1
|
Rezaei B, Harun A, Wu X, Iyer PR, Mostufa S, Ciannella S, Karampelas IH, Chalmers J, Srivastava I, Gómez-Pastora J, Wu K. Effect of Polymer and Cell Membrane Coatings on Theranostic Applications of Nanoparticles: A Review. Adv Healthc Mater 2024; 13:e2401213. [PMID: 38856313 DOI: 10.1002/adhm.202401213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The recent decade has witnessed a remarkable surge in the field of nanoparticles, from their synthesis, characterization, and functionalization to diverse applications. At the nanoscale, these particles exhibit distinct physicochemical properties compared to their bulk counterparts, enabling a multitude of applications spanning energy, catalysis, environmental remediation, biomedicine, and beyond. This review focuses on specific nanoparticle categories, including magnetic, gold, silver, and quantum dots (QDs), as well as hybrid variants, specifically tailored for biomedical applications. A comprehensive review and comparison of prevalent chemical, physical, and biological synthesis methods are presented. To enhance biocompatibility and colloidal stability, and facilitate surface modification and cargo/agent loading, nanoparticle surfaces are coated with different synthetic polymers and very recently, cell membrane coatings. The utilization of polymer- or cell membrane-coated nanoparticles opens a wide variety of biomedical applications such as magnetic resonance imaging (MRI), hyperthermia, photothermia, sample enrichment, bioassays, drug delivery, etc. With this review, the goal is to provide a comprehensive toolbox of insights into polymer or cell membrane-coated nanoparticles and their biomedical applications, while also addressing the challenges involved in translating such nanoparticles from laboratory benchtops to in vitro and in vivo applications. Furthermore, perspectives on future trends and developments in this rapidly evolving domain are provided.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Asma Harun
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Xian Wu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Poornima Ramesh Iyer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | | | - Jeffrey Chalmers
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| |
Collapse
|
2
|
Visan AI, Negut I. Coatings Based on Essential Oils for Combating Antibiotic Resistance. Antibiotics (Basel) 2024; 13:625. [PMID: 39061307 PMCID: PMC11273621 DOI: 10.3390/antibiotics13070625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
In the current era of widespread antimicrobial resistance, the utilization of essential oils (EOs) derived from plants has emerged as a promising alternative in combating pathogens that have developed resistance to antibiotics. This review explores the therapeutic potential of essential oils as valuable tools in restoring the efficacy of antibiotics, highlighting their unique ability to affect bacteria in multiple ways and target various cellular systems. Despite the challenge of elucidating their precise mode of action, EOs have shown remarkable results in rigorous testing against a diverse range of bacteria. This review explores the multifaceted role of EOs in combating bacterial microorganisms, emphasizing their extraction methods, mechanisms of action, and comparative efficacy against synthetic antibiotics. Key findings underscore the unique strategies EOs deploy to counter bacteria, highlighting significant differences from conventional antibiotics. The review extends to advanced coating solutions for medical devices, exploring the integration of EO formulations into these coatings. Challenges in developing effective EO coatings are addressed, along with various innovative approaches for their implementation. An evaluation of these EO coatings reveals their potential as formidable alternatives to traditional antibacterial agents in medical device applications. This renaissance in exploring natural remedies emphasizes the need to combine traditional wisdom with modern scientific advancements to address the urgent need for effective antimicrobial solutions in the post-antibiotic era.
Collapse
Affiliation(s)
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania;
| |
Collapse
|
3
|
Cao X, Cheng XW, Liu YY, Dai HW, Gan RY. Inhibition of pathogenic microbes in oral infectious diseases by natural products: Sources, mechanisms, and challenges. Microbiol Res 2024; 279:127548. [PMID: 38016378 DOI: 10.1016/j.micres.2023.127548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
The maintenance of oral health is of utmost importance for an individual's holistic well-being and standard of living. Within the oral cavity, symbiotic microorganisms actively safeguard themselves against potential foreign diseases by upholding a multifaceted equilibrium. Nevertheless, the occurrence of an imbalance can give rise to a range of oral infectious ailments, such as dental caries, periodontitis, and oral candidiasis. Presently, clinical interventions encompass the physical elimination of pathogens and the administration of antibiotics to regulate bacterial and fungal infections. Given the limitations of various antimicrobial drugs frequently employed in dental practice, the rising incidence of oral inflammation, and the escalating bacterial resistance to antibiotics, it is imperative to explore alternative remedies that are dependable, efficacious, and affordable for the prevention and management of oral infectious ailments. There is an increasing interest in the creation of novel antimicrobial agents derived from natural sources, which possess attributes such as safety, cost-effectiveness, and minimal adverse effects. This review provides a comprehensive overview of the impact of natural products on the development and progression of oral infectious diseases. Specifically, these products exert their influences by mitigating dental biofilm formation, impeding the proliferation of oral pathogens, and hindering bacterial adhesion to tooth surfaces. The review also encompasses an examination of the various classes of natural products, their antimicrobial mechanisms, and their potential therapeutic applications and limitations in the context of oral infections. The insights garnered from this review can support the promising application of natural products as viable therapeutic options for managing oral infectious diseases.
Collapse
Affiliation(s)
- Xin Cao
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xing-Wang Cheng
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yin-Ying Liu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Hong-Wei Dai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore.
| |
Collapse
|
4
|
Alexeree SMI, Abou-Seri HM, El-Din HES, Youssef D, Ramadan MA. Green synthesis of silver and iron oxide nanoparticles mediated photothermal effects on Blastocystis hominis. Lasers Med Sci 2024; 39:43. [PMID: 38246979 PMCID: PMC10800310 DOI: 10.1007/s10103-024-03984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
The evolution of parasite resistance to antiparasitic agents has become a serious health issue indicating a critical and pressing need to develop new therapeutics that can conquer drug resistance. Nanoparticles are novel, promising emerging drug carriers that have demonstrated efficiency in treating many parasitic diseases. Lately, attention has been drawn to a broad-spectrum nanoparticle capable of converting absorbed light into heat via the photothermal effect phenomenon. The present study is the first to assess the effect of silver nanoparticles (Ag NPs) and iron oxide nanoparticles (Fe3O4 NPs) as sole agents and with the combined action of the light-emitting diode (LED) on Blastocystis hominins (B. hominis) in vitro. Initially, the aqueous synthesized nanoparticles were characterized by UV-Vis spectroscopy, zeta potential, and transmission electron microscopy (TEM). The anti-blastocyst efficiency of these NPs was tested separately in dark conditions. As these NPs have a wide absorption spectrum in the visible regions, they were also excited by a continuous wave LED of wavelength band (400-700 nm) to test the photothermal effect. The sensitivity of B. hominis cysts was evaluated using scanning laser confocal microscopy whereas the live and dead cells were accurately segmented based on superpixels and the k-mean clustering algorithm. Our findings showed that this excitation led to hyperthermia that induced a significant reduction in the number of cysts treated with photothermally active NPs. The results of this study elucidate the potential role of photothermally active NPs as an effective anti-blastocystis agent. By using this approach, new therapeutic antiparasitic agents can be developed.
Collapse
Affiliation(s)
- Shaimaa M I Alexeree
- Department of Laser Application in Metrology, Photochemistry, and Agricultural, National Institute of Laser Enhanced Science, Cairo University, Giza, Egypt.
| | - Hanan M Abou-Seri
- Department of Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala E Shams El-Din
- Department of Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Doaa Youssef
- Department of Engineering Applications of Lasers, National Institute of Laser Enhanced Science, Cairo University, Giza, Egypt
| | - Marwa A Ramadan
- Department of Laser Application in Metrology, Photochemistry, and Agricultural, National Institute of Laser Enhanced Science, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Constantinescu S, Niculescu AG, Hudiță A, Grumezescu V, Rădulescu D, Bîrcă AC, Irimiciuc SA, Gherasim O, Holban AM, Gălățeanu B, Oprea OC, Ficai A, Vasile BȘ, Grumezescu AM, Bolocan A, Rădulescu R. Silver/Graphene Oxide Nanostructured Coatings for Modulating the Microbial Susceptibility of Fixation Devices Used in Knee Surgery. Int J Mol Sci 2023; 25:246. [PMID: 38203420 PMCID: PMC10779033 DOI: 10.3390/ijms25010246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Exploring silver-based and carbon-based nanomaterials' excellent intrinsic antipathogenic effects represents an attractive alternative for fabricating anti-infective formulations. Using chemical synthesis protocols, stearate-conjugated silver (Ag@C18) nanoparticles and graphene oxide nanosheets (nGOs) were herein obtained and investigated in terms of composition and microstructure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations revealed the formation of nanomaterials with desirable physical properties, while X-ray diffraction (XRD) analyses confirmed the high purity of synthesized nanomaterials. Further, laser-processed Ag@C18-nGO coatings were developed, optimized, and evaluated in terms of biological and microbiological outcomes. The highly biocompatible Ag@C18-nGO nanostructured coatings proved suitable candidates for the local modulation of biofilm-associated periprosthetic infections.
Collapse
Affiliation(s)
- Sorin Constantinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari St. 8, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.H.)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania; (V.G.); (S.A.I.); (O.G.)
| | - Dragoș Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari St. 8, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
| | - Stefan Andrei Irimiciuc
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania; (V.G.); (S.A.I.); (O.G.)
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania; (V.G.); (S.A.I.); (O.G.)
| | - Alina Maria Holban
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.H.)
- Microbiology and Immunology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, District 5, 77206 Bucharest, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania;
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania
| | - Alexandra Bolocan
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari St. 8, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Radu Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari St. 8, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| |
Collapse
|
6
|
Chircov C, Dumitru IA, Vasile BS, Oprea OC, Holban AM, Popescu RC. Microfluidic Synthesis of Magnetite Nanoparticles for the Controlled Release of Antibiotics. Pharmaceutics 2023; 15:2215. [PMID: 37765184 PMCID: PMC10536324 DOI: 10.3390/pharmaceutics15092215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/05/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Magnetite nanoparticles (MNPs) have been intensively studied for biomedical applications, especially as drug delivery systems for the treatment of infections. Additionally, they are characterized by intrinsic antimicrobial properties owing to their capacity to disrupt or penetrate the microbial cell wall and induce cell death. However, the current focus has shifted towards increasing the control of the synthesis reaction to ensure more uniform nanoparticle sizes and shapes. In this context, microfluidics has emerged as a potential candidate method for the controlled synthesis of nanoparticles. Thus, the aim of the present study was to obtain a series of antibiotic-loaded MNPs through a microfluidic device. The structural properties of the nanoparticles were investigated through X-ray diffraction (XRD) and, selected area electron diffraction (SAED), the morphology was evaluated through transmission electron microscopy (TEM) and high-resolution TEM (HR-TEM), the antibiotic loading was assessed through Fourier-transform infrared spectroscopy (FT-IR) and, and thermogravimetry and differential scanning calorimetry (TG-DSC) analyses, and. the release profiles of both antibiotics was determined through UV-Vis spectroscopy. The biocompatibility of the nanoparticles was assessed through the MTT assay on a BJ cell line, while the antimicrobial properties were investigated against the S. aureus, P. aeruginosa, and C. albicans strains. Results proved considerable uniformity of the antibiotic-containing nanoparticles, good biocompatibility, and promising antimicrobial activity. Therefore, this study represents a step forward towards the microfluidic development of highly effective nanostructured systems for antimicrobial therapies.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania;
- National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (B.S.V.); (O.-C.O.)
| | - Iulia Alexandra Dumitru
- Faculty of Engineering in Foreign Languages, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Bogdan Stefan Vasile
- National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (B.S.V.); (O.-C.O.)
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (B.S.V.); (O.-C.O.)
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Alina Maria Holban
- Microbiology and Immunology Department, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, 060101 Bucharest, Romania;
| | - Roxana Cristina Popescu
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
- Department of Life and Environmental Science, National Institute for R&D in Physics and Nuclear Engineering Horia Hulubei, 30 Reactorului, 077125 Magurele, Romania
| |
Collapse
|
7
|
Alharbi KH, Alharbi W, Alhayyani S, Roselin LS, Selvin R. Enhanced Oxidation of p-Toluidine Using Supported Zeolite Nanoparticles. Molecules 2023; 28:5737. [PMID: 37570707 PMCID: PMC10420039 DOI: 10.3390/molecules28155737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Supported nanomaterials are becoming increasingly important in many industrial processes because of the need to improve both the efficiency and environmental acceptability of industrial processes. The unique properties of supported nanomaterials have attracted researchers to develop efficient catalytic materials in nanoscale. The extremely small size of the particles maximizes the surface area exposed to the reactant, allowing more reactions to occur. The environmental hazards resulting from the conventional manufacturing procedures for organic fine chemicals and intermediates by classical oxidation catalysis using mineral acids have forced chemical industries to seek less polluting processes. The present study aimed to oxidize p-toluidine by hydrogen peroxide in the presence of magnetite supported on nanocrystalline titanium silicalite-1 (M/NTS) zeolite at ambient temperature. The products detected are 4,4'-dimethylazobenzene as major product and 4,4'-dimethylazoxybenzene as minor product. Good selectivity, low cost, low wastage of materials and enhanced environmental friendliness of heterogeneous magnetite nanoparticle supported zeolite catalysts were observed. The effect of various reaction parameters such as mole ratio, catalyst weight and reusability of catalyst were studied. At the optimum reaction conditions, the oxidation activity of M/NTS catalyst was compared with M/NS catalyst, and it was found that titanium in the framework of M/NTS provided higher activity and selectivity.
Collapse
Affiliation(s)
- Khadijah H. Alharbi
- Department of Chemistry, Science and Arts College, King Abdulaziz University, Rabigh 21911, Saudi Arabia; (W.A.); (S.A.); (L.S.R.)
| | - Walaa Alharbi
- Department of Chemistry, Science and Arts College, King Abdulaziz University, Rabigh 21911, Saudi Arabia; (W.A.); (S.A.); (L.S.R.)
| | - Sultan Alhayyani
- Department of Chemistry, Science and Arts College, King Abdulaziz University, Rabigh 21911, Saudi Arabia; (W.A.); (S.A.); (L.S.R.)
| | - L. Selva Roselin
- Department of Chemistry, Science and Arts College, King Abdulaziz University, Rabigh 21911, Saudi Arabia; (W.A.); (S.A.); (L.S.R.)
| | - Rosilda Selvin
- Department of Basic Sciences and Humanities, Don Bosco Institute of Technology, Kurla (W), Mumbai 400 070, India;
| |
Collapse
|
8
|
Piasecki B, Korona-Głowniak I, Kiełtyka-Dadasiewicz A, Ludwiczuk A. Composition and Anti- Helicobacter pylori Properties of Essential Oils Obtained from Selected Mentha Cultivars. Molecules 2023; 28:5690. [PMID: 37570659 PMCID: PMC10420633 DOI: 10.3390/molecules28155690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Helicobacter pylori infections are highly common amongst the global population. Such infections have been shown to be the cause of gastric ulcers and stomach carcinoma and, unfortunately, most cases are asymptomatic. Standard treatment requires antibiotics such as metronidazole or azithromycin to which many strains are now resistant. Mentha species have been used as a natural treatment for gastrointestinal diseases throughout history and essential oils (EOs) derived from these plants show promising results as potential antimicrobial agents. In this study, EOs obtained from the leaves and flowers of five cultivars of Mentha × piperita and M. spicata were examined by GC-MS. The investigated mints are representatives of four chemotypes: the menthol chemotype (M. × piperita 'Multimentha' and M. × piperita 'Swiss'), the piperitenone oxide chemotype (M. × piperita 'Almira'), the linalool chemotype (M. × piperita 'Granada'), and the carvone chemotype (M. spicata 'Moroccan'). The chemical composition of EOs from mint flowers and leaves was comparable with the exception of the Swiss cultivar. Menthol was the most abundant component in the leaves while menthone was highest in flowers. The H. pylori ATCC 43504 reference strain and 10 other H. pylori clinical strains were examined for their sensitivity to the EOs in addition to their major monoterpenoid components (menthol, menthone, carvone, dihydrocarvone, linalool, 1,8-cineole, and limonene). All tested mint EOs showed inhibitory activity against both the reference H. pylori ATCC 43504 strain (MIC 15.6-31.3 mg/L) and clinical H. pylori strains (MIC50/90 31.3-250 mg/L/62.5-500 mg/L). Among the reference monoterpenes, menthol (MIC50/90 7.8/31.3 mg/L) and carvone (MIC50/90 31.3/62.5 mg/L) had the highest anti-H. pylori activity, which also correlated with a higher activity of EOs containing these compounds (M. × piperita 'Swiss' and M. spicata 'Moroccan'). A synergistic and additive interaction between the most active EOs/compounds and antibiotics possibly points to a new plant-based anti-H. pylori treatment.
Collapse
Affiliation(s)
- Bartłomiej Piasecki
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland;
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland;
| | - Anna Kiełtyka-Dadasiewicz
- Department of Plant Production Technology and Commodity, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Agnieszka Ludwiczuk
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland;
| |
Collapse
|
9
|
Shi J, Zhang J, Wang C, Liu Y, Li J. Research progress on the magnetite nanoparticles in the fields of water pollution control and detection. CHEMOSPHERE 2023:139220. [PMID: 37327826 DOI: 10.1016/j.chemosphere.2023.139220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Magnetite nanoparticles (MNPs) have shown increasing application in the fields of water pollution control and detection due to their perfect combination of interfacial functionalities and physicochemical properties, such as surface interface adsorption, (synergistic) reduction, catalytic oxidation, and electrical chemistry. This review presents the research advances in the synthesis and modification methods of MNPs in recent years, systematically summarizes the performances of MNPs and their modified materials in terms of three technical systems, including single decontamination system, coupled reaction system, and electrochemical system. In addition, the progress of the key roles played by MNPs in adsorption, reduction, catalytic oxidative degradation and their coupling with zero-valent iron for the reduction of pollutants are described. Moreover, the application prospect of MNPs-based electrochemical working electrodes for detecting micro-pollutants in water were also discussed in detail. This review addresses that the construction of MNPs-based systems for water pollution control and detection should be adapted to the natures of the target pollutants in water. Finally, the following research directions of MNPs and their remaining challenges are outlooked. In general, this review will inspire MNPs researchers in different fields for effective control and detection of a variety of contaminants in water.
Collapse
Affiliation(s)
- Jianxuan Shi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jinhua Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| | - Chengze Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yiwei Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jinxiang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
10
|
Chircov C, Mincă MA, Serban AB, Bîrcă AC, Dolete G, Ene VL, Andronescu E, Holban AM. Zinc/Cerium-Substituted Magnetite Nanoparticles for Biomedical Applications. Int J Mol Sci 2023; 24:ijms24076249. [PMID: 37047223 PMCID: PMC10093860 DOI: 10.3390/ijms24076249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Numerous studies have reported the possibility of enhancing the properties of materials by incorporating foreign elements within their crystal lattice. In this context, while magnetite has widely known properties that have been used for various biomedical applications, the introduction of other metals within its structure could prospectively enhance its effectiveness. Specifically, zinc and cerium have demonstrated their biomedical potential through significant antioxidant, anticancer, and antimicrobial features. Therefore, the aim of the present study was to develop a series of zinc and/or cerium-substituted magnetite nanoparticles that could further be used in the medical sector. The nanostructures were synthesized through the co-precipitation method and their morpho-structural characteristics were evaluated through X-ray diffraction (XRD), inductively coupled plasma mass spectrometry (ICP-MS), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) analyses. Furthermore, the nanostructures were subjected to a ROS-Glo H2O2 assay for assessing their antioxidant potential, MTT assay for determining their anticancer effects, and antimicrobial testing against S. aureus, P. aeruginosa, and C. albicans strains. Results have proven promising for future biomedical applications, as the nanostructures inhibit oxidative stress in normal cells, with between two- and three-fold reduction and cell proliferation in tumor cells; a two-fold decrease in cell viability and microbial growth; an inhibition zone diameter of 4–6 mm and minimum inhibitory concentration (MIC) of 1–2 mg/mL.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Maria-Andreea Mincă
- Faculty of Medical Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Andreea Bianca Serban
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Horia Hulubei National R&D Institute for Physics and Nuclear Engineering, Reactorului Street No. 30, 077125 Magurele, Romania
- Doctoral School in Engineering and Applications of Lasers and Accelerators, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Vladimir-Lucian Ene
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Correspondence:
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Spl. Independentei, 050045 Bucharest, Romania
| | - Alina-Maria Holban
- Microbiology and Immunology Department, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, 060101 Bucharest, Romania
| |
Collapse
|
11
|
Hudiță A, Grumezescu V, Gherasim O, Grumezescu AM, Dorcioman G, Negut I, Oprea OC, Vasile BȘ, Gălățeanu B, Curuțiu C, Holban AM. MAPLE Processed Nanostructures for Antimicrobial Coatings. Int J Mol Sci 2022; 23:ijms232315355. [PMID: 36499682 PMCID: PMC9738358 DOI: 10.3390/ijms232315355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Despite their great benefits for debilitated patients, indwelling devices are prone to become easily colonized by resident and opportunistic microorganisms, which have the ability to attach to their surfaces and form highly specialized communities called biofilms. These are extremely resistant to host defense mechanisms and antibiotics, leading to treatment failure and device replacement, but also to life-threatening complications. In this study, we aimed to optimize a silica (SiO2)-coated magnetite (Fe3O4)-based nanosystem containing the natural antimicrobial agent, eugenol (E), suitable for MAPLE (matrix-assisted pulsed laser evaporation) deposition as a bioactive coating for biomedical applications. X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, and transmission electron microscopy investigations were employed to characterize the obtained nanosystems. The in vitro tests evidenced the superior biocompatibility of such nanostructured coatings, as revealed by their non-cytotoxic activity and ability to promote cellular proliferation and sustain normal cellular development of dermal fibroblasts. Moreover, the obtained nanocoatings did not induce proinflammatory events in human blood samples. Our studies demonstrated that Fe3O4 NPs can improve the antimicrobial activity of E, while the use of a SiO2 matrix may increase its efficiency over prolonged periods of time. The Fe3O4@SiO2 nanosystems showed excellent biocompatibility, sustaining human dermal fibroblasts' viability, proliferation, and typical architecture. More, the novel coatings lack proinflammatory potential as revealed by the absence of proinflammatory cytokine expression in response to human blood sample interactions.
Collapse
Affiliation(s)
- Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
- Correspondence:
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Gabriela Dorcioman
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Irina Negut
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Ovidiu-Cristian Oprea
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Carmen Curuțiu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei Street, 077206 Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei Street, 077206 Bucharest, Romania
| |
Collapse
|
12
|
Nanoparticles for Antimicrobial Agents Delivery-An Up-to-Date Review. Int J Mol Sci 2022; 23:ijms232213862. [PMID: 36430343 PMCID: PMC9696780 DOI: 10.3390/ijms232213862] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Infectious diseases constitute an increasing threat to public health and medical systems worldwide. Particularly, the emergence of multidrug-resistant pathogens has left the pharmaceutical arsenal unarmed to fight against such severe microbial infections. Thus, the context has called for a paradigm shift in managing bacterial, fungal, viral, and parasitic infections, leading to the collision of medicine with nanotechnology. As a result, renewed research interest has been noted in utilizing various nanoparticles as drug delivery vehicles, aiming to overcome the limitations of current treatment options. In more detail, numerous studies have loaded natural and synthetic antimicrobial agents into different inorganic, lipid, and polymeric-based nanomaterials and tested them against clinically relevant pathogens. In this respect, this paper reviews the most recently reported successfully fabricated nanoformulations that demonstrated a great potential against bacteria, fungi, viruses, and parasites of interest for human medicine.
Collapse
|
13
|
Zhang F, Zhou Y, Ding J. The current landscape of microRNAs (miRNAs) in bacterial pneumonia: opportunities and challenges. Cell Mol Biol Lett 2022; 27:70. [PMID: 35986232 PMCID: PMC9392286 DOI: 10.1186/s11658-022-00368-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022] Open
Abstract
MicroRNAs (miRNAs), which were initially discovered in Caenorhabditis elegans, can regulate gene expression by recognizing cognate sequences and interfering with the transcriptional or translational machinery. The application of bioinformatics tools for structural analysis and target prediction has largely driven the investigation of certain miRNAs. Notably, it has been found that certain miRNAs which are widely involved in the inflammatory response and immune regulation are closely associated with the occurrence, development, and outcome of bacterial pneumonia. It has been shown that certain miRNA techniques can be used to identify related targets and explore associated signal transduction pathways. This enhances the understanding of bacterial pneumonia, notably for "refractory" or drug-resistant bacterial pneumonia. Although these miRNA-based methods may provide a basis for the clinical diagnosis and treatment of this disease, they still face various challenges, such as low sensitivity, poor specificity, low silencing efficiency, off-target effects, and toxic reactions. The opportunities and challenges of these methods have been completely reviewed, notably in bacterial pneumonia. With the continuous improvement of the current technology, the miRNA-based methods may surmount the aforementioned limitations, providing promising support for the clinical diagnosis and treatment of "refractory" or drug-resistant bacterial pneumonia.
Collapse
Affiliation(s)
- Fan Zhang
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yunxin Zhou
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Junying Ding
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
14
|
Burdușel AC, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022; 14:770. [PMID: 35456604 PMCID: PMC9027776 DOI: 10.3390/pharmaceutics14040770] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Modern biomedicine aims to develop integrated solutions that use medical, biotechnological, materials science, and engineering concepts to create functional alternatives for the specific, selective, and accurate management of medical conditions. In the particular case of tissue engineering, designing a model that simulates all tissue qualities and fulfills all tissue requirements is a continuous challenge in the field of bone regeneration. The therapeutic protocols used for bone healing applications are limited by the hierarchical nature and extensive vascularization of osseous tissue, especially in large bone lesions. In this regard, nanotechnology paves the way for a new era in bone treatment, repair and regeneration, by enabling the fabrication of complex nanostructures that are similar to those found in the natural bone and which exhibit multifunctional bioactivity. This review aims to lay out the tremendous outcomes of using inorganic nanoparticles in bone healing applications, including bone repair and regeneration, and modern therapeutic strategies for bone-related pathologies.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90–92 Panduri Road, 050657 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
15
|
Nanoparticles—Attractive Carriers of Antimicrobial Essential Oils. Antibiotics (Basel) 2022; 11:antibiotics11010108. [PMID: 35052985 PMCID: PMC8773333 DOI: 10.3390/antibiotics11010108] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Microbial pathogens are the most prevalent cause of chronic infections and fatalities around the world. Antimicrobial agents including antibiotics have been frequently utilized in the treatment of infections due to their exceptional outcomes. However, their widespread use has resulted in the emergence of multidrug-resistant strains of bacteria, fungi, viruses, and parasites. Furthermore, due to inherent resistance to antimicrobial drugs and the host defence system, the advent of new infectious diseases, chronic infections, and the occurrence of biofilms pose a tougher challenge to the current treatment line. Essential oils (EOs) and their biologically and structurally diverse constituents provide a distinctive, inexhaustible, and novel source of antibacterial, antiviral, antifungal, and antiparasitic agents. However, due to their volatile nature, chemical susceptibility, and poor solubility, their development as antimicrobials is limited. Nanoparticles composed of biodegradable polymeric and inorganic materials have been studied extensively to overcome these limitations. Nanoparticles are being investigated as nanocarriers for antimicrobial delivery, antimicrobial coatings for food products, implantable devices, and medicinal materials in dressings and packaging materials due to their intrinsic capacity to overcome microbial resistance. Essential oil-loaded nanoparticles may offer the potential benefits of synergism in antimicrobial activity, high loading capacity, increased solubility, decreased volatility, chemical stability, and enhancement of the bioavailability and shelf life of EOs and their constituents. This review focuses on the potentiation of the antimicrobial activity of essential oils and their constituents in nanoparticulate delivery systems for a wide range of applications, such as food preservation, packaging, and alternative treatments for infectious diseases.
Collapse
|
16
|
Spirescu VA, Niculescu AG, Slave Ș, Bîrcă AC, Dorcioman G, Grumezescu V, Holban AM, Oprea OC, Vasile BȘ, Grumezescu AM, Nica IC, Stan MS, Andronescu E. Anti-Biofilm Coatings Based on Chitosan and Lysozyme Functionalized Magnetite Nanoparticles. Antibiotics (Basel) 2021; 10:1269. [PMID: 34680849 PMCID: PMC8532956 DOI: 10.3390/antibiotics10101269] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/25/2022] Open
Abstract
Biofilms represent a common and increasingly challenging problem in healthcare practices worldwide, producing persistent and difficult to manage infections. Researchers have started developing antibiotic-free treatment alternatives in order to decrease the risk of resistant microbial strain selection and for the efficient management of antibiotic tolerant biofilm infections. The present study reports the fabrication and characterization of magnetite-based nanostructured coatings for producing biofilm-resistant surfaces. Specifically, magnetite nanoparticles (Fe3O4) were functionalized with chitosan (CS) and were blended with lysozyme (LyZ) and were deposited using the matrix-assisted pulsed laser evaporation (MAPLE) technique. A variety of characterization techniques were employed to investigate the physicochemical properties of both nanoparticles and nanocoatings. The biological characterization of the coatings assessed through cell viability and antimicrobial tests showed biocompatibility on osteoblasts as well as antiadhesive and antibiofilm activity against both Gram-negative and Gram-positive bacterial strains and no cytotoxic effect against human-cultured diploid cells.
Collapse
Affiliation(s)
- Vera Alexandra Spirescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (A.-G.N.); (Ș.S.); (A.C.B.); (B.Ș.V.); (E.A.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (A.-G.N.); (Ș.S.); (A.C.B.); (B.Ș.V.); (E.A.)
| | - Ștefan Slave
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (A.-G.N.); (Ș.S.); (A.C.B.); (B.Ș.V.); (E.A.)
| | - Alexandra Cătalina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (A.-G.N.); (Ș.S.); (A.C.B.); (B.Ș.V.); (E.A.)
| | - Gabriela Dorcioman
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (G.D.); (V.G.)
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (G.D.); (V.G.)
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania;
| | - Ovidiu-Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (A.-G.N.); (Ș.S.); (A.C.B.); (B.Ș.V.); (E.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (A.-G.N.); (Ș.S.); (A.C.B.); (B.Ș.V.); (E.A.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania; (I.C.N.); (M.S.S.)
| | - Ionela Cristina Nica
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania; (I.C.N.); (M.S.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Miruna Silvia Stan
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania; (I.C.N.); (M.S.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (A.-G.N.); (Ș.S.); (A.C.B.); (B.Ș.V.); (E.A.)
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania; (I.C.N.); (M.S.S.)
| |
Collapse
|
17
|
Chircov C, Bîrcă AC, Grumezescu AM, Vasile BS, Oprea O, Nicoară AI, Yang CH, Huang KS, Andronescu E. Synthesis of Magnetite Nanoparticles through a Lab-On-Chip Device. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5906. [PMID: 34640303 PMCID: PMC8510126 DOI: 10.3390/ma14195906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 01/21/2023]
Abstract
Magnetite nanoparticles (MNPs) represent one of the most intensively studied types of iron oxide nanoparticles in various fields, including biomedicine, pharmaceutics, bioengineering, and industry. Since their properties in terms of size, shape, and surface charge significantly affects their efficiency towards the envisaged application, it is fundamentally important to develop a new synthesis route that allows for the control and modulation of the nanoparticle features. In this context, the aim of the present study was to develop a new method for the synthesis of MNPs. Specifically, a microfluidic lab-on-chip (LoC) device was used to obtain MNPs with controlled properties. The study investigated the influence of iron precursor solution concentration and flowed onto the final properties of the nanomaterials. The synthesized MNPs were characterized in terms of size, morphology, structure, composition, and stability. Results proved the formation of magnetite as a single mineral phase. Moreover, the uniform spherical shape and narrow size distribution were demonstrated. Optimal characteristics regarding MNPs crystallinity, uniformity, and thermal stability were obtained at higher concentrations and lower flows. In this manner, the potential of the LoC device is a promising tool for the synthesis of nanomaterials by ensuring the necessary uniformity for all final applications.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (B.S.V.); (A.I.N.); (E.A.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (B.S.V.); (A.I.N.); (E.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (B.S.V.); (A.I.N.); (E.A.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 54 Spl. Independentei, 050045 Bucharest, Romania
| | - Bogdan Stefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (B.S.V.); (A.I.N.); (E.A.)
| | - Ovidiu Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania;
| | - Adrian Ionuț Nicoară
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (B.S.V.); (A.I.N.); (E.A.)
| | - Chih-Hui Yang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 824, Taiwan;
- Pharmacy Department of E-Da Hospital, Kaohsiung 824, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300, Taiwan
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 840301, Taiwan;
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (B.S.V.); (A.I.N.); (E.A.)
- Academy of Romanian Scientists, 54 Spl. Independentei, 050045 Bucharest, Romania
| |
Collapse
|
18
|
Spirescu VA, Șuhan R, Niculescu AG, Grumezescu V, Negut I, Holban AM, Oprea OC, Bîrcă AC, Vasile BȘ, Grumezescu AM, Bejenaru LE, Mogoşanu GD, Bejenaru C, Balaure PC, Andronescu E, Mogoantă L. Biofilm-Resistant Nanocoatings Based on ZnO Nanoparticles and Linalool. NANOMATERIALS 2021; 11:nano11102564. [PMID: 34685006 PMCID: PMC8540015 DOI: 10.3390/nano11102564] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Biofilms represent an increasing challenge in the medical practice worldwide, imposing a serious threat to public health. As bacterial strains have developed antibiotic resistance, researcher’s attention has been extensively focused on developing more efficient antimicrobial strategies. In this context, the present study reports the synthesis, physicochemical characterization, ex vivo biodistribution, and in vitro evaluation of the capacity of nanostructured surfaces based on zinc oxide (ZnO) and biologically active molecules to modulate clinically relevant microbial biofilms. ZnO nanoparticles (NPs) were synthesized through a co-precipitation method without thermal treatment. The matrix-assisted pulsed laser evaporation (MAPLE) was applied for preparing nanostructured coatings based on ZnO NPs surface modified with linalool that were further characterized by X-ray diffraction (XRD), thermogravimetric analysis with differential scanning calorimetry (TGA-DSC), scanning electron microscopy (SEM), transmission electron microscopy with selected area electron diffraction (TEM-SAED), Fourier-transform infrared spectroscopy (FT-IR), and infrared microscopy (IRM). Histological analyses carried out at 7 days and 14 days after the intraperitoneal administration of linalool modified ZnO NPs revealed the absence of the latter from the brain, kidney, liver, lung, myocardium, and pancreas. Through in vitro assays on prokaryotic cells, it was proven that ZnO coatings hinder microbial biofilm formation of both Gram-positive and Gram-negative bacteria strains.
Collapse
Affiliation(s)
- Vera Alexandra Spirescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (R.Ș.); (A.-G.N.); (A.C.B.); (B.Ș.V.); (A.M.G.); (E.A.)
| | - Raluca Șuhan
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (R.Ș.); (A.-G.N.); (A.C.B.); (B.Ș.V.); (A.M.G.); (E.A.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (R.Ș.); (A.-G.N.); (A.C.B.); (B.Ș.V.); (A.M.G.); (E.A.)
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (V.G.); (I.N.)
| | - Irina Negut
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (V.G.); (I.N.)
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania;
| | - Ovidiu-Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (R.Ș.); (A.-G.N.); (A.C.B.); (B.Ș.V.); (A.M.G.); (E.A.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (R.Ș.); (A.-G.N.); (A.C.B.); (B.Ș.V.); (A.M.G.); (E.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (R.Ș.); (A.-G.N.); (A.C.B.); (B.Ș.V.); (A.M.G.); (E.A.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (L.E.B.); (G.D.M.)
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (L.E.B.); (G.D.M.)
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Paul Cătălin Balaure
- Department of Organic Chemistry, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Correspondence:
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (R.Ș.); (A.-G.N.); (A.C.B.); (B.Ș.V.); (A.M.G.); (E.A.)
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Laurenţiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
19
|
Chircov C, Matei MF, Neacșu IA, Vasile BS, Oprea OC, Croitoru AM, Trușcă RD, Andronescu E, Sorescu I, Bărbuceanu F. Iron Oxide-Silica Core-Shell Nanoparticles Functionalized with Essential Oils for Antimicrobial Therapies. Antibiotics (Basel) 2021; 10:1138. [PMID: 34572720 PMCID: PMC8467872 DOI: 10.3390/antibiotics10091138] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
Recent years have witnessed a tremendous interest in the use of essential oils in biomedical applications due to their intrinsic antimicrobial, antioxidant, and anticancer properties. However, their low aqueous solubility and high volatility compromise their maximum potential, thus requiring the development of efficient supports for their delivery. Hence, this manuscript focuses on developing nanostructured systems based on Fe3O4@SiO2 core-shell nanoparticles and three different types of essential oils, i.e., thyme, rosemary, and basil, to overcome these limitations. Specifically, this work represents a comparative study between co-precipitation and microwave-assisted hydrothermal methods for the synthesis of Fe3O4@SiO2 core-shell nanoparticles. All magnetic samples were characterized by X-ray diffraction (XRD), gas chromatography-mass spectrometry (GC-MS), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetry and differential scanning calorimetry (TG-DSC), and vibrating sample magnetometry (VSM) to study the impact of the synthesis method on the nanoparticle formation and properties, in terms of crystallinity, purity, size, morphology, stability, and magnetization. Moreover, the antimicrobial properties of the synthesized nanocomposites were assessed through in vitro tests on Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. In this manner, this study demonstrated the efficiency of the core-shell nanostructured systems as potential applications in antimicrobial therapies.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (I.A.N.); (B.S.V.); (A.-M.C.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Maria-Florentina Matei
- Faculty of Medical Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Ionela Andreea Neacșu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (I.A.N.); (B.S.V.); (A.-M.C.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Bogdan Stefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (I.A.N.); (B.S.V.); (A.-M.C.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Ovidiu-Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania;
| | - Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (I.A.N.); (B.S.V.); (A.-M.C.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Roxana-Doina Trușcă
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (I.A.N.); (B.S.V.); (A.-M.C.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 54 Spl. Independentei, 050045 Bucharest, Romania
| | - Ionuț Sorescu
- Institute for Diagnosis and Animal Health, 050557 Bucharest, Romania; (I.S.); (F.B.)
| | - Florica Bărbuceanu
- Institute for Diagnosis and Animal Health, 050557 Bucharest, Romania; (I.S.); (F.B.)
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 105 Splaiul Independentei, 050097 Bucharest, Romania
| |
Collapse
|
20
|
Niculescu AG, Grumezescu AM. Natural Compounds for Preventing Ear, Nose, and Throat-Related Oral Infections. PLANTS 2021; 10:plants10091847. [PMID: 34579380 PMCID: PMC8468404 DOI: 10.3390/plants10091847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022]
Abstract
Oral health is an essential element in maintaining general well-being. By preserving the complex equilibrium within the oral microbial community, commensal microorganisms can protect against extrinsic pathogenic threats. However, when an imbalance occurs, the organism is susceptible to a broad range of infections. Synthetic drugs can be administered to help the body fight against the fungal, bacterial, or viral burden. Nonetheless, they may produce undesirable consequences such as toxicity, adverse effects, and drug resistance. In this respect, research has focused on finding safer and more efficient alternatives. Particularly, increasing attention has been drawn towards developing novel formulations based on natural compounds. This paper reviews the plant-based, algae-based, and beehive products investigated for their antimicrobial properties, aiming to thoroughly present the state of the art on oral infection prevention in the ear, nose, and throat (ENT) field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 50044 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-3997
| |
Collapse
|
21
|
Yousefi SR, Alshamsi HA, Amiri O, Salavati-Niasari M. Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116405] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Spirescu VA, Chircov C, Grumezescu AM, Vasile BȘ, Andronescu E. Inorganic Nanoparticles and Composite Films for Antimicrobial Therapies. Int J Mol Sci 2021; 22:4595. [PMID: 33925617 PMCID: PMC8123905 DOI: 10.3390/ijms22094595] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
The development of drug-resistant microorganisms has become a critical issue for modern medicine and drug discovery and development with severe socio-economic and ecological implications. Since standard and conventional treatment options are generally inefficient, leading to infection persistence and spreading, novel strategies are fundamentally necessary in order to avoid serious global health problems. In this regard, both metal and metal oxide nanoparticles (NPs) demonstrated increased effectiveness as nanobiocides due to intrinsic antimicrobial properties and as nanocarriers for antimicrobial drugs. Among them, gold, silver, copper, zinc oxide, titanium oxide, magnesium oxide, and iron oxide NPs are the most preferred, owing to their proven antimicrobial mechanisms and bio/cytocompatibility. Furthermore, inorganic NPs can be incorporated or attached to organic/inorganic films, thus broadening their application within implant or catheter coatings and wound dressings. In this context, this paper aims to provide an up-to-date overview of the most recent studies investigating inorganic NPs and their integration into composite films designed for antimicrobial therapies.
Collapse
Affiliation(s)
- Vera Alexandra Spirescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| |
Collapse
|
23
|
Niculescu AG, Chircov C, Grumezescu AM. Magnetite nanoparticles: Synthesis methods - A comparative review. Methods 2021; 199:16-27. [PMID: 33915292 DOI: 10.1016/j.ymeth.2021.04.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
Iron oxide-based nanoparticles have gathered tremendous scientific interest towards their application in a variety of fields. Magnetite has been particularly investigated due to its readily availability, versatility, biocompatibility, biodegradability, and special magnetic properties. As the behavior of nano-scale magnetite is in direct relation to its shape, size, and surface chemistry, accurate control over the nanoparticle synthesis process is essential in obtaining quality products for the intended end uses. Several chemical, physical, and biological methods are found in the literature and implemented in the laboratory or industrial practice. However, non-conventional methods emerged in recent years to bring unprecedented synthesis performances in terms of better-controlled morphologies, sizes, and size distribution. Particularly, microfluidic methods represent a promising technology towards smaller reagent volume use, waste reduction, precise control of fluid mixing, and ease of automation, overcoming some of the major drawbacks of conventional bulk methods. This review aims to present the main properties, applications, and synthesis methods of magnetite, together with the newest advancements in this field.
Collapse
Affiliation(s)
| | - Cristina Chircov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania.
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania.
| |
Collapse
|
24
|
Chircov C, Miclea II, Grumezescu V, Grumezescu AM. Essential Oils for Bone Repair and Regeneration-Mechanisms and Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1867. [PMID: 33918697 PMCID: PMC8069393 DOI: 10.3390/ma14081867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Although bone possesses a remarkable capacity for self-remodeling and self-healing of small defects, the continuously increasing growth of bone diseases in the elderly population is becoming a significant burden, affecting individual life quality and society. Conventional treatment options involve surgical procedures for repair and reconstruction, local debridement, autografts or allografts, bone transport, Masquelet's two-stage reconstructions, and vascularized bone transplants. However, as such approaches often lead to disruptions of bone-regeneration processes and microbial contaminations and are often inefficient, researchers focus on developing bone-regenerative strategies and identifying novel therapeutic agents that could aid the bone-healing process. In this regard, plant-derived biocompounds, especially essential oils (EOs), have received great scientific attention in recent years, owing to their antioxidant, anti-inflammatory, and antimicrobial effects. Current studies focus on either the direct application of EOs on bone tissue or the introduction of EOs as bioactive compounds in bone scaffolds or as coatings for bone implants. Some of the EOs investigated involve St. John's wort, rosemary, thyme, ylang, white poplar, eucalyptus, lavender, and grape seed. In this context, the present paper aims to provide an overview of the main mechanisms involved in bone repair and regeneration and the potential of EOs to address and enhance these mechanisms.
Collapse
Affiliation(s)
- Cristina Chircov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (C.C.); (I.I.M.)
| | - Ion Iulian Miclea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (C.C.); (I.I.M.)
| | - Valentina Grumezescu
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri Road, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (C.C.); (I.I.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri Road, 050657 Bucharest, Romania
| |
Collapse
|
25
|
MAPLE Coatings Embedded with Essential Oil-Conjugated Magnetite for Anti-Biofilm Applications. MATERIALS 2021; 14:ma14071612. [PMID: 33806228 PMCID: PMC8036921 DOI: 10.3390/ma14071612] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
The present study reports on the development and evaluation of nanostructured composite coatings of polylactic acid (PLA) embedded with iron oxide nanoparticles (Fe3O4) modified with Eucalyptus (Eucalyptus globulus) essential oil. The co-precipitation method was employed to synthesize the magnetite particles conjugated with Eucalyptus natural antibiotic (Fe3O4@EG), while their composition and microstructure were investigated using grazing incidence X-ray diffraction (GIXRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The matrix-assisted pulsed laser evaporation (MAPLE) technique was further employed to obtain PLA/Fe3O4@EG thin films. Optimal experimental conditions for laser processing were established by complementary infrared microscopy (IRM) and scanning electron microscopy (SEM) investigations. The in vitro biocompatibility with eukaryote cells was proven using mesenchymal stem cells, while the anti-biofilm efficiency of composite PLA/Fe3O4@EG coatings was assessed against Gram-negative and Gram-positive pathogens.
Collapse
|