STING pathway and type 1 interferon production and blocked the antihemorrhagic effect of DNase I in tPA-treated mice. We also show that tPA-associated brain hemorrhage after ischemic stroke was significantly reduced in cGas-/- mice. Collectively, these findings demonstrate that NETs significantly contribute to tPA-induced BBB breakdown in the ischemic brain and suggest that targeting NETs or cGAS may ameliorate thrombolytic therapy for ischemic stroke by reducing tPA-associated hemorrhage.
Collapse
Affiliation(s)
- Ranran Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuanbo Zhu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhongwang Liu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Luping Chang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaofei Bai
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lijing Kang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yongliang Cao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xing Yang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Huilin Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mei-Juan Shi
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yue Hu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wenying Fan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bing-Qiao Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Chen J, Su Y, Pi S, Hu B, Mao L. The Dual Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Atherosclerosis. Front Cardiovasc Med 2021; 8:682389. [PMID: 34124208 PMCID: PMC8192809 DOI: 10.3389/fcvm.2021.682389] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein receptor–related protein-1 (LRP1) is a large endocytic and signaling receptor belonging to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 comprises a large extracellular domain (ECD; 515 kDa, α chain) and a small intracellular domain (ICD; 85 kDa, β chain). The deletion of LRP1 leads to embryonic lethality in mice, revealing a crucial but yet undefined role in embryogenesis and development. LRP1 has been postulated to participate in numerous diverse physiological and pathological processes ranging from plasma lipoprotein homeostasis, atherosclerosis, tumor evolution, and fibrinolysis to neuronal regeneration and survival. Many studies using cultured cells and in vivo animal models have revealed the important roles of LRP1 in vascular remodeling, foam cell biology, inflammation and atherosclerosis. However, its role in atherosclerosis remains controversial. LRP1 not only participates in the removal of atherogenic lipoproteins and proatherogenic ligands in the liver but also mediates the uptake of aggregated LDL to promote the formation of macrophage- and vascular smooth muscle cell (VSMC)-derived foam cells, which causes a prothrombotic transformation of the vascular wall. The dual and opposing roles of LRP1 may also represent an interesting target for atherosclerosis therapeutics. This review highlights the influence of LRP1 during atherosclerosis development, focusing on its dual role in vascular cells and immune cells.
Collapse
Affiliation(s)
- Jiefang Chen
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Su
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shulan Pi
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Wei M, Huang Q, Liu Z, Luo Y, Xia J. Intestinal Barrier Dysfunction Participates in the Pathophysiology of Ischemic Stroke. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:401-416. [PMID: 33749565 DOI: 10.2174/1871527320666210322115808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022]
Abstract
The gastrointestinal tract is a major organ for the body to absorb nutrients, water and electrolytes. At the same time, it is a tight barrier to resist the invasion of harmful substances and maintain the homeostasis of the internal environment. Destruction of the intestinal barrier is linked to the digestive system, cardiovascular system, endocrine system and other systemic diseases. Mounting evidence suggests that ischemic stroke not only changes the intestinal microbes, but also increases the permeability of the intestinal barrier, leading to bacterial translocation, infection, and even sepsis. The intestinal barrier, as part of the gut-brain axis, has also been proven to participate in the pathophysiological process of ischemic stroke. However, little attention has been paid to it. Since ischemic stroke is a major public health issue worldwide, there is an urgent need to know more about the disease for better prevention, treatment and prognosis. Therefore, understanding the pathophysiological relationship between ischemic stroke and the intestinal barrier will help researchers further uncover the pathophysiological mechanism of ischemic stroke and provide a novel therapeutic target for the treatment of ischemic stroke. Here, we review the physiology and pathology between ischemic stroke and intestinal barrier based on related articles published in the past ten years about the relationship between ischemic stroke, stroke risk factors and intestinal flora, intestinal barrier, and discuss the following parts: the intestinal barrier; possible mechanisms of intestinal barrier destruction in ischemic stroke; intestinal barrier destruction caused by stroke-related risk factors; intestinal barrier dysfunction in ischemic stroke; targeting the intestinal barrier to improve stroke; conclusions and perspectives.
Collapse
Affiliation(s)
- Minping Wei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| | - Qin Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| | - Zeyu Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| | - Yunfang Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| |
Collapse
|