1
|
Setyawati I, Husaini AF, Setiawan AG, Artika IM, Ambarsari L, Nurcholis W, Vidilaseris K, Kurniatin PA. Structural Classification Insights Into the Plant Defensive Peptides. Proteins 2024; 92:1413-1427. [PMID: 39161242 DOI: 10.1002/prot.26736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/22/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024]
Abstract
This study presents a structural phylogenetic analysis of plant defensive peptides, revealing their evolutionary relationships, structural diversification, and functional adaptations. Utilizing a robust dataset comprising both experimental and predicted structures sourced from the RCSB Protein Data Bank and AlphaFold DB, we constructed a detailed phylogenetic tree to elucidate the distinct evolutionary paths of plant defensive peptide families. Our findings showcase the evolutionary intricacies of defensive peptides, highlighting their diversity and the conservation of key structural motifs critical to their antimicrobial or defensive functions. The results also underscore the adaptive significance of defensive peptides in plant evolution, highlighting their roles in responding to ecological pressures and pathogen interactions.
Collapse
Affiliation(s)
- Inda Setyawati
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Ahmad Fadhlullah Husaini
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Aprijal Ghiyas Setiawan
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Laksmi Ambarsari
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Waras Nurcholis
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
| | - Keni Vidilaseris
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Popi Asri Kurniatin
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| |
Collapse
|
2
|
Gonçalves GR, de Azevedo Dos Santos L, da Silva MS, Taveira GB, da Silva TM, Almeida FA, Ferreira SR, Oliveira AEA, Silveira V, de Oliveira Carvalho A, Rodrigues R, Gomes VM. Purification, Structural Characterization, and Anticandidal Activity of a Chitin-Binding Peptide with High Similarity to Hevein and Endochitinase Isolated from Pepper Seeds. Curr Microbiol 2024; 81:319. [PMID: 39167225 DOI: 10.1007/s00284-024-03839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
With the emergence of multidrug-resistant microorganisms, microbial agents have become a serious global threat, affecting human health and various plants. Therefore, new therapeutic alternatives, such as chitin-binding proteins, are necessary. Chitin is an essential component of the fungal cell wall, and chitin-binding proteins exhibit antifungal activity. In the present study, chitin-binding peptides isolated from Capsicum chinense seeds were characterized and evaluated for their in vitro antimicrobial effect against the growth of Candida and Fusarium fungi. Proteins were extracted from the seeds and subsequently the chitin-binding proteins were separated by chitin affinity chromatography. After chromatography, two fractions, Cc-F1 (not retained on the column) and Cc-F2 (retained on the column), were obtained. Electrophoresis revealed major protein bands between 6.5 and 26.6 kDa for Cc-F1 and only a ~ 6.5 kDa protein band for Cc-F2, which was subsequently subjected to mass spectrometry. The protein showed similarity with hevein-like and endochitinase and was then named Cc-Hev. Data are available via ProteomeXchange with identifier PXD054607. Next, we predicted the three-dimensional structure of the peptides and performed a peptide docking with (NAG)3. Subsequently, growth inhibition assays were performed to evaluate the ability of the peptides to inhibit microorganism growth. Cc-Hev inhibited the growth of C. albicans (up to 75% inhibition) and C. tropicalis (100% inhibition) and induced a 65% decrease in cell viability for C. albicans and 100% for C. tropicalis. Based on these results, new techniques to combat fungal diseases could be developed through biotechnological applications; therefore, further studies are needed.
Collapse
Affiliation(s)
- Gabriella Rodrigues Gonçalves
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Layrana de Azevedo Dos Santos
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Marciele Souza da Silva
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Gabriel Bonan Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Thamyres Marvila da Silva
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Felipe Astolpho Almeida
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Sarah Rodrigues Ferreira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Antonia Elenir Amancio Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Rosana Rodrigues
- Laboratório de Melhoramento e Genética Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| |
Collapse
|
3
|
Parisi MG, Ozón B, Vera González SM, García-Pardo J, Obregón WD. Plant Protease Inhibitors as Emerging Antimicrobial Peptide Agents: A Comprehensive Review. Pharmaceutics 2024; 16:582. [PMID: 38794245 PMCID: PMC11125377 DOI: 10.3390/pharmaceutics16050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial peptides (AMPs) are important mediator molecules of the innate defense mechanisms in a wide range of living organisms, including bacteria, mammals, and plants. Among them, peptide protease inhibitors (PPIs) from plants play a central role in their defense mechanisms by directly attacking pathogens or by modulating the plant's defense response. The growing prevalence of microbial resistance to currently available antibiotics has intensified the interest concerning these molecules as novel antimicrobial agents. In this scenario, PPIs isolated from a variety of plants have shown potential in inhibiting the growth of pathogenic bacteria, protozoans, and fungal strains, either by interfering with essential biochemical or physiological processes or by altering the permeability of biological membranes of invading organisms. Moreover, these molecules are active inhibitors of a range of proteases, including aspartic, serine, and cysteine types, with some showing particular efficacy as trypsin and chymotrypsin inhibitors. In this review, we provide a comprehensive analysis of the potential of plant-derived PPIs as novel antimicrobial molecules, highlighting their broad-spectrum antimicrobial efficacy, specificity, and minimal toxicity. These natural compounds exhibit diverse mechanisms of action and often multifunctionality, positioning them as promising molecular scaffolds for developing new therapeutic antibacterial agents.
Collapse
Affiliation(s)
- Mónica G. Parisi
- Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu) and Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján B6700, Buenos Aires, Argentina;
| | - Brenda Ozón
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| | - Sofía M. Vera González
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| | - Javier García-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| |
Collapse
|
4
|
Mir Drikvand R, Sohrabi SM, Sohrabi SS, Samiei K. Molecular Identification and Characterization of Hevein Antimicrobial Peptide Genes in Two-Row and Six-Row Cultivars of Barley (Hordeum vulgare L.). Biochem Genet 2024:10.1007/s10528-024-10695-8. [PMID: 38386212 DOI: 10.1007/s10528-024-10695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
Heveins are one of the most important groups of plant antimicrobial peptides. So far, various roles in plant growth and development and in response to biotic and abiotic stresses have reported for heveins. The present study aimed to identify and characterize the hevein genes in two-row and six-row cultivars of barley. In total, thirteen hevein genes were identified in the genome of two-row and six-row cultivars of barley. The identified heveins were identical in two-row and six-row cultivars of barley and showed a high similarity with heveins from other plant species. The hevein coding sequences produced open reading frames (ORFs) ranged from 342 to 1002 bp. Most of the identified hevein genes were intronless, and the others had only one intron. The hevein ORFs produced proteins ranged from 113 to 333 amino acids. Search for conserved functional domains showed CBD and LYZ domains in barley heveins. All barley heveins comprised extracellular signal peptides ranged from 19 to 35 amino acids. The phylogenetic analysis divided barley heveins into two groups. The promoter analysis showed regulatory elements with different frequencies between two-row and six-row cultivars. These cis-acting elements included elements related to growth and development, hormone response, and environmental stresses. The expression analysis showed high expression level of heveins in root and reproductive organs of both two-row and six-row cultivars. The expression analysis also showed that barley heveins is induced by both biotic and abiotic stresses. The results of antimicrobial activity prediction showed the highest antimicrobial activity in CBD domain of barley heveins. The findings of the current study can improve our knowledge about the role of hevein genes in plant and can be used for future studies.
Collapse
Affiliation(s)
- Reza Mir Drikvand
- Department of Plant Genetics and Breeding, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran.
| | - Seyyed Mohsen Sohrabi
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Shahid Chamran University, Ahvaz, Iran
| | - Seyed Sajad Sohrabi
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Kamran Samiei
- Department of Plant Genetics and Breeding, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran
| |
Collapse
|
5
|
Martínez-Zavala SA, Ortiz-Rodríguez T, Salcedo-Hernández R, Casados-Vázquez LE, Del Rincón-Castro MC, Bideshi DK, Barboza-Corona JE. The chitin-binding domain of Bacillus thuringiensis ChiA74 inhibits gram-negative bacterial and fungal pathogens of humans and plants. Int J Biol Macromol 2024; 254:128049. [PMID: 37963502 DOI: 10.1016/j.ijbiomac.2023.128049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
The chitinase ChiA74 is synthesized by Bacillus thuringiensis and possesses a modular organization composed of four domains. In the C-terminal of the enzyme is located the chitin-binding domain (CBD), which has not been isolated as a single unit or characterized. Here, we aimed to isolate the ChiA74's CBD as a single unit, determine the binding properties, and evaluate its antimicrobial and hemolytic activities. We cloned the ChiA74's CBD and expressed it in Escherichia coli BL21. The single domain was purified, analyzed by SDS-PAGE, and characterized. The recombinant CBD (rCBD) showed a molecular mass of ∼14 kDa and binds strongly to α-chitin, with Kd and Bmax of ∼4.7 ± 0.9 μM and 1.5 ± 0.1 μmoles/g chitin, respectively. Besides, the binding potential (Bmax/Kd) was stronger for α-chitin (∼0.31) than microcrystalline cellulose (∼0.19). It was also shown that the purified rCBD inhibited the growth of the clinically relevant Gram-negative bacteria (GNB) Vibrio cholerae, and V. parahemolyticus CVP2 with minimum inhibitory concentrations (MICs) of 121 ± 9.9 and 138 ± 3.2 μg/mL, respectively, and of one of the most common GNB plant pathogens, Pseudomonas syringae with a MIC of 230 ± 13.8 μg/mL. In addition, the rCBD possessed antifungal activity inhibiting the conidia germination of Fusarium oxysporum (MIC = 192 ± 37.5 μg/mL) and lacked hemolytic and agglutination activities against human erythrocytes. The significance of this work lies in the fact that data provided here show for the first time that ChiA74's CBD from B. thuringiensis has antimicrobial activity, suggesting its potential use against significant pathogenic microorganisms. Future works will be focused on testing the inhibitory effect against other pathogenic microorganisms and elucidating the mechanism of action.
Collapse
Affiliation(s)
- Sheila A Martínez-Zavala
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, México
| | - Tomás Ortiz-Rodríguez
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, México
| | - Rubén Salcedo-Hernández
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, México
| | - Luz E Casados-Vázquez
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, México; Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, México; CONACyT-University of Guanajuato, México
| | - Ma Cristina Del Rincón-Castro
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, México; Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, México
| | - Dennis K Bideshi
- Department of Biological Sciences, Program in Biomedical Sciences, California Baptist University, Riverside, CA, United States of America
| | - José E Barboza-Corona
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, México; Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, México.
| |
Collapse
|
6
|
Slezina MP, Odintsova TI. Plant Antimicrobial Peptides: Insights into Structure-Function Relationships for Practical Applications. Curr Issues Mol Biol 2023; 45:3674-3704. [PMID: 37185763 PMCID: PMC10136942 DOI: 10.3390/cimb45040239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short polypeptide molecules produced by multicellular organisms that are involved in host defense and microbiome preservation. In recent years, AMPs have attracted attention as novel drug candidates. However, their successful use requires detailed knowledge of the mode of action and identification of the determinants of biological activity. In this review, we focused on structure-function relationships in the thionins, α-hairpinins, hevein-like peptides, and the unique Ib-AMP peptides isolated from Impatiens balsamina. We summarized the available data on the amino acid sequences and 3D structure of peptides, their biosynthesis, and their biological activity. Special attention was paid to the determination of residues that play a key role in the activity and the identification of the minimal active cores. We have shown that even subtle changes in amino acid sequences can affect the biological activity of AMPs, which opens up the possibility of creating molecules with improved properties, better therapeutic efficacy, and cheaper large-scale production.
Collapse
Affiliation(s)
- Marina P Slezina
- Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia
| | | |
Collapse
|
7
|
Slezina MP, Istomina EA, Korostyleva TV, Odintsova TI. The γ-Core Motif Peptides of Plant AMPs as Novel Antimicrobials for Medicine and Agriculture. Int J Mol Sci 2022; 24:ijms24010483. [PMID: 36613926 PMCID: PMC9820530 DOI: 10.3390/ijms24010483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
The γ-core motif is a structural element shared by most host antimicrobial peptides (AMPs), which is supposed to contribute to their antimicrobial properties. In this review, we summarized the available data on the γ-core peptides of plant AMPs. We describe γ-core peptides that have been shown to exhibit inhibitory activity against plant and human bacterial and fungal pathogens that make them attractive scaffolds for the development of novel anti-infective agents. Their advantages include origin from natural AMP sequences, broad-spectrum and potent inhibitory activity, and cost-effective production. In addition, some γ-core peptides combine antimicrobial and immunomodulatory functions, thus broadening the spectrum of practical applications. Some act synergistically with antimycotics and fungicides, so combinations of peptides with conventionally used antifungal agents can be suggested as an effective strategy to reduce the doses of potentially harmful chemicals. The presented information will pave the way for the design of novel antimicrobials on the basis of γ-core motif peptides, which can find application in medicine and the protection of crops from diseases.
Collapse
|
8
|
Dini I, De Biasi MG, Mancusi A. An Overview of the Potentialities of Antimicrobial Peptides Derived from Natural Sources. Antibiotics (Basel) 2022; 11:1483. [PMID: 36358138 PMCID: PMC9686932 DOI: 10.3390/antibiotics11111483] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/21/2023] Open
Abstract
Antimicrobial peptides (AMPs) are constituents of the innate immune system in every kind of living organism. They can act by disrupting the microbial membrane or without affecting membrane stability. Interest in these small peptides stems from the fear of antibiotics and the emergence of microorganisms resistant to antibiotics. Through membrane or metabolic disruption, they defend an organism against invading bacteria, viruses, protozoa, and fungi. High efficacy and specificity, low drug interaction and toxicity, thermostability, solubility in water, and biological diversity suggest their applications in food, medicine, agriculture, animal husbandry, and aquaculture. Nanocarriers can be used to protect, deliver, and improve their bioavailability effectiveness. High cost of production could limit their use. This review summarizes the natural sources, structures, modes of action, and applications of microbial peptides in the food and pharmaceutical industries. Any restrictions on AMPs' large-scale production are also taken into consideration.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | | | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
9
|
Kartashov M, Voinova T, Shcherbakova L, Arslanova L, Chudakova K, Dzhavakhiya V. A Secondary Metabolite Secreted by Penicillium citrinum Is Able to Enhance Parastagonospora nodorum Sensitivity to Tebuconazole and Azoxystrobin. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:889547. [PMID: 37746182 PMCID: PMC10512332 DOI: 10.3389/ffunb.2022.889547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/07/2022] [Indexed: 09/26/2023]
Abstract
Parastagonospora nodorum causes glume and leaf blotch of wheat, a harmful disease resulting in serious losses in grain yield. In many countries including Russia, fungicidal formulations based on triazoles and on triazoles combined with strobilurins are used to control this fungus. However, their prolonged application may promote the selection of fungicide-resistant strains of P. nodorum leading to significant attenuation or even loss of fungicidal effect. Chemosensitization of plant pathogenic fungi with natural compounds represents a promising strategy for mitigating fungicide resistance and other negative impacts of fungicides. In this work, we applied a chemosensitization approach towards P. nodorum strains non-resistant or resistant to tebuconazole or azoxystrobin using 6-demethylmevinolin (6-DMM), a metabolite of Penicillium citrinum. The resistant strains were obtained by the mutagenesis and subsequent culturing on agar media incorporated with increasing doses of Folicur® EC 250 (i.e., tebuconazole) or Quadris® SC 250 (i.e., azoxystrobin). Test strains m8-4 and kd-18, most resistant to tebuconazole and azoxystrobin, respectively, were selected for sensitization experiments. These experiments demonstrated that combining 6-DMM with Folicur® enhanced fungicidal effectiveness in vitro and in vivo in addition to attenuating the resistance of P. nodorum to tebuconazole in vitro. 6-DMM was also found to augment Quadris® efficacy towards kd-18 when applied on detached wheat leaves inoculated with this strain. Experiments on P. nodorum sensitization under greenhouse conditions included preventive (applying test compounds simultaneously with inoculation) or post-inoculation spraying of wheat seedlings with 6-DMM together with Folicur® at dose rates (DR) amounting to 10% and 20% of DR recommended for field application (RDR). Combined treatments were run in parallel with using the same DR of the fungicide and sensitizer, alone. A synergistic effect was observed in both preventive and post-inoculation treatments, when the sensitizer was co-applied with the fungicide at 10% of the RDR. In this case, disease reduction significantly exceeded the protective effect of Folicur® at 10% or 20% of the RDR, alone, and also a calculated additive effect. Collectively, our findings suggest that 6-DMM is promising as a putative component for formulations with triazole and strobilurin fungicides. Such new formulations would improve fungicide efficacy and, potentially, lower rates of fungicides needed for plant pathogen control.
Collapse
Affiliation(s)
- Maksim Kartashov
- Department of Molecular Biology, All-Russian Research Institute of Phytopathology, Moscow reg., Russia
| | - Tatiana Voinova
- Department of Molecular Biology, All-Russian Research Institute of Phytopathology, Moscow reg., Russia
| | - Larisa Shcherbakova
- Laboratory of Physiological Plant Pathology, All-Russian Research Institute of Phytopathology, Moscow reg., Russia
| | - Lenara Arslanova
- Department of Molecular Biology, All-Russian Research Institute of Phytopathology, Moscow reg., Russia
| | - Kseniya Chudakova
- Department of Molecular Biology, All-Russian Research Institute of Phytopathology, Moscow reg., Russia
| | - Vitaly Dzhavakhiya
- Department of Molecular Biology, All-Russian Research Institute of Phytopathology, Moscow reg., Russia
| |
Collapse
|
10
|
Lima AM, Azevedo MIG, Sousa LM, Oliveira NS, Andrade CR, Freitas CDT, Souza PFN. Plant antimicrobial peptides: An overview about classification, toxicity and clinical applications. Int J Biol Macromol 2022; 214:10-21. [PMID: 35700843 DOI: 10.1016/j.ijbiomac.2022.06.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Antimicrobial peptides, also known as AMPs, are cationic and amphipathic molecules found in all living organisms, composing part of the defense mechanisms against various pathogens, including fungi, viruses, bacteria, and nematodes. AMPs derived from plants are the focus of this review because they have gained attention as alternative molecules to overcome pathogen resistance as well as new drugs to combat cancer. Plant AMPs are generally classified based on their sequences and structures, as thionins, defensins, hevein-like peptides, knottins, stable-like peptides, lipid transfer proteins, snakins, and cyclotides. Although there are studies reporting the toxicity of plant AMPs to nontarget cells or limitations of oral administration, synthetic AMPs with reduced toxicity or allergenicity, or greater resistance to peptidases can be designed by using different bioinformatics tools. Thus, this review provides information about the classification of plant AMPs, their characteristics, mechanisms of action, hemolytic and cytotoxic potential, possible applications in the medical field, and finally, the use of bioinformatics to help design synthetic AMPs with improved features.
Collapse
Affiliation(s)
- Adrianne M Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Mayara I G Azevedo
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lyndefania M Sousa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Nayara S Oliveira
- Laboratory of Translational Research, Christus University Center, Fortaleza, Ceará, Brazil
| | - Claudia R Andrade
- Laboratory of Translational Research, Christus University Center, Fortaleza, Ceará, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil; Drug Research and Development Center, Department of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
11
|
Antibacterial and antifungal activity of kenaf seed peptides and their effect on microbiological safety and physicochemical properties of some food models. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Humanizing plant-derived snakins and their encrypted antimicrobial peptides. Biochimie 2022; 199:92-111. [PMID: 35472564 DOI: 10.1016/j.biochi.2022.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022]
Abstract
Due to safety restrictions, plant-derived antimicrobial peptides (AMPs) need optimization to be consumed beyond preservatives. Herein, 175 GASA-domain-containing snakins were analyzed. Factors including charge, hydrophobicity, helicity, hydrophobic moment (μH), folding enthalpy, folding heat capacity, folding free energy, therapeutic index, allergenicity, and bitterness were considered. The most optimal snakins for oral consumption as preservatives were from Cajanus cajan, Cucumis melo, Durio zibethinus, Glycine soja, Herrania umbratica, and Ziziphus jujuba. Virtual digestion of snakins predicted ACE1 and DPPIV inhibitory as dominant effects upon oral use with antihypertensive and antidiabetic properties. To be applied as a therapeutic in parenteral administration, snakins were browsed for short 20-mer encrypted fragments that were non-toxic or with eliminated toxicity using directed mutagenesis yet retaining the AMP property. The most promising 20-mer AMPs were Mr-SNK2-1a in Morella rubra with BBB permeation, Na-SNK2-2a(C18W), and Na-SNK2-2b(C16F) from Nicotiana attenuata. These AMPs were cell-penetrating peptides (CPPs), with a charge of +6, a μH of about 0.40, and a Boman-index higher than 2.48 Kcalmol-1. Na-SNK2-2a(C18W) had putative activity against gram-negative bacteria with MIC lower than 25 μgml-1, and Na-SNK2-2b(C16F) was a potential anti-HIV with an IC50 of 3.04 μM. Other 20-mer AMPs, such as Cc-SNK1-2a from Cajanus cajan displayed an anti-HCV property with an IC50 of 13.91 μM. While Si-SNK2-3a(C17P) from Sesamum indicum was a cationic anti-angiogenic CPP targeting the acidic microenvironment of tumors, Cme-SNK2-1a(C11F) from Cucumis melo was an immunomodulator CPP applicable as a vaccine adjuvant. Because of combined mechanisms, investigating cysteine-rich peptides can nominate effective biotherapeutics.
Collapse
|
13
|
Peng Y, Chang J, Xiao Z, Huang J, Xu T, Chen S, Fan G, Liao S, Wang Z, Luo H. Synthesis and Antifungal Activity of Novel Tetrahydrogeranyl Quaternary Ammonium Salts. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221078452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Due to the excessive use of antifungal agents, drug resistance and ecological problems are increasing. Some antifungal agents are difficult to degrade and have high toxicity and several side effects. In this study, 15 novel tetrahydrogeranyl quaternary ammonium salts (8a–8o) were synthesized from the natural compound citral. The structures of the quaternary ammonium salts were characterized by Fourier transform infrared, proton nuclear magnetic resonance, carbon-13 nuclear magnetic resonance spectroscopy, and mass spectrometry, and the antifungal activities of these compounds at a concentration of 0.25 mg/mL against 10 plant pathogenic fungi were tested. The results showed that compound 8i had the best antifungal activity, and its inhibition rates against Rhizoctonia solani, Phytophthora parasitica var. nicotianae, Sphaeropsis sapinea, Fusarium oxysporum f. sp. niveum, and Poria vaporaria reached 100%. For Fusarium verticillioides, the inhibition rate of compound 8i was 93.28%, which was higher than that of chlorothalonil. In addition, it was found that the inhibition rates of compounds with N,N-di- n-propyl group (8l, 8m) against R solani, F oxysporum f. sp. niveum, S sapinea, P parasitica var. nicotianae, F verticillioides, Colletotrichum acutatum, and Coriolus versicolor were higher than compounds with N,N-diethyl and N,N-dimethyl groups (8a, 8b, 8j, 8k). The inhibition rates of compounds with morpholine groups (8n, 8o) were generally low.
Collapse
Affiliation(s)
- Yun Peng
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA/Jiangxi Province, Nanchang, China
| | - Jiayu Chang
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA/Jiangxi Province, Nanchang, China
| | | | - Jiazong Huang
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA/Jiangxi Province, Nanchang, China
| | - Ting Xu
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA/Jiangxi Province, Nanchang, China
| | - Shangxing Chen
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA/Jiangxi Province, Nanchang, China
| | - Guorong Fan
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA/Jiangxi Province, Nanchang, China
| | - Shengliao Liao
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA/Jiangxi Province, Nanchang, China
| | - Zongde Wang
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA/Jiangxi Province, Nanchang, China
| | - Hai Luo
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA/Jiangxi Province, Nanchang, China
| |
Collapse
|
14
|
Kurpe SR, Grishin SY, Surin AK, Panfilov AV, Slizen MV, Chowdhury SD, Galzitskaya OV. Antimicrobial and Amyloidogenic Activity of Peptides. Can Antimicrobial Peptides Be Used against SARS-CoV-2? Int J Mol Sci 2020; 21:E9552. [PMID: 33333996 PMCID: PMC7765370 DOI: 10.3390/ijms21249552] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
At present, much attention is paid to the use of antimicrobial peptides (AMPs) of natural and artificial origin to combat pathogens. AMPs have several points that determine their biological activity. We analyzed the structural properties of AMPs, as well as described their mechanism of action and impact on pathogenic bacteria and viruses. Recently published data on the development of new AMP drugs based on a combination of molecular design and genetic engineering approaches are presented. In this article, we have focused on information on the amyloidogenic properties of AMP. This review examines AMP development strategies from the perspective of the current high prevalence of antibiotic-resistant bacteria, and the potential prospects and challenges of using AMPs against infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Stanislav R. Kurpe
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Sergei Yu. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Alexander V. Panfilov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Mikhail V. Slizen
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Saikat D. Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India;
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
15
|
Shcherbakova L, Odintsova T, Pasechnik T, Arslanova L, Smetanina T, Kartashov M, Slezina M, Dzhavakhiya V. Fragments of a Wheat Hevein-Like Antimicrobial Peptide Augment the Inhibitory Effect of a Triazole Fungicide on Spore Germination of Fusarium oxysporum and Alternaria solani. Antibiotics (Basel) 2020; 9:E870. [PMID: 33291849 PMCID: PMC7762046 DOI: 10.3390/antibiotics9120870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
There are increasing environmental risks associated with extensive use of fungicides for crop protection. Hence, the use of new approaches using natural plant defense mechanisms, including application of plant antimicrobial peptides (AMPs), is of great interest. Recently, we studied the structural-function relationships between antifungal activity and five hevein-like AMPs from the WAMP (wheat AMP) family of Triticum kiharae Dorof. et Migush. We first discovered that short peptides derived from the central, N-, and C-terminal regions of one of the WAMPs (WAMP-2) were able to augment the inhibitory effect of Folicur® EC 250, a triazole fungicide, on spore germination of the wheat pathogenic fungi, including Fusarium spp. and Alternaria alternata. In this research, we explored the ability of chemically synthesized WAMP-2-derived peptides for enhancing the sensitivity of two other Fusarium and Alternaria species, F. oxysporum and A. solani, causing wilt and early blight of tomato, respectively, to Folicur®. The synthesized WAMP-2-derived peptides synergistically interacted with the fungicide and significantly increased its efficacy, inhibiting conidial germination at much lower Folicur® concentrations than required for the same efficiency using the fungicide alone. The experiments on co-applications of some of WAMP-2-fragments and the fungicide on tomato leaves and seedlings, which confirmed the results obtained in vitro, are described.
Collapse
Affiliation(s)
- Larisa Shcherbakova
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow reg., Russia; (T.P.); (L.A.); (T.S.); (M.K.); (V.D.)
| | - Tatyana Odintsova
- Vavilov Institute of General Genetics RAS, Gubkina Str. 3, 119333 Moscow, Russia;
| | - Tatyana Pasechnik
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow reg., Russia; (T.P.); (L.A.); (T.S.); (M.K.); (V.D.)
| | - Lenara Arslanova
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow reg., Russia; (T.P.); (L.A.); (T.S.); (M.K.); (V.D.)
| | - Tatyana Smetanina
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow reg., Russia; (T.P.); (L.A.); (T.S.); (M.K.); (V.D.)
| | - Maxim Kartashov
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow reg., Russia; (T.P.); (L.A.); (T.S.); (M.K.); (V.D.)
| | - Marina Slezina
- Vavilov Institute of General Genetics RAS, Gubkina Str. 3, 119333 Moscow, Russia;
| | - Vitaly Dzhavakhiya
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow reg., Russia; (T.P.); (L.A.); (T.S.); (M.K.); (V.D.)
| |
Collapse
|
16
|
Shcherbakova L, Kartashov M, Statsyuk N, Pasechnik T, Dzhavakhiya V. Assessment of the Sensitivity of Some Plant Pathogenic Fungi to 6-Demethylmevinolin, a Putative Natural Sensitizer Able to Help Overcoming the Fungicide Resistance of Plant Pathogens. Antibiotics (Basel) 2020; 9:antibiotics9120842. [PMID: 33255571 PMCID: PMC7760197 DOI: 10.3390/antibiotics9120842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/19/2023] Open
Abstract
Agricultural fungicides contaminate the environment and promote the spread of fungicide-resistant strains of pathogenic fungi. The enhancement of pathogen sensitivity to these pesticides using chemosensitizers allows the reducing of fungicide dosages without a decrease in their efficiency. Using Petri plate and microplate bioassays, 6-demethylmevinolin (6-DMM), a putative sensitizer of a microbial origin, was shown to affect both colony growth and conidial germination of Alternaria solani, A. alternata, Parastagonospora nodorum, Rhizoctonia solani, and four Fusarium species (F. avenaceum, F. culmorum, F. oxysporum, F. graminearum) forming a wheat root rot complex together with B. sorokiniana. Non- or marginally toxic 6-DMM concentrations suitable for sensitizing effect were determined by the probit analysis. The range of determined concentrations confirmed a possibility of using 6-DMM as a putative sensitizer for the whole complex of root rot agents, other cereal pathogens (A. alternata, P.nodorum), and some potato (R. solani, A. solani) and tomato (A. solani) pathogens. Despite the different sensitivities of the eight tested pathogens, 6-DMM lacked specificity to fungi and possessed a mild antimycotic activity that is typical of other known pathogen-sensitizing agents. The pilot evaluation of the 6-DMM sensitizing first confirmed a principal possibility of using it for the sensitization of B. sorokiniana and R. solani to triazole- and strobilurin-based fungicides, respectively.
Collapse
|