1
|
Adeyi AO, Ajisebiola BS, Sanni AA, Oladele JO, Mustapha ARK, Oyedara OO, Fagbenro OS. Kaempferol mitigates reproductive dysfunctions induced by Naja nigricollis venom through antioxidant system and anti-inflammatory response in male rats. Sci Rep 2024; 14:3933. [PMID: 38365877 PMCID: PMC10873395 DOI: 10.1038/s41598-024-54523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Naja nigricollis Venom (NnV) contains complex toxins that affects various vital systems functions after envenoming. The venom toxins have been reported to induce male reproductive disorders in envenomed rats. This present study explored the ameliorative potential of kaempferol on NnV-induced male reproductive toxicity. Fifty male wistar rats were sorted randomly into five groups (n = 10) for this study. Group 1 were noted as the control, while rats in groups 2 to 5 were injected with LD50 of NnV (1.0 mg/kg bw; i.p.). Group 2 was left untreated post envenomation while group 3 was treated with 0.2 ml of polyvalent antivenom. Groups 4 and 5 were treated with 4 and 8 mg/kg of kaempferol, respectively. NnV caused substantial reduction in concentrations of follicle stimulating hormone, testosterone and luteinizing hormone, while sperm motility, volume and counts significantly (p < 0.05) decreased in envenomed untreated rats. The venom enhanced malondialdehyde levels and substantially decreased glutathione levels, superoxide dismutase and glutathione peroxidase activities in the testes and epididymis of envenomed untreated rats. Additionally, epididymal and testicular myeloperoxidase activity and nitric oxide levels were elevated which substantiated severe morphological defects noticed in the reproductive organs. However, treatment of envenomed rats with kaempferol normalized the reproductive hormones with significant improvement on sperm functional parameters. Elevated inflammatory and oxidative stress biomarkers in testis and epididymis were suppressed post kaempferol treatment. Severe histopathological lesions in the epididymal and testicular tissues were ameliorated in the envenomed treated groups. Results highlights the significance of kaempferol in mitigating reproductive toxicity induced after snakebite envenoming.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olukunle Silas Fagbenro
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Díaz-Gómez JL, Martín-Estal I, Rivera-Aboytes E, Gaxiola-Muñíz RA, Puente-Garza CA, García-Lara S, Castorena-Torres F. Biomedical applications of synthetic peptides derived from venom of animal origin: A systematic review. Biomed Pharmacother 2024; 170:116015. [PMID: 38113629 DOI: 10.1016/j.biopha.2023.116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Development of therapeutic agents that have fewer adverse effects and have higher efficacy for diseases, such as cancer, metabolic disorders, neurological diseases, infections, cardiovascular diseases, and respiratory diseases, are required. Recent studies have focused on identifying novel sources for pharmaceutical molecules to develop therapies against these diseases. Among the sources for potentially new therapies, animal venom-derived molecules have generated much interest. Various animal venom-derived proteins and peptides have been isolated, identified, synthesized, and tested to develop drugs. Venom-derived peptides have several biomedical properties, such as proapoptotic, cell migration, and autophagy regulation activities in cancer cell models; induction of vasodilation by nitric oxide and regulation of angiotensin II; modification of insulin response by controlling calcium and potassium channels; regulation of pain receptor activity; modulation of immune cell activity; alteration of motor neuron activity; degradation or inhibition of β-amyloid plaque formation; antibacterial, antifungal, antiviral, and antiprotozoal activities; increase in sperm motility and potentiation of erectile function; reduction of intraocular pressure; anticoagulation, fibrinolytic, and antithrombotic activities; etc. This systematic review compiles these biomedical properties and potential biomedical applications of synthesized animal venom-derived peptides reported in the latest research. In addition, the limitations and areas of opportunity in this research field are discussed so that new studies can be developed based on the data presented.
Collapse
Affiliation(s)
- Jorge L Díaz-Gómez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
| | - Irene Martín-Estal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
| | - Elizabeth Rivera-Aboytes
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - Ramón Alonso Gaxiola-Muñíz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
| | - César A Puente-Garza
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - Silverio García-Lara
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - Fabiola Castorena-Torres
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico.
| |
Collapse
|
3
|
Martínez-Villaluenga C, Hernández-Ledesma B. Peptides for Health Benefits 2020. Int J Mol Sci 2022; 23:ijms23126699. [PMID: 35743143 PMCID: PMC9223426 DOI: 10.3390/ijms23126699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
| | - Blanca Hernández-Ledesma
- Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM + CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
- Correspondence:
| |
Collapse
|
4
|
Ajisebiola BS, Adeniji OB, James AS, Ajayi BO, Adeyi AO. Naja nigricollis venom altered reproductive and neurological functions via modulation of pro-inflammatory cytokines and oxidative damage in male rats. Metabol Open 2022; 14:100188. [PMID: 35633732 PMCID: PMC9130106 DOI: 10.1016/j.metop.2022.100188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/30/2022] [Accepted: 05/12/2022] [Indexed: 01/03/2023] Open
Abstract
Reproductive and neurological anomalies are often characterized by malfunctioning of reproductive and nervous organs sometimes attributed to systemic toxins. However, limited information is available on the impact of snake venom toxins on male reproductive and nervous system. This study investigated the toxicological effects of Naja nigricollis venom on male reproductive and neural functions in rat model. Twenty male Wistar rats weighing between 195 and 230 g were divided randomly into two groups of ten rats each. Group 1 served as normal control while rats in group 2 were envenomed with a single intraperitoneal injection of 0.25 mg/kg-1 (LD12.5) of N. nigricollis venom on first and twenty fifth day within the period of fifty days experiment. The venom significantly decreased sperm counts, motile cells and volume combined with increased sperm abnormalities. The venom induced hormonal imbalances in the envenomed group as levels of testosterone, luteinizing and follicle stimulating hormones depreciated compared to the control. Oxidative stress biomarkers: malondialdehyde significantly increased parallels with depletion of glutathione level and catalase activities in testis, epididymis and brain of envenomed rats. Furthermore, N. nigricollis venom up-regulated tumor necrosis factor-alpha (TNF-α) and interleukin1-beta (IL-1β) production in testis, epididymis and brain of envenomed rats compared to the control. Also, various histological alterations were noticed in tissues of testis, epididymis and brain of envenomed rats. Findings indicated that N. nigricollis venom is capable of inducing reproductive and neurological dysfunction in envenomed victims.
Collapse
Affiliation(s)
| | | | - Adewale Segun James
- Department of Chemical Sciences (Biochemistry Program), Augustine University, Lagos, Nigeria
| | - Babajide O. Ajayi
- Onco-preventives and Systems Oncology Research Laboratory, Biochemistry Unit, Department of Chemical Sciences, Ajayi Crowther University, Oyo, Nigeria
| | | |
Collapse
|
5
|
Pai S, Hebbar A, Selvaraj S. A critical look at challenges and future scopes of bioactive compounds and their incorporations in the food, energy, and pharmaceutical sector. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35518-35541. [PMID: 35233673 PMCID: PMC9079019 DOI: 10.1007/s11356-022-19423-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/21/2022] [Indexed: 05/27/2023]
Abstract
Bioactive compounds refer to secondary metabolites extracted from plants, fungi, microbes, or animals. Besides having pharmacological or toxicological effects on organisms leading to utilization in food and pharmaceutical industries, the discovery of novel properties of such compounds has led to the diversification of their applications, ranging from cosmetics and functionalized biomaterials to bioremediation and alternate fuels. Conventional time-consuming and solvent-intensive methods of extraction are increasingly being replaced by green solvents such as ionic liquids, supercritical fluids, and deep eutectic solvents, as well as non-conventional methods of extraction assisted by microwaves, pulse electric fields, enzymes, ultrasound, or pressure. These methods, along with advances in characterization and optimization strategies, have boosted the commercial viability of extraction especially from agrowastes and organic residues, promoting a sustainable circular economy. Further development of microfluidics, optimization models, nanoencapsulation, and metabolic engineering are expected to overcome certain limitations that restrict the growth of this field, in the context of improving screening, extraction, and economy of processes, as well as retaining biodiversity and enhancing the stability and functionality of such compounds. This review is a compilation of the various extraction and characterization methods employed for bioactive compounds and covers major applications in food, pharmacy, chemicals, energy, and bioremediation. Major limitations and scope of improvement are also discussed.
Collapse
Affiliation(s)
- Sanidhya Pai
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Akshatha Hebbar
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Subbalaxmi Selvaraj
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.
| |
Collapse
|