1
|
Jiménez-Cabello L, Utrilla-Trigo S, Rodríguez-Sabando K, Carra-Valenzuela A, Illescas-Amo M, Calvo-Pinilla E, Ortego J. Vaccine candidates based on MVA viral vectors expressing VP2 or VP7 confer full protection against Epizootic hemorrhagic disease virus in IFNAR(-/-) mice. J Virol 2024; 98:e0168724. [PMID: 39508577 DOI: 10.1128/jvi.01687-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024] Open
Abstract
Epizootic hemorrhagic disease (EHD), caused by Epizootic hemorrhagic disease virus (EHDV), is an emerging and severe livestock disease. Recent incursion and distribution of EHDV in Europe have outlined the need for vaccine research against this viral disease. In this work, we report modified vaccinia virus Ankara (MVA)-vectored vaccines designed to express protein VP2 of EHDV-8 or protein VP7 of EHDV-2. Prime boost immunization of adult IFNAR(-/-) mice with the MVA-VP2 vaccine candidate induced high titers of EHDV-8-specific neutralizing antibodies (NAbs) and conferred full protection against homologous lethal challenge with EHDV-8. However, no heterologous protection was observed after lethal challenge with EHDV-6. In contrast, the MVA-VP7 vaccine candidate elicited strong cytotoxic CD8+ T-cell responses against VP7 and conferred complete protection against lethal challenge with either EHDV-8 or EHDV-6 in IFNAR(-/-) mice in the absence of NAbs, being the first multiserotype vaccine candidate against EHDV. Moreover, we expressed recombinant proteins VP2 and VP7 of EHDV in the baculovirus expression system, which were used to analyze the potential DIVA (differentiating infected from vaccinated animals) character of these vaccine candidates.IMPORTANCEEmergence and re-emergence of arthropod-borne viruses are major concerns for both human and animal health. The most recent example is the fast expansion of EHDV-8 through Europe. Besides, EHDV-8 relates with a high prevalence of pathologic cases in cattle populations. No vaccine is currently available in Europe, and vaccine research against this arboviral disease is negligible. In this work, we present novel DIVA vaccine candidates against EHDV, and most importantly, we identified the protein VP7 of EHDV as an antigen capable of inducing multiserotype protection, one of the major challenges in vaccine research against orbiviruses.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Karen Rodríguez-Sabando
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Alejandro Carra-Valenzuela
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Miguel Illescas-Amo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| |
Collapse
|
2
|
Jiménez-Cabello L, Utrilla-Trigo S, Calvo-Pinilla E, Lorenzo G, Illescas-Amo M, Benavides J, Moreno S, Marín-López A, Nogales A, Ortego J. Co-expression of VP2, NS1 and NS2-Nt proteins by an MVA viral vector induces complete protection against bluetongue virus. Front Immunol 2024; 15:1440407. [PMID: 39072326 PMCID: PMC11272488 DOI: 10.3389/fimmu.2024.1440407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Bluetongue (BT), caused by bluetongue virus (BTV), is an important arthropod-borne livestock disease listed by the World Organization for Animal Health. Live-attenuated and inactivated vaccines have permitted to control BT but they do not simultaneously protect against the myriad of BTV serotypes. Recently, we identified the highly conserved BTV nonstructural protein NS1 and the N-terminal region of NS2 as antigens capable of conferring multiserotype protection against BTV. Methods Here, we designed Modified Vaccinia Ankara (MVA) viral vectors that expressed BTV-4 proteins VP2 or VP7 along with NS1 and NS2-Nt as well as MVAs that expressed proteins VP2, VP7 or NS1 and NS2-Nt. Results Immunization of IFNAR(-/-) mice with two doses of MVA-NS1-2A-NS2-Nt protected mice from BTV-4M infection by the induction of an antigen-specific T cell immune response. Despite rMVA expressing VP7 alone were not protective in the IFNAR(-/-) mouse model, inclusion of VP7 in the vaccine formulation amplified the cell-mediated response induced by NS1 and NS2-Nt. Expression of VP2 elicited protective non-cross-reactive neutralizing antibodies (nAbs) in immunized animals and improved the protection observed in the MVA-NS1-2A-NS2-Nt immunized mice when these three BTV antigens were co-expressed. Moreover, vaccines candidates co-expressing VP2 or VP7 along with NS1 and NS2-Nt provided multiserotype protection. We assessed protective efficacy of both vaccine candidates in sheep against virulent challenge with BTV-4M. Discussion Immunization with MVA-VP7-NS1-2A-NS2-Nt partially dumped viral replication and clinical disease whereas administration of MVA-VP2-NS1-2A-NS2-Nt promoted a complete protection, preventing viraemia and the pathology produced by BTV infection.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Miguel Illescas-Amo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Julio Benavides
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, León, Spain
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| |
Collapse
|
3
|
Migné CV, Heckmann A, Monsion B, Mohd Jaafar F, Galon C, Rakotobe S, Bell-Sakyi L, Moutailler S, Attoui H. Age- and Sex-Associated Pathogenesis of Cell Culture-Passaged Kemerovo Virus in IFNAR (-/-) Mice. Int J Mol Sci 2024; 25:3177. [PMID: 38542150 PMCID: PMC10970428 DOI: 10.3390/ijms25063177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Kemerovo virus (KEMV) is a tick-borne orbivirus transmitted by ticks of the genus Ixodes. Previous animal experimentation studies with orbiviruses, in particular the interferon receptor double knock-out (IFNAR(-/-)) mouse model, did not indicate bias that is related to age or sex. We endeavoured to assess the effect of serial and alternated passages of KEMV in mammalian or Ixodes cells on virus replication and potential virulence in male or female IFNAR(-/-) mice, with important age differences: younger males (4-5 months old), older males (14-15 months old), and old females (14-15 months old). After 30 serial passages in mammalian or tick cells, or alternated passages in the two cell types, older female mice which were inoculated with the resulting virus strains were the first to show clinical signs and die. Younger males behaved differently from older males whether they were inoculated with the parental strain of KEMV or with any of the cell culture-passaged strains. The groups of male and female mice inoculated with the mammalian cell culture-adapted KEMV showed the lowest viraemia. While older female and younger male mice died by day 6 post-inoculation, surprisingly, the older males survived until the end of the experiment, which lasted 10 days. RNA extracted from blood and organs of the various mice was tested by probe-based KEMV real-time RT-PCR. Ct values of the RNA extracts were comparable between older females and younger males, while the values for older males were >5 Ct units higher for the various organs, indicating lower levels of replication. It is noteworthy that the hearts of the old males were the only organs that were negative for KEMV RNA. These results suggest, for the first time, an intriguing age- and sex-related bias for an orbivirus in this animal model. Changes in the amino acid sequence of the RNA-dependent RNA polymerase of Kemerovo virus, derived from the first serial passage in Ixodes cells (KEMV Ps.IRE1), were identified in the vicinity of the active polymerase site. This finding suggests that selection of a subpopulation of KEMV with better replication fitness in tick cells occurred.
Collapse
Affiliation(s)
- Camille Victoire Migné
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (C.V.M.); (B.M.); (F.M.J.)
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France; (A.H.); (C.G.); (S.R.)
| | - Aurélie Heckmann
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France; (A.H.); (C.G.); (S.R.)
| | - Baptiste Monsion
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (C.V.M.); (B.M.); (F.M.J.)
| | - Fauziah Mohd Jaafar
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (C.V.M.); (B.M.); (F.M.J.)
| | - Clémence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France; (A.H.); (C.G.); (S.R.)
| | - Sabine Rakotobe
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France; (A.H.); (C.G.); (S.R.)
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK;
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France; (A.H.); (C.G.); (S.R.)
| | - Houssam Attoui
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (C.V.M.); (B.M.); (F.M.J.)
| |
Collapse
|
4
|
Utrilla-Trigo S, Jiménez-Cabello L, Marín-López A, Illescas-Amo M, Andrés G, Calvo-Pinilla E, Lorenzo G, van Rijn PA, Ortego J, Nogales A. Engineering recombinant replication-competent bluetongue viruses expressing reporter genes for in vitro and non-invasive in vivo studies. Microbiol Spectr 2024; 12:e0249323. [PMID: 38353566 PMCID: PMC10923215 DOI: 10.1128/spectrum.02493-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/22/2023] [Indexed: 03/06/2024] Open
Abstract
Bluetongue virus (BTV) is the causative agent of the important livestock disease bluetongue (BT), which is transmitted via Culicoides bites. BT causes severe economic losses associated with its considerable impact on health and trade of animals. By reverse genetics, we have designed and rescued reporter-expressing recombinant (r)BTV expressing NanoLuc luciferase (NLuc) or Venus fluorescent protein. To generate these viruses, we custom synthesized a modified viral segment 5 encoding NS1 protein with the reporter genes located downstream and linked by the Porcine teschovirus-1 (PTV-1) 2A autoproteolytic cleavage site. Therefore, fluorescent signal or luciferase activity is only detected after virus replication and expression of non-structural proteins. Fluorescence or luminescence signals were detected in cells infected with rBTV/Venus or rBTV/NLuc, respectively. Moreover, the marking of NS2 protein confirmed that reporter genes were only expressed in BTV-infected cells. Growth kinetics of rBTV/NLuc and rBTV/Venus in Vero cells showed replication rates similar to those of wild-type and rBTV. Infectivity studies of these recombinant viruses in IFNAR(-/-) mice showed a higher lethal dose for rBTV/NLuc and rBTV/Venus than for rBTV indicating that viruses expressing the reporter genes are attenuated in vivo. Interestingly, luciferase activity was detected in the plasma of viraemic mice infected with rBTV/NLuc. Furthermore, luciferase activity quantitatively correlated with RNAemia levels of infected mice throughout the infection. In addition, we have investigated the in vivo replication and dissemination of BTV in IFNAR (-/-) mice using BTV/NLuc and non-invasive in vivo imaging systems.IMPORTANCEThe use of replication-competent viruses that encode a traceable fluorescent or luciferase reporter protein has significantly contributed to the in vitro and in vivo study of viral infections and the development of novel therapeutic approaches. In this work, we have generated rBTV that express fluorescent or luminescence proteins to track BTV infection both in vitro and in vivo. Despite the availability of vaccines, BTV and other related orbivirus are still associated with a significant impact on animal health and have important economic consequences worldwide. Our studies may contribute to the advance in orbivirus research and pave the way for the rapid development of new treatments, including vaccines.
Collapse
Affiliation(s)
- Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Miguel Illescas-Amo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Germán Andrés
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Piet A. van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| |
Collapse
|
5
|
Mohd Jaafar F, Belhouchet M, Monsion B, Bell-Sakyi L, Mertens PPC, Attoui H. Orbivirus NS4 Proteins Play Multiple Roles to Dampen Cellular Responses. Viruses 2023; 15:1908. [PMID: 37766314 PMCID: PMC10535134 DOI: 10.3390/v15091908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Non-structural protein 4 (NS4) of insect-borne and tick-borne orbiviruses is encoded by genome segment 9, from a secondary open reading frame. Though a protein dispensable for bluetongue virus (BTV) replication, it has been shown to counter the interferon response in cells infected with BTV or African horse sickness virus. We further explored the functional role(s) of NS4 proteins of BTV and the tick-borne Great Island virus (GIV). We show that NS4 of BTV or GIV helps an E3L deletion mutant of vaccinia virus to replicate efficiently in interferon-treated cells, further confirming the role of NS4 as an interferon antagonist. Our results indicate that ectopically expressed NS4 of BTV localised with caspase 3 within the nucleus and was found in a protein complex with active caspase 3 in a pull-down assay. Previous studies have shown that pro-apoptotic caspases (including caspase 3) suppress type I interferon response by cleaving mediators involved in interferon signalling. Our data suggest that orbivirus NS4 plays a role in modulating the apoptotic process and/or regulating the interferon response in mammalian cells, thus acting as a virulence factor in pathogenesis.
Collapse
Affiliation(s)
- Fauziah Mohd Jaafar
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France;
| | - Mourad Belhouchet
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, Oxford OX3 7BN, UK;
| | - Baptiste Monsion
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France;
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK;
| | - Peter P. C. Mertens
- One Virology, The Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK;
| | - Houssam Attoui
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France;
| |
Collapse
|
6
|
Attoui H, Mohd Jaafar F, Monsion B, Klonjkowski B, Reid E, Fay PC, Saunders K, Lomonossoff G, Haig D, Mertens PPC. Increased Clinical Signs and Mortality in IFNAR (-/-) Mice Immunised with the Bluetongue Virus Outer-Capsid Proteins VP2 or VP5, after Challenge with an Attenuated Heterologous Serotype. Pathogens 2023; 12:pathogens12040602. [PMID: 37111488 PMCID: PMC10141489 DOI: 10.3390/pathogens12040602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Bluetongue is an economically important disease of domesticated and wild ruminants caused by bluetongue virus (BTV). There are at least 36 different serotypes of BTV (the identity of which is determined by its outer-capsid protein VP2), most of which are transmitted by Culicoides biting midges. IFNAR(-/-) mice immunised with plant-expressed outer-capsid protein VP2 (rVP2) of BTV serotypes -1, -4 or -8, or the smaller outer-capsid protein rVP5 of BTV-10, or mock-immunised with PBS, were subsequently challenged with virulent strains of BTV-4 or BTV-8, or with an attenuated clone of BTV-1 (BTV-1RGC7). The mice that had received rVP2 generated a protective immune response against the homologous BTV serotype, reducing viraemia (as detected by qRT-PCR), the severity of clinical signs and mortality levels. No cross-serotype protection was observed after challenge with the heterologous BTV serotypes. However, the severity of clinical signs, viraemia and fatality levels after challenge with the attenuated strain of BTV-1 were all increased in mice immunised with rVP2 of BTV-4 and BTV-8, or with rVP5 of BTV10. The possibility is discussed that non-neutralising antibodies, reflecting serological relationships between the outer-capsid proteins of these different BTV serotypes, could lead to 'antibody-dependent enhancement of infection' (ADE). Such interactions could affect the epidemiology and emergence of different BTV strains in the field and would therefore be relevant to the design and implementation of vaccination campaigns.
Collapse
Affiliation(s)
- Houssam Attoui
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France
| | - Fauziah Mohd Jaafar
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France
| | - Baptiste Monsion
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France
| | - Bernard Klonjkowski
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France
| | - Elizabeth Reid
- One Virology, The Wolfson Centre for Global Virus Research, Sutton Bonington Campus, School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Petra C Fay
- One Virology, The Wolfson Centre for Global Virus Research, Sutton Bonington Campus, School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Keith Saunders
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich NR4 7UH, UK
| | - George Lomonossoff
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich NR4 7UH, UK
| | - David Haig
- One Virology, The Wolfson Centre for Global Virus Research, Sutton Bonington Campus, School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Peter P C Mertens
- One Virology, The Wolfson Centre for Global Virus Research, Sutton Bonington Campus, School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, UK
| |
Collapse
|
7
|
Jiménez-Cabello L, Utrilla-Trigo S, Barreiro-Piñeiro N, Pose-Boirazian T, Martínez-Costas J, Marín-López A, Ortego J. Nanoparticle- and Microparticle-Based Vaccines against Orbiviruses of Veterinary Importance. Vaccines (Basel) 2022; 10:vaccines10071124. [PMID: 35891288 PMCID: PMC9319458 DOI: 10.3390/vaccines10071124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Bluetongue virus (BTV) and African horse sickness virus (AHSV) are widespread arboviruses that cause important economic losses in the livestock and equine industries, respectively. In addition to these, another arthropod-transmitted orbivirus known as epizootic hemorrhagic disease virus (EHDV) entails a major threat as there is a conducive landscape that nurtures its emergence in non-endemic countries. To date, only vaccinations with live attenuated or inactivated vaccines permit the control of these three viral diseases, although important drawbacks, e.g., low safety profile and effectiveness, and lack of DIVA (differentiation of infected from vaccinated animals) properties, constrain their usage as prophylactic measures. Moreover, a substantial number of serotypes of BTV, AHSV and EHDV have been described, with poor induction of cross-protective immune responses among serotypes. In the context of next-generation vaccine development, antigen delivery systems based on nano- or microparticles have gathered significant attention during the last few decades. A diversity of technologies, such as virus-like particles or self-assembled protein complexes, have been implemented for vaccine design against these viruses. In this work, we offer a comprehensive review of the nano- and microparticulated vaccine candidates against these three relevant orbiviruses. Additionally, we also review an innovative technology for antigen delivery based on the avian reovirus nonstructural protein muNS and we explore the prospective functionality of the nonstructural protein NS1 nanotubules as a BTV-based delivery platform.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
| | - Natalia Barreiro-Piñeiro
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA;
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Correspondence:
| |
Collapse
|
8
|
Redirecting Imipramine against Bluetongue Virus Infection: Insights from a Genome-wide Haploid Screening Study. Pathogens 2022; 11:pathogens11050602. [PMID: 35631123 PMCID: PMC9144988 DOI: 10.3390/pathogens11050602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
Bluetongue virus (BTV), an arbovirus of ruminants, is a causative agent of numerous epidemics around the world. Due to the emergence of novel reassortant BTV strains and new outbreaks, there is an unmet need for efficacious antivirals. In this study, we used an improved haploid screening platform to identify the relevant host factors for BTV infection. Our screening tool identified and validated the host factor Niemann–Pick C1 (NPC1), a lysosomal membrane protein that is involved in lysosomal cholesterol transport, as a critical factor in BTV infection. This finding prompted us to investigate the possibility of testing imipramine, an antidepressant drug known to inhibit NPC1 function by interfering with intracellular cholesterol trafficking. In this study, we evaluated the sensitivity of BTV to imipramine using in vitro assays. Our results demonstrate that imipramine pretreatment inhibited in vitro replication and progeny release of BTV-4, BTV-8, and BTV-16. Collectively, our findings highlight the importance of NPC1 for BTV infection and recommend the reprofiling of imipramine as a potential antiviral drug against BTV.
Collapse
|
9
|
The Combined Expression of the Non-structural Protein NS1 and the N-Terminal Half of NS2 (NS2 1-180) by ChAdOx1 and MVA Confers Protection against Clinical Disease in Sheep upon Bluetongue Virus Challenge. J Virol 2021; 96:e0161421. [PMID: 34787454 PMCID: PMC8826911 DOI: 10.1128/jvi.01614-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Bluetongue, caused by bluetongue virus (BTV), is a widespread arthropod-borne disease of ruminants that entails a recurrent threat to the primary sector of developed and developing countries. In this work, we report modified vaccinia virus Ankara (MVA) and ChAdOx1-vectored vaccines designed to simultaneously express the immunogenic NS1 protein and/or NS2-Nt, the N-terminal half of protein NS2 (NS21-180). A single dose of MVA or ChAdOx1 expressing NS1-NS2-Nt improved the protection conferred by NS1 alone in IFNAR(-/-) mice. Moreover, mice immunized with ChAdOx1/MVA-NS1, ChAdOx1/MVA-NS2-Nt, or ChAdOx1/MVA-NS1-NS2-Nt developed strong cytotoxic CD8+ T-cell responses against NS1, NS2-Nt, or both proteins and were fully protected against a lethal infection with BTV serotypes 1, 4, and 8. Furthermore, although a single immunization with ChAdOx1-NS1-NS2-Nt partially protected sheep against BTV-4, the administration of a booster dose of MVA-NS1-NS2-Nt promoted a faster viral clearance, reduction of the period and level of viremia and also protected from the pathology produced by BTV infection. IMPORTANCE Current BTV vaccines are effective but they do not allow to distinguish between vaccinated and infected animals (DIVA strategy) and are serotype specific. In this work we have develop a DIVA multiserotype vaccination strategy based on adenoviral (ChAdOx1) and MVA vaccine vectors, the most widely used in current phase I and II clinical trials, and the conserved nonstructural BTV proteins NS1 and NS2. This immunization strategy solves the major drawbacks of the current marketed vaccines.
Collapse
|
10
|
Ren N, Wang X, Liang M, Tian S, Ochieng C, Zhao L, Huang D, Xia Q, Yuan Z, Xia H. Characterization of a novel reassortment Tibet orbivirus isolated from Culicoides spp. in Yunnan, PR China. J Gen Virol 2021; 102. [PMID: 34494948 PMCID: PMC8567429 DOI: 10.1099/jgv.0.001645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Orbiviruses are arboviruses with 10 double-stranded linear RNA segments, and some have been identified as pathogens of dramatic epizootics in both wild and domestic ruminants. Tibet orbivirus (TIBOV) is a new orbivirus isolated from hematophagous insects in recent decades, and, currently, most of the strains have been isolated from insects in PR China, except for two from Japan. In this study, we isolated a novel reassortment TIBOV strain, YN15-283-01, from Culicoides spp. To identify and understand more characteristics of YN15-283-01, electrophoresis profiles of the viral genome, electron microscopic observations, plaque assays, growth curves in various cell lines, and bioinformatic analysis were conducted. The results indicated that YN15-283-01 replicated efficiently in mosquito cells, rodent cells and several primate cells. Furthermore, the maximum likelihood phylogenetic trees and simplot analysis of the 10 segments indicated that YN15-283-01 is a natural reassortment isolate that had emerged mainly from XZ0906 and SX-2017a.
Collapse
Affiliation(s)
- Nanjie Ren
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiaoyu Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Mengying Liang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Shen Tian
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical diseases,School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, PR China
| | - Christabel Ochieng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Doudou Huang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical diseases,School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, PR China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
11
|
Inhibition of Orbivirus Replication by Fluvastatin and Identification of the Key Elements of the Mevalonate Pathway Involved. Viruses 2021; 13:v13081437. [PMID: 34452303 PMCID: PMC8402872 DOI: 10.3390/v13081437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/21/2023] Open
Abstract
Statin derivatives can inhibit the replication of a range of viruses, including hepatitis C virus (HCV, Hepacivirus), dengue virus (Flavivirus), African swine fever virus (Asfarviridae) and poliovirus (Picornaviridae). We assess the antiviral effect of fluvastatin in cells infected with orbiviruses (bluetongue virus (BTV) and Great Island virus (GIV)). The synthesis of orbivirus outer-capsid protein VP2 (detected by confocal immunofluorescence imaging) was used to assess levels of virus replication, showing a reduction in fluvastatin-treated cells. A reduction in virus titres of ~1.7 log (98%) in fluvastatin-treated cells was detected by a plaque assay. We have previously identified a fourth non-structural protein (NS4) of BTV and GIV, showing that it interacts with lipid droplets in infected cells. Fluvastatin, which inhibits 3-hydroxy 3-methyl glutaryl CoA reductase in the mevalonic acid pathway, disrupts these NS4 interactions. These findings highlight the role of the lipid pathways in orbivirus replication and suggest a greater role for the membrane-enveloped orbivirus particles than previously recognised. Chemical intermediates of the mevalonic acid pathway were used to assess their potential to rescue orbivirus replication. Pre-treatment of IFNAR(−/−) mice with fluvastatin promoted their survival upon challenge with live BTV, although only limited protection was observed.
Collapse
|
12
|
Fernandes de Oliveira LM, Steindorff M, Darisipudi MN, Mrochen DM, Trübe P, Bröker BM, Brönstrup M, Tegge W, Holtfreter S. Discovery of Staphylococcus aureus Adhesion Inhibitors by Automated Imaging and Their Characterization in a Mouse Model of Persistent Nasal Colonization. Microorganisms 2021; 9:microorganisms9030631. [PMID: 33803564 PMCID: PMC8002927 DOI: 10.3390/microorganisms9030631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 01/26/2023] Open
Abstract
Due to increasing mupirocin resistance, alternatives for Staphylococcus aureus nasal decolonization are urgently needed. Adhesion inhibitors are promising new preventive agents that may be less prone to induce resistance, as they do not interfere with the viability of S. aureus and therefore exert less selection pressure. We identified promising adhesion inhibitors by screening a library of 4208 compounds for their capacity to inhibit S. aureus adhesion to A-549 epithelial cells in vitro in a novel automated, imaging-based assay. The assay quantified DAPI-stained nuclei of the host cell; attached bacteria were stained with an anti-teichoic acid antibody. The most promising candidate, aurintricarboxylic acid (ATA), was evaluated in a novel persistent S. aureus nasal colonization model using a mouse-adapted S. aureus strain. Colonized mice were treated intranasally over 7 days with ATA using a wide dose range (0.5–10%). Mupirocin completely eliminated the bacteria from the nose within three days of treatment. In contrast, even high concentrations of ATA failed to eradicate the bacteria. To conclude, our imaging-based assay and the persistent colonization model provide excellent tools to identify and validate new drug candidates against S. aureus nasal colonization. However, our first tested candidate ATA failed to induce S. aureus decolonization.
Collapse
Affiliation(s)
- Liliane Maria Fernandes de Oliveira
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Marina Steindorff
- Helmholtz Centre for Infection Research, Department of Chemical Biology, 38124 Braunschweig, Germany (M.B.)
| | - Murthy N. Darisipudi
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Daniel M. Mrochen
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Patricia Trübe
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Barbara M. Bröker
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Mark Brönstrup
- Helmholtz Centre for Infection Research, Department of Chemical Biology, 38124 Braunschweig, Germany (M.B.)
| | - Werner Tegge
- Helmholtz Centre for Infection Research, Department of Chemical Biology, 38124 Braunschweig, Germany (M.B.)
- Correspondence: (W.T.); (S.H.)
| | - Silva Holtfreter
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
- Correspondence: (W.T.); (S.H.)
| |
Collapse
|