1
|
Pan KW, Chen HC. Perinuclear assembly of vimentin intermediate filaments induces cancer cell nuclear dysmorphia. J Biol Chem 2024:107981. [PMID: 39542246 DOI: 10.1016/j.jbc.2024.107981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/15/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
Nuclear dysmorphia, characterized by crumpled or lobulated polymorphic nuclear shapes, has been used as an index for the malignant grades of certain cancers. The expression of vimentin, a type-III intermediate filament protein, is a hallmark of the epithelial-to-mesenchymal transition. However, it remains unclear whether vimentin is involved in cancer cell nuclear dysmorphia. In this study, we found that vimentin intermediate filaments (VIFs) frequently accumulated at the concave of dysmorphic nucleus in breast cancer MDA-MB-231 cells. Depletion of vimentin apparently restored the nuclear shape of the cells, which was devastated by re-expression of vimentin, but not its assembly-defective Y117D mutant. Depletion of plectin, a cytoskeletal linker, partially prevented the perinuclear accumulation of VIFs and concomitantly restored the nuclear shape of the cells. In addition, depletion of vimentin in lung cancer A549 cells largely prevented nuclear dysmorphia during the epithelial-to-mesenchymal transition induced by TGFβ. Moreover, we found that VIF-mediated nuclear dysmorphia led to defects in DNA repair. Together, our results unveil a novel role of VIFs in cancer cell nuclear dysmorphia, which is associated with genome instability.
Collapse
Affiliation(s)
- Ke-Wei Pan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hong-Chen Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
2
|
Du G, Zhang C, Cao X, Li L, Zhang Y, Shang Y, Wu J. Generation and application of immortalized sheep fetal fibroblast cell line. BMC Vet Res 2024; 20:198. [PMID: 38745180 PMCID: PMC11092253 DOI: 10.1186/s12917-024-04054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Primary sheep fetal fibroblasts (SFFCs) have emerged as a valuable resource for investigating the molecular and pathogenic mechanisms of orf viruses (ORFV). However, their utilization is considerably restricted due to the exorbitant expenses associated with their isolation and culture, their abbreviated lifespan, and the laborious procedure. RESULTS In our investigation, the primary SFFCs were obtained and immortalized by introducing a lentiviral recombinant plasmid containing the large T antigen from simian virus 40 (SV40). The expression of fibronectin and vimentin proteins, activity of SV40 large T antigen, cell proliferation assays, and analysis of programmed cell death revealed that the immortalized large T antigen SFFCs (TSFFCs) maintained the same physiological characteristics and biological functions as the primary SFFCs. Moreover, TSFFCs demonstrated robust resistance to apoptosis, extended lifespan, and enhanced proliferative activity compared to primary SFFCs. Notably, the primary SFFCs did not undergo in vitro transformation or exhibit any indications of malignancy in nude mice. Furthermore, the immortalized TSFFCs displayed live ORFV vaccine susceptibility. CONCLUSIONS Immortalized TSFFCs present valuable in vitro models for exploring the characteristics of ORFV using various techniques. This indicates their potential for secure utilization in future studies involving virus isolation, vaccine development, and drug screening.
Collapse
Affiliation(s)
- Guoyu Du
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730046, China
| | - Cheng Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xiaoan Cao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Lingxia Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730046, China
| | - Youjun Shang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Jinyan Wu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
3
|
Grolleman J, van Engeland NCA, Raza M, Azimi S, Conte V, Sahlgren CM, Bouten CVC. Environmental stiffness restores mechanical homeostasis in vimentin-depleted cells. Sci Rep 2023; 13:18374. [PMID: 37884575 PMCID: PMC10603057 DOI: 10.1038/s41598-023-44835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Recent experimental evidence indicates a role for the intermediate filament vimentin in regulating cellular mechanical homeostasis, but its precise contribution remains to be discovered. Mechanical homeostasis requires a balanced bi-directional interplay between the cell's microenvironment and the cellular morphological and mechanical state-this balance being regulated via processes of mechanotransduction and mechanoresponse, commonly referred to as mechanoreciprocity. Here, we systematically analyze vimentin-expressing and vimentin-depleted cells in a swatch of in vitro cellular microenvironments varying in stiffness and/or ECM density. We find that vimentin-expressing cells maintain mechanical homeostasis by adapting cellular morphology and mechanics to micromechanical changes in the microenvironment. However, vimentin-depleted cells lose this mechanoresponse ability on short timescales, only to reacquire it on longer time scales. Indeed, we find that the morphology and mechanics of vimentin-depleted cell in stiffened microenvironmental conditions can get restored to the homeostatic levels of vimentin-expressing cells. Additionally, we observed vimentin-depleted cells increasing collagen matrix synthesis and its crosslinking, a phenomenon which is known to increase matrix stiffness, and which we now hypothesize to be a cellular compensation mechanism for the loss of vimentin. Taken together, our findings provide further insight in the regulating role of intermediate filament vimentin in mediating mechanoreciprocity and mechanical homeostasis.
Collapse
Affiliation(s)
- Janine Grolleman
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands
| | - Nicole C A van Engeland
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands
- Faculty of Science and Engineering, Cell Biology, Åbobo Akademi University, 20520, Turku, Finland
| | - Minahil Raza
- Faculty of Science and Engineering, Information Technology, Åbobo Akademi University, 20500, Turku, Finland
| | - Sepinoud Azimi
- Faculty of Science and Engineering, Information Technology, Åbobo Akademi University, 20500, Turku, Finland
- Department of Information and Communication Technology, Technology, Policy and Management, Delft University of Technology, Delft, 2600GA, The Netherlands
| | - Vito Conte
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands.
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, 08036, Barcelona, Spain.
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands.
- Faculty of Science and Engineering, Cell Biology, Åbobo Akademi University, 20520, Turku, Finland.
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands.
| |
Collapse
|
4
|
Ndiaye AB, Koenderink GH, Shemesh M. Intermediate Filaments in Cellular Mechanoresponsiveness: Mediating Cytoskeletal Crosstalk From Membrane to Nucleus and Back. Front Cell Dev Biol 2022; 10:882037. [PMID: 35478961 PMCID: PMC9035595 DOI: 10.3389/fcell.2022.882037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
The mammalian cytoskeleton forms a mechanical continuum that spans across the cell, connecting the cell surface to the nucleus via transmembrane protein complexes in the plasma and nuclear membranes. It transmits extracellular forces to the cell interior, providing mechanical cues that influence cellular decisions, but also actively generates intracellular forces, enabling the cell to probe and remodel its tissue microenvironment. Cells adapt their gene expression profile and morphology to external cues provided by the matrix and adjacent cells as well as to cell-intrinsic changes in cytoplasmic and nuclear volume. The cytoskeleton is a complex filamentous network of three interpenetrating structural proteins: actin, microtubules, and intermediate filaments. Traditionally the actin cytoskeleton is considered the main contributor to mechanosensitivity. This view is now shifting owing to the mounting evidence that the three cytoskeletal filaments have interdependent functions due to cytoskeletal crosstalk, with intermediate filaments taking a central role. In this Mini Review we discuss how cytoskeletal crosstalk confers mechanosensitivity to cells and tissues, with a particular focus on the role of intermediate filaments. We propose a view of the cytoskeleton as a composite structure, in which cytoskeletal crosstalk regulates the local stability and organization of all three filament families at the sub-cellular scale, cytoskeletal mechanics at the cellular scale, and cell adaptation to external cues at the tissue scale.
Collapse
Affiliation(s)
| | | | - Michal Shemesh
- *Correspondence: Michal Shemesh, ; Gijsje H. Koenderink,
| |
Collapse
|
5
|
Romero JJ, De Rossi MC, Oses C, Echegaray CV, Verneri P, Francia M, Guberman A, Levi V. Nucleus-cytoskeleton communication impacts on OCT4-chromatin interactions in embryonic stem cells. BMC Biol 2022; 20:6. [PMID: 34996451 PMCID: PMC8742348 DOI: 10.1186/s12915-021-01207-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The cytoskeleton is a key component of the system responsible for transmitting mechanical cues from the cellular environment to the nucleus, where they trigger downstream responses. This communication is particularly relevant in embryonic stem (ES) cells since forces can regulate cell fate and guide developmental processes. However, little is known regarding cytoskeleton organization in ES cells, and thus, relevant aspects of nuclear-cytoskeletal interactions remain elusive. RESULTS We explored the three-dimensional distribution of the cytoskeleton in live ES cells and show that these filaments affect the shape of the nucleus. Next, we evaluated if cytoskeletal components indirectly modulate the binding of the pluripotency transcription factor OCT4 to chromatin targets. We show that actin depolymerization triggers OCT4 binding to chromatin sites whereas vimentin disruption produces the opposite effect. In contrast to actin, vimentin contributes to the preservation of OCT4-chromatin interactions and, consequently, may have a pro-stemness role. CONCLUSIONS Our results suggest roles of components of the cytoskeleton in shaping the nucleus of ES cells, influencing the interactions of the transcription factor OCT4 with the chromatin and potentially affecting pluripotency and cell fate.
Collapse
Affiliation(s)
- Juan José Romero
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - María Cecilia De Rossi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Camila Vázquez Echegaray
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Paula Verneri
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Marcos Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Alejandra Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Guzik MW. Polyhydroxyalkanoates, bacterially synthesized polymers, as a source of chemical compounds for the synthesis of advanced materials and bioactive molecules. Appl Microbiol Biotechnol 2021; 105:7555-7566. [PMID: 34536102 PMCID: PMC8502142 DOI: 10.1007/s00253-021-11589-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/26/2022]
Abstract
Research into polyhydroxyalkanoates (PHAs) is growing exponentially. These bacterially derived polyesters offer a spectrum of possible applications, such as in manufacturing of daily-use objects, production of medical devices and implantable objects, or as synthons in chemical and pharmaceutical industries. Thanks to their broad physicochemical features, PHAs can be seen as polymers of the future, which can replace traditional petrochemical equivalents. As they are synthesized by bacteria through fermentation processes, these polyesters can be obtained from virtually any carbon source in a sustainable manner. Characterized by biodegradability and biocompatibility, they are used in many industries, ranging from production of everyday objects to medical applications. Furthermore, as they are built from bioactive monomers, namely (R)-3-hydroxyacids, they provide a platform for the synthesis of advanced chemical compounds. In this mini review, the reader will be acquainted with recent studies conducted at the Jerzy Haber Institute of Catalysis and Surface Chemistry of the Polish Academy of Sciences in collaboration with other groups that have contributed to the development of PHA-based medical materials, bioactive molecules and novel green solvents derived from PHA monomers.Key points• Polyhydroxyalkanoates are emerging polymers for biomedical applications• Polyhydroxyalkanoates can be modified easily to provide novel materials• (R)-3-Hydroxyacids are good synthons for bioactive substances and green solvents.
Collapse
Affiliation(s)
- Maciej W Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland.
| |
Collapse
|
7
|
Feliksiak K, Solarz D, Guzik M, Zima A, Rajfur Z, Witko T. Vimentin Cytoskeleton Architecture Analysis on Polylactide and Polyhydroxyoctanoate Substrates for Cell Culturing. Int J Mol Sci 2021; 22:6821. [PMID: 34201927 PMCID: PMC8268722 DOI: 10.3390/ijms22136821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Polylactide (PLA), widely used in bioengineering and medicine, gained popularity due to its biocompatibility and biodegradability. Natural origin and eco-friendly background encourage the search of novel materials with such features, such as polyhydroxyoctanoate (P(3HO)), a polyester of bacterial origin. Physicochemical features of both P(3HO) and PLA have an impact on cellular response 32, i.e., adhesion, migration, and cell morphology, based on the signaling and changes in the architecture of the three cytoskeletal networks: microfilaments (F-actin), microtubules, and intermediate filaments (IF). To investigate the role of IF in the cellular response to the substrate, we focused on vimentin intermediate filaments (VIFs), present in mouse embryonic fibroblast cells (MEF). VIFs maintain cell integrity and protect it from external mechanical stress, and also take part in the transmission of signals from the exterior of the cell to its inner organelles, which is under constant investigation. Physiochemical properties of a substrate have an impact on cells' morphology, and thus on cytoskeleton network signaling and assembly. In this work, we show how PLA and P(3HO) crystallinity and hydrophilicity influence VIFs, and we identify that two different types of vimentin cytoskeleton architecture: network "classic" and "nutshell-like" are expressed by MEFs in different numbers of cells depending on substrate features.
Collapse
Affiliation(s)
- Karolina Feliksiak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland; (K.F.); (D.S.)
| | - Daria Solarz
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland; (K.F.); (D.S.)
| | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Cracow, Poland;
| | - Aneta Zima
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Cracow, Poland;
| | - Zenon Rajfur
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland; (K.F.); (D.S.)
- Jagiellonian Center of Biomedical Imaging, Jagiellonian University, 30-348 Cracow, Poland
| | - Tomasz Witko
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Cracow, Poland;
| |
Collapse
|