1
|
Szczesna M, Kirsz K, Zieba DA. Pregnancy-induced mechanisms regulating central and peripheral leptin sensitivity: lessons from sheep. Domest Anim Endocrinol 2024; 91:106910. [PMID: 39729914 DOI: 10.1016/j.domaniend.2024.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
This review describes various aspects of the leptin resistance phenomenon and related physiological mechanisms that occur in pregnant sheep. Its main aim is to analyze the mechanisms that determine the occurrence of pregnancy-induced leptin resistance and to investigate the accompanying processes that affect the physiology of pregnancy and lactation in livestock. The main purpose of this analysis was to comprehensively understand the phenomenon of leptin resistance, including the causes of its emergence and its effects on nonrodent organisms.
Collapse
Affiliation(s)
- Malgorzata Szczesna
- Department of Animal Biotechnology, Faculty of Animal Sciences, University of Agriculture in Krakow, Mickiewicza 21 31-120, Krakow, Poland.
| | - Katarzyna Kirsz
- Department of Animal Biotechnology, Faculty of Animal Sciences, University of Agriculture in Krakow, Mickiewicza 21 31-120, Krakow, Poland.
| | - Dorota A Zieba
- Department of Animal Biotechnology, Faculty of Animal Sciences, University of Agriculture in Krakow, Mickiewicza 21 31-120, Krakow, Poland.
| |
Collapse
|
2
|
The Effect of Leptin on the Blood Hormonal Profile (Cortisol, Insulin, Thyroid Hormones) of the Ewe in Acute Inflammation in Two Different Photoperiodical Conditions. Int J Mol Sci 2022; 23:ijms23158109. [PMID: 35897684 PMCID: PMC9331064 DOI: 10.3390/ijms23158109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 01/25/2023] Open
Abstract
As a day animal with sensitivity to inflammation similar to that of humans, the sheep may highly outperform the rodent model in inflammation studies. Additionally, seasonality makes sheep an interesting model in endocrinology research. Although there are studies concerning inflammation’s influence on leptin secretion and vice versa, a ewe model, with its possible ‘long-day leptin resistance’, is still not examined enough. The present study aimed to examine whether leptin may modulate an acute inflammation influence on plasma hormones in two photoperiodical conditions. The experiment was conducted on 48 ewes divided into four groups (control, lipopolysaccharide (LPS), leptin, LPS + leptin) during short and long days. Blood sampling started 1 hour before and continued 3 h after LPS/saline administration for further hormonal analysis. The results showed that the photoperiod is one of the main factors influencing the basal concentrations of several hormones with higher values of leptin, insulin and thyroid hormones during long days. Additionally, the acute inflammation effect on cortisol, insulin and thyroid hormones was photoperiod-dependent. The endotoxemia may also exert an influence on leptin concentration regardless of season. The effects of leptin alone on hormone blood concentrations are rather limited; however, leptin can modulate the LPS influence on insulin or thyroxine in a photoperiod-dependent way.
Collapse
|
3
|
Acute Effect of Caffeine on the Synthesis of Pro-Inflammatory Cytokines in the Hypothalamus and Choroid Plexus during Endotoxin-Induced Inflammation in a Female Sheep Model. Int J Mol Sci 2021; 22:ijms222413237. [PMID: 34948033 PMCID: PMC8706723 DOI: 10.3390/ijms222413237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
This study was designed to determine the effect of acute caffeine (CAF) administration, which exerts a broad spectrum of anti-inflammatory activity, on the synthesis of pro-inflammatory cytokines and their receptors in the hypothalamus and choroid plexus (ChP) during acute inflammation caused by the injection of bacterial endotoxin—lipopolysaccharide (LPS). The experiment was performed on 24 female sheep randomly divided into four groups: control; LPS treated (iv.; 400 ng/kg of body mass (bm.)); CAF treated (iv.; 30 mg/kg of bm.); and LPS and CAF treated. The animals were euthanized 3 h after the treatment. It was found that acute administration of CAF suppressed the synthesis of interleukin (IL-1β) and tumor necrosis factor (TNF)α, but did not influence IL-6, in the hypothalamus during LPS-induced inflammation. The injection of CAF reduced the LPS-induced expression of TNF mRNA in the ChP. CAF lowered the gene expression of IL-6 cytokine family signal transducer (IL6ST) and TNF receptor superfamily member 1A (TNFRSF1) in the hypothalamus and IL-1 type II receptor (IL1R2) in the ChP. Our study on the sheep model suggests that CAF may attenuate the inflammatory response at the hypothalamic level and partly influence the inflammatory signal generated by the ChP cells. This suggests the potential of CAF to suppress neuroinflammatory processes induced by peripheral immune/inflammatory challenges.
Collapse
|
4
|
Domżalska M, Wiczkowski W, Szczepkowska A, Chojnowska S, Misztal T, Walter FR, Deli MA, Ishikawa H, Schroten H, Schwerk C, Skipor J. Effect of Lipopolysaccharide-Induced Inflammatory Challenge on β-Glucuronidase Activity and the Concentration of Quercetin and Its Metabolites in the Choroid Plexus, Blood Plasma and Cerebrospinal Fluid. Int J Mol Sci 2021; 22:ijms22137122. [PMID: 34281178 PMCID: PMC8268849 DOI: 10.3390/ijms22137122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022] Open
Abstract
Quercetin-3-glucuronide (Q3GA), the main phase II metabolite of quercetin (Q) in human plasma, is considered to be a more stable form of Q for transport with the bloodstream to tissues, where it can be potentially deconjugated by β-glucuronidase (β-Gluc) to Q aglycone, which easily enters the brain. This study evaluates the effect of lipopolysaccharide (LPS)-induced acute inflammation on β-Gluc gene expression in the choroid plexus (ChP) and its activity in blood plasma, ChP and cerebrospinal fluid (CSF), and the concentration of Q and its phase II metabolites in blood plasma and CSF. Studies were performed on saline- and LPS-treated adult ewes (n = 40) receiving Q3GA intravenously (n = 16) and on primary rat ChP epithelial cells and human ChP epithelial papilloma cells. We observed that acute inflammation stimulated β-Gluc activity in the ChP and blood plasma, but not in ChP epithelial cells and CSF, and did not affect Q and its phase II metabolite concentrations in plasma and CSF, except Q3GA, for which the plasma concentration was higher 30 min after administration (p < 0.05) in LPS- compared to saline-treated ewes. The lack of Q3GA deconjugation in the ChP observed under physiological and acute inflammatory conditions, however, does not exclude its possible role in the course of neurodegenerative diseases.
Collapse
Affiliation(s)
- Małgorzata Domżalska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.D.); (W.W.); (A.S.)
| | - Wiesław Wiczkowski
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.D.); (W.W.); (A.S.)
| | - Aleksandra Szczepkowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.D.); (W.W.); (A.S.)
| | - Sylwia Chojnowska
- Faculty of Health Sciences, Lomza State University of Applied Sciences, 18-400 Lomza, Poland;
| | - Tomasz Misztal
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Fruzsina R. Walter
- Institute of Biophysics, Biological Research Centre, ELKH, 6726 Szeged, Hungary; (F.R.W.); (M.A.D.)
| | - Maria A. Deli
- Institute of Biophysics, Biological Research Centre, ELKH, 6726 Szeged, Hungary; (F.R.W.); (M.A.D.)
| | - Hiroshi Ishikawa
- Laboratory of Regenerative Medicine, Department of Neurosurgery, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan;
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (H.S.); (C.S.)
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (H.S.); (C.S.)
| | - Janina Skipor
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.D.); (W.W.); (A.S.)
- Correspondence:
| |
Collapse
|