1
|
Meng X, Mao H, Wan M, Lu L, Chen Z, Zhang L. Mitochondrial homeostasis in odontoblast: Physiology, pathogenesis and targeting strategies. Life Sci 2024; 352:122797. [PMID: 38917871 DOI: 10.1016/j.lfs.2024.122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
Caries and pulpitis remain a major global disease burden and affect the quality of life of patients. Odontoblasts are key players in the progression of caries and pulpitis, not only secreting and mineralizing to form dentin, but also acting as a wall of defense to initiate immune defenses. Mitochondrion is an information processor for numerous cellular activities, and dysregulation of mitochondrion homeostasis not only affects cellular metabolism but also triggers a wide range of diseases. Elucidating mitochondrial homeostasis in odontoblasts can help deepen scholars' understanding of odontoblast-associated diseases. Articles on mitochondrial homeostasis in odontoblasts were evaluated for information pertinent to include in this narrative review. This narrative review focused on understanding the complex interplay between mitochondrial homeostasis in odontoblasts under physiological and pathological conditions. Furthermore, mitochondria-centered therapeutic strategies (including mitochondrial base editing, targeting platforms, and mitochondrial transplantation) were emphasized by resolving key genes that regulate mitochondrial function. Mitochondria are involved in odontoblast differentiation and function, and act as mitochondrial danger-associated molecular patterns (mtDAMPs) to mediate odontoblast pathological progression. Novel mitochondria-centered therapeutic strategies are particularly attractive as emerging therapeutic approaches for the maintenance of mitochondrial homeostasis. It is expected to probe key events of odontoblast differentiation and advance the clinical resolution of dentin formation and mineralization disorders and odontoblast-related diseases.
Collapse
Affiliation(s)
- Xiang Meng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Hanqing Mao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Minting Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Linxin Lu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, HongShan District, LuoYu Road No. 237, Wuhan 430079, China.
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, HongShan District, LuoYu Road No. 237, Wuhan 430079, China.
| |
Collapse
|
2
|
Gallicchio V, Spinelli V, Russo T, Marino C, Spagnuolo G, Rengo C, De Santis R. Highly Reinforced Acrylic Resins for Hard Tissue Engineering and Their Suitability to Be Additively Manufactured through Nozzle-Based Photo-Printing. MATERIALS (BASEL, SWITZERLAND) 2023; 17:37. [PMID: 38203891 PMCID: PMC10779947 DOI: 10.3390/ma17010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Mineralized connective tissues represent the hardest materials of human tissues, and polymer based composite materials are widely used to restore damaged tissues. In particular, light activated resins and composites are generally considered as the most popular choice in the restorative dental practice. The first purpose of this study is to investigate novel highly reinforced light activated particulate dental composites. An innovative additive manufacturing technique, based on the extrusion of particle reinforced photo-polymers, has been recently developed for processing composites with a filler fraction (w/w) only up to 10%. The second purpose of this study is to explore the feasibility of 3D printing highly reinforced composites. A variety of composites based on 2,2-bis(acryloyloxymethyl)butyl acrylate and trimethylolpropane triacrylate reinforced with silica, titanium dioxide, and zirconia nanoparticles were designed and investigated through compression tests. The composite showing the highest mechanical properties was processed through the 3D bioplotter AK12 equipped with the Enfis Uno Air LED Engine. The composite showing the highest stiffness and strength was successfully processed through 3D printing, and a four-layer composite scaffold was realized. Mechanical properties of particulate composites can be tailored by modifying the type and amount of the filler fraction. It is possible to process highly reinforced photopolymerizable composite materials using additive manufacturing technologies consisting of 3D fiber deposition through extrusion in conjunction with photo-polymerization.
Collapse
Affiliation(s)
- Vito Gallicchio
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.G.); (V.S.); (G.S.)
| | - Vincenzo Spinelli
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.G.); (V.S.); (G.S.)
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54, Mostra d’Oltremare Pad. 20, 80125 Naples, Italy;
| | - Ciro Marino
- University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.G.); (V.S.); (G.S.)
| | - Carlo Rengo
- Department of Prosthodontics and Dental Materials, University of Siena, 53100 Siena, Italy;
| | - Roberto De Santis
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54, Mostra d’Oltremare Pad. 20, 80125 Naples, Italy;
| |
Collapse
|
3
|
Crocetto F, Balsamo R, Amicuzi U, De Luca L, Falcone A, Mirto BF, Giampaglia G, Ferretti G, Capone F, Machiella F, Varriale D, Sicignano E, Pagano G, Lombardi A, Lucarelli G, Lasorsa F, Busetto GM, Del Giudice F, Ferro M, Imbimbo C, Barone B. Novel Key Ingredients in Urinary Tract Health-The Role of D-mannose, Chondroitin Sulphate, Hyaluronic Acid, and N-acetylcysteine in Urinary Tract Infections (Uroial PLUS ®). Nutrients 2023; 15:3573. [PMID: 37630763 PMCID: PMC10459296 DOI: 10.3390/nu15163573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Urinary tract infections represent a common and significant health concern worldwide. The high rate of recurrence and the increasing antibiotic resistance of uropathogens are further worsening the current scenario. Nevertheless, novel key ingredients such as D-mannose, chondroitin sulphate, hyaluronic acid, and N-acetylcysteine could represent an important alternative or adjuvant to the prevention and treatment strategies of urinary tract infections. Several studies have indeed evaluated the efficacy and the potential use of these compounds in urinary tract health. In this review, we aimed to summarize the characteristics, the role, and the application of the previously reported compounds, alone and in combination, in urinary tract health, focusing on their potential role in urinary tract infections.
Collapse
Affiliation(s)
- Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Raffaele Balsamo
- Urology Unit, AORN Ospedali dei Colli, Monaldi Hospital, 80131 Naples, Italy;
| | - Ugo Amicuzi
- Division of Urology, Department of Surgical Sciences, AORN Sant’Anna e San Sebastiano, 81100 Caserta, Italy;
| | - Luigi De Luca
- Division of Urology, Department of Surgical Multispecialty, AORN Antonio Cardarelli, 80131 Naples, Italy;
| | - Alfonso Falcone
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Benito Fabio Mirto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Gaetano Giampaglia
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Gianpiero Ferretti
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Federico Capone
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Fabio Machiella
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Domenico Varriale
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Enrico Sicignano
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Giovanni Pagano
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Alessandro Lombardi
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.L.); (F.L.)
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.L.); (F.L.)
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, 71121 Foggia, Italy;
| | - Francesco Del Giudice
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy;
| | - Matteo Ferro
- Department of Urology, IEO—European Institute of Oncology, IRCCS—Istituto di Ricovero e Cura a Carattere Scientifico, 20141 Milan, Italy;
| | - Ciro Imbimbo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Biagio Barone
- Division of Urology, Department of Surgical Sciences, AORN Sant’Anna e San Sebastiano, 81100 Caserta, Italy;
| |
Collapse
|
4
|
Kondo T, Kakinuma H, Fujimura K, Ambo S, Otake K, Sato Y, Egusa H. Incomplete Polymerization of Dual-Cured Resin Cement Due to Attenuated Light through Zirconia Induces Inflammatory Responses. Int J Mol Sci 2023; 24:9861. [PMID: 37373008 DOI: 10.3390/ijms24129861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Zirconia restorations are becoming increasingly common. However, zirconia reduces the polymerization of dual-cured resin cement owing to light attenuation, resulting in residual resin monomers. This study investigated the effects of dual-cured resin cement, with incomplete polymerization owing to attenuated light through zirconia, on the inflammatory response in vitro. The dual-cured resin cement (SA Luting Multi, Kuraray) was light-irradiated through zirconia with three thickness diameters (1.0, 1.5, and 2.0 mm). The light transmittance and the degree of conversion (DC) of the resin cement significantly decreased with increasing zirconia thickness. The dual-cured resin cement in 1.5 mm and 2.0 mm zirconia and no-irradiation groups showed significantly higher amounts of hydroxyethylmethacrylate and triethyleneglycol dimethacrylate elution and upregulated gene expression of proinflammatory cytokines IL-1β and IL-6 from human gingival fibroblasts (hGFs) and TNFα from human monocytic cells, compared with that of the 0 mm group. Dual-cured resin cement with lower DC enhanced intracellular reactive oxygen species (ROS) levels and activated mitogen-activated protein (MAP) kinases in hGFs and monocytic cells. This study suggests that dual-cured resin cement with incomplete polymerization induces inflammatory responses in hGFs and monocytic cells by intracellular ROS generation and MAP kinase activation.
Collapse
Affiliation(s)
- Takeru Kondo
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
- Department of Next-Generation Dental Material Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Hiroaki Kakinuma
- Department of Next-Generation Dental Material Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Kanna Fujimura
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Sara Ambo
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Koki Otake
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Yumi Sato
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Hiroshi Egusa
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| |
Collapse
|
6
|
Zhang J, Lan T, Han X, Xu Y, Liao L, Xie L, Yang B, Tian W, Guo W. Improvement of ECM-based bioroot regeneration via N-acetylcysteine-induced antioxidative effects. Stem Cell Res Ther 2021; 12:202. [PMID: 33752756 PMCID: PMC7986250 DOI: 10.1186/s13287-021-02237-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/23/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The low survival rate or dysfunction of extracellular matrix (ECM)-based engineered organs caused by the adverse effects of unfavourable local microenvironments on seed cell viability and stemness, especially the effects of excessive reactive oxygen species (ROS), prompted us to examine the importance of controlling oxidative damage for tissue transplantation and regeneration. We sought to improve the tolerance of seed cells to the transplant microenvironment via antioxidant pathways, thus promoting transplant efficiency and achieving better tissue regeneration. METHODS We improved the antioxidative properties of ECM-based bioroots with higher glutathione contents in dental follicle stem cells (DFCs) by pretreating cells or loading scaffolds with the antioxidant NAC. Additionally, we developed an in situ rat alveolar fossa implantation model to evaluate the long-term therapeutic effects of NAC in bioroot transplantation. RESULTS The results showed that NAC decreased H2O2-induced cellular damage and maintained the differentiation potential of DFCs. The transplantation experiments further verified that NAC protected the biological properties of DFCs by repressing replacement resorption or ankylosis, thus facilitating bioroot regeneration. CONCLUSIONS The following findings suggest that NAC could significantly protect stem cell viability and stemness during oxidative stress and exert better and prolonged effects in bioroot intragrafts.
Collapse
Affiliation(s)
- Jiayu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China
| | - Tingting Lan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China
| | - Xue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China
| | - Yuchan Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China
| | - Li Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China. .,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China. .,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.
| |
Collapse
|