1
|
Chatterjee BK, Alam M, Chakravorty A, Lacy SM, Rech J, Brooks CL, Arvan PD, Truttmann MC. Small molecule FICD inhibitors suppress endogenous and pathologic FICD-mediated protein AMPylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603377. [PMID: 39071275 PMCID: PMC11275912 DOI: 10.1101/2024.07.13.603377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The AMP transferase, FICD, is an emerging drug target finetuning stress signaling in the endoplasmic reticulum (ER). FICD is a bi-functional enzyme, catalyzing both AMP addition (AMPylation) and removal (deAMPylation) from the ER resident chaperone BiP/GRP78. Despite increasing evidence linking excessive BiP/GRP78 AMPylation to human diseases, small molecules to inhibit pathogenic FICD variants are lacking. Using an in-vitro high-throughput screen, we identify two small-molecule FICD inhibitors, C22 and C73. Both molecules significantly inhibit FICD-mediated BiP/GRP78 AMPylation in intact cells while only weakly inhibiting BiP/GRP78 deAMPylation. C22 and C73 also efficiently inhibit pathogenic FICD variants and improve proinsulin processing in β cells. Our study identifies and validates FICD inhibitors, highlighting a novel therapeutic avenue against pathologic protein AMPylation.
Collapse
Affiliation(s)
- Bhaskar K. Chatterjee
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maroof Alam
- Department of Internal Medicine- Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arghya Chakravorty
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shannon M. Lacy
- Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason Rech
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI, 48109, USA
- College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Charles L. Brooks
- Department of Internal Medicine- Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peter D. Arvan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine- Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthias C. Truttmann
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Geriatrics Center, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Camara A, Chugh H, George A, Dolidze L, Ryu K, Holly KJ, Flaherty DP, Mattoo S. Discovery and validation of a novel inhibitor of HYPE-mediated AMPylation. Cell Stress Chaperones 2024; 29:404-424. [PMID: 38599565 PMCID: PMC11053294 DOI: 10.1016/j.cstres.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Adenosyl monophosphate (AMP)ylation (the covalent transfer of an AMP from Adenosine Triphosphate (ATP) onto a target protein) is catalyzed by the human enzyme Huntingtin Yeast Interacting Partner E (HYPE)/FicD to regulate its substrate, the heat shock chaperone binding immunoglobulin protein (BiP). HYPE-mediated AMPylation of BiP is critical for maintaining proteostasis in the endoplasmic reticulum and mounting a unfolded protein response in times of proteostatic imbalance. Thus, manipulating HYPE's enzymatic activity is a key therapeutic strategy toward the treatment of various protein misfolding diseases, including neuropathy and early-onset diabetes associated with two recently identified clinical mutations of HYPE. Herein, we present an optimized, fluorescence polarization-based, high-throughput screening (HTS) assay to discover activators and inhibitors of HYPE-mediated AMPylation. After challenging our HTS assay with over 30,000 compounds, we discovered a novel AMPylase inhibitor, I2.10. We also determined a low micromolar IC50 for I2.10 and employed biorthogonal counter-screens to validate its efficacy against HYPE's AMPylation of BiP. Further, we report low cytotoxicity of I2.10 on human cell lines. We thus established an optimized, high-quality HTS assay amenable to tracking HYPE's enzymatic activity at scale, and provided the first novel small-molecule inhibitor capable of perturbing HYPE-directed AMPylation of BiP in vitro. Our HTS assay and I2.10 compound serve as a platform for further development of HYPE-specific small-molecule therapeutics.
Collapse
Affiliation(s)
- Ali Camara
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Heerak Chugh
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA; Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Alyssa George
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Lukas Dolidze
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Kevin Ryu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Katrina J Holly
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Seema Mattoo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA; Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Nao SC, Huang LS, Shiu-Hin Chan D, Wang X, Li GD, Wu J, Wong CY, Wang W, Leung CH. Repurposing sodium stibogluconate as an uracil DNA glycosylase inhibitor against prostate cancer using a time-resolved oligonucleotide-based drug screening platform. Bioorg Chem 2024; 144:107176. [PMID: 38330721 DOI: 10.1016/j.bioorg.2024.107176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Repurposing drugs can significantly reduce the time and costs associated with drug discovery and development. However, many drug compounds possess intrinsic fluorescence, resulting in aberrations such as auto-fluorescence, scattering and quenching, in fluorescent high-throughput screening assays. To overcome these drawbacks, time-resolved technologies have received increasing attention. In this study, we have developed a rapid and efficient screening platform based on time-resolved emission spectroscopy in order to screen for inhibitors of the DNA repair enzyme, uracil-DNA glycosylase (UDG). From a database of 1456 FDA/EMA-approved drugs, sodium stibogluconate was discovered as a potent UDG inhibitor. This compound showed synergistic cytotoxicity against 5-fluorouracil-resistant cancer cells. This work provides a promising future for time-resolved technologies for high-throughput screening (HTS), allowing for the swift identification of bioactive compounds from previously overlooked scaffolds due to their inherent fluorescence properties.
Collapse
Affiliation(s)
- Sang-Cuo Nao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Le-Sheng Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | | | - Xueliang Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Guo-Dong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Macao Centre for Research and Development in Chinese Medicine, University of Macau, Taipa, Macau, China; MoE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa, Macau, China.
| |
Collapse
|
4
|
Buchner J, Alasady MJ, Backe SJ, Blagg BSJ, Carpenter RL, Colombo G, Gelis I, Gewirth DT, Gierasch LM, Houry WA, Johnson JL, Kang BH, Kao AW, LaPointe P, Mattoo S, McClellan AJ, Neckers LM, Prodromou C, Rasola A, Sager RA, Theodoraki MA, Truman AW, Truttman MC, Zachara NE, Bourboulia D, Mollapour M, Woodford MR. Second international symposium on the chaperone code, 2023. Cell Stress Chaperones 2024; 29:88-96. [PMID: 38316354 PMCID: PMC10939070 DOI: 10.1016/j.cstres.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Affiliation(s)
- Johannes Buchner
- Department of Bioscience, Technical University of Munich, D85748, Garching, Germany.
| | - Milad J Alasady
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Richard L Carpenter
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Bloomington, IN, 47405, USA; Medical Sciences, Indiana University School of Medicine, Bloomington, IN, 47405, USA; Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 47405, USA
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Ioannis Gelis
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Daniel T Gewirth
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Lila M Gierasch
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Hauptman-Woodward Medical Research Institute, Buffalo, NY, 14203, USA
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G 1M1, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Jill L Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844, USA
| | - Byoung Heon Kang
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Aimee W Kao
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Paul LaPointe
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA; Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Seema Mattoo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Amie J McClellan
- Division of Science and Mathematics, Bennington College, Bennington, VT, 05201, USA
| | - Leonard M Neckers
- Center for Cancer Research, National Cancer Institute, Rockville, MD, 20892, USA
| | | | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | | | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Matthias C Truttman
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA; Geriatrics Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
5
|
Hua L, Wang D, Wang K, Wang Y, Gu J, Zhang Q, You Q, Wang L. Design of Tracers in Fluorescence Polarization Assay for Extensive Application in Small Molecule Drug Discovery. J Med Chem 2023; 66:10934-10958. [PMID: 37561645 DOI: 10.1021/acs.jmedchem.3c00881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Development of fluorescence polarization (FP) assays, especially in a competitive manner, is a potent and mature tool for measuring the binding affinities of small molecules. This approach is suitable for high-throughput screening (HTS) for initial ligands and is also applicable for further study of the structure-activity relationships (SARs) of candidate compounds for drug discovery. Buffer and tracer, especially rational design of the tracer, play a vital role in an FP assay system. In this perspective, we provided different kinds of approaches for tracer design based on successful cases in recent years. We classified these tracers by different types of ligands in tracers, including peptide, nucleic acid, natural product, and small molecule. To make this technology accessible for more targets, we briefly described the basic theory and workflow, followed by highlighting the design and application of typical FP tracers from a perspective of medicinal chemistry.
Collapse
Affiliation(s)
- Liwen Hua
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Danni Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Keran Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Sun Y, An X, Jin D, Duan L, Zhang Y, Yang C, Duan Y, Zhou R, Zhao Y, Zhang Y, Kang X, Jiang L, Lian F. Model exploration for discovering COVID-19 targeted traditional Chinese medicine. Heliyon 2022; 8:e12333. [PMID: 36530927 PMCID: PMC9737519 DOI: 10.1016/j.heliyon.2022.e12333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/15/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
In terms of treatment, a particularly targeted drug is needed to combat the COVID-19 pandemic. Although there are currently no specific drugs for COVID-19, traditional Chinese medicine(TCM) is clearly effective. It is recommended that through data analysis and mining of TCM cases (expert experience) and population evidence (RCT and cohort studies), core prescriptions for various efficacy can be obtained. Starting from a multidimensional model of regulating immunity, improving inflammation, and protecting multiple organs, this paper constructs a multidimensional model of targeted drug discovery, integrating molecular, cellular, and animal efficacy evaluation. Through functional activity testing, biophysical detection of compound binding to target proteins, multidimensional pharmacodynamic evaluation systems of cells (Vero E6, Vero, Vero81, Huh7, and caca2) and animals (mice infected with the new coronavirus, rhesus macaques, and hamsters), the effectiveness of effective preparations was evaluated, and various efficacy effects including lung moisturizing, dehumidification and detoxification were obtained. Using modern technology, it is now possible to understand how the immune system is controlled, how inflammation is reduced, and how various organs are protected. Complete early drug characterization and finally obtain effective targeted TCM. This article provides a demonstration resource for the development of new drugs specifically for TCM.
Collapse
Affiliation(s)
- Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Liyun Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Rongrong Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Yiru Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China,Corresponding author.
| |
Collapse
|