1
|
Ajmal I, Farooq MA, Duan Y, Yao J, Gao Y, Hui X, Ge Y, Chen Y, Ren Y, Du B, Jiang W. Intrinsic ADRB2 inhibition improves CAR-T cell therapy efficacy against prostate cancer. Mol Ther 2024; 32:3539-3557. [PMID: 39228124 PMCID: PMC11489547 DOI: 10.1016/j.ymthe.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/20/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has shown limited success in patients with solid tumors. Recent in vitro and in vivo data have shown that adrenoceptor beta-2 (ADRB2) is a novel checkpoint receptor that inhibits T cell-mediated anti-tumor responses. To inhibit ADRB2-mediated inhibitory signaling, we downregulated ADRB2 in CAR-T (shβ2-CAR-T) cells via RNA interference, assessed different parameters, and compared them with conventional second-generation CAR-T cells. ADRB2 knockdown CAR-T cells exhibited enhanced cytotoxicity against prostate cancer cell lines in vitro, by increasing CD69, CD107a, GzmB, IFN-γ, T-bet, and GLUT-1. In addition, ADRB2 deficiency led to improved proliferation, increased CD8/CD4 T cell ratio, and decreased apoptosis in CAR-T cells. shβ2-CAR-T cells expressed more Bcl-2 and led to the generation of more significant proportions of T central memory cells. Finally, the ZAP-70/NF-κB signaling axis was shown to be responsible for the improved functions of novel CAR-T cells. In tumor-bearing mice, shβ2-CAR-T cells performed better than conventional CAR-T cells in eradicating prostate tumors. The study provides the basis for future clinical and translational CAR-T cell research to focus on adrenergic stress-mediated challenges in the tumor microenvironment of stressed tumors.
Collapse
Affiliation(s)
- Iqra Ajmal
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yixin Duan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Yao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yaoxin Gao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xinhui Hui
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yujia Ge
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yiran Chen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yaojun Ren
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; College of Life Science, Xinjiang Normal University, Urumqi 830053, China
| | - Bingtan Du
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
2
|
Dong H, Peng Z, Yu T, Xiong J. YB-1 Targeted by miR-509-3-5p Affects Migration and Invasion of Triple‑Negative Breast Cancer by Regulating Cellular Epithelial‑Mesenchymal Transition. Mol Biotechnol 2024:10.1007/s12033-024-01101-0. [PMID: 38436906 DOI: 10.1007/s12033-024-01101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
The epithelial-mesenchymal transition (EMT) process is closely linked to metastasis of breast cancer. This article elucidates the role of Y-box binding protein-1 (YB-1) on the migration and invasion of triple-negative breast cancer (TNBC) cells by regulating EMT, and the related mechanism. The expression data of YB-1 and miR-509-3-5p in TNBC samples and normal samples were downloaded from the GEO database. The proliferation, migration, invasion, and EMT of TNBC cells were detected by CCK-8 assay, colony formation assay, wound-healing assay, transwell assay, and immunoblotting analyses. The targeted binding of YB-1 and miR-509-3-5p was validated by luciferase reporter experiment. A xenograft mouse model was constructed to investigate the influence of the miR-509-3-5p/YB-1 axis on TNBC tumor growth in vivo. YB-1 was overexpressed, while miR-509-3-5p was underexpressed in TNBC tumor tissues and various cell lines. Silencing YB-1 depressed cell viability, proliferation, motility, and EMT in vitro, and miR-509-3-5p upregulation exerted the same effects. YB-1 was targeted by miR-509-3-5p. The suppressive effects on the phenotypes of TNBC cells caused by overexpressed miR-509-3-5p were attenuated by YB-1 upregulation. In addition, miR-509-3-5p overexpression restrained TNBC tumor growth and downregulated the YB-1-mediated EMT process in vivo. YB-1 targeted by miR-509-3-5p affects motility of TNBC cells by regulating cellular EMT.
Collapse
Affiliation(s)
- Hanzhi Dong
- Department of Medical Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Donghu District, Nanchang, 330029, China
| | - Zhiqiang Peng
- Department of Lymphohematology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, China
| | - Tenghua Yu
- Department of Breast Surgery, Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, China
| | - Jianping Xiong
- Department of Medical Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Donghu District, Nanchang, 330029, China.
| |
Collapse
|
3
|
Silva D, Quintas C, Gonçalves J, Fresco P. β 2-Adrenoceptor Activation Favor Acquisition of Tumorigenic Properties in Non-Tumorigenic MCF-10A Breast Epithelial Cells. Cells 2024; 13:262. [PMID: 38334654 PMCID: PMC10854540 DOI: 10.3390/cells13030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Noradrenaline and adrenaline, and their cognate receptors, are currently accepted to participate in cancer progression. They may also participate in cancer initiation, although their role in this phase is much less explored. The aim of this work was to study the influence of adrenergic stimulation in several processes related to breast cancer carcinogenesis, using several adrenergic agonists in the MCF-10A non-tumorigenic breast cells. Activation of the β-adrenoceptors promoted an epithelial phenotype in MCF-10A cells, revealed by an increased expression of the epithelial marker E-cadherin and a decrease in the mesenchymal markers, N-cadherin and vimentin. MCF-10A cell motility and migration were also impaired after the β-adrenoceptors activation. Concomitant with this effect, β-adrenoceptors decrease cell protrusions (lamellipodia and filopodia) while increasing cell adhesion. Activation of the β-adrenoceptors also decreases MCF-10A cell proliferation. When the MCF-10A cells were cultured under low attachment conditions, activation the of β- (likely β2) or of α2-adrenoceptors had protective effects against cell death, suggesting a pro-survival role of these adrenoceptors. Overall, our results showed that, in breast cells, adrenoceptor activation (mainly through β-adrenoceptors) may be a risk factor in breast cancer by inducing some cancer hallmarks, providing a mechanistic explanation for the increase in breast cancer incidences that may be associated with conditions that cause massive adrenergic stimulation, such as stress.
Collapse
Affiliation(s)
- Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.S.); (C.Q.); (P.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
| | - Clara Quintas
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.S.); (C.Q.); (P.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.S.); (C.Q.); (P.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.S.); (C.Q.); (P.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Lempesis IG, Georgakopoulou VE, Papalexis P, Chrousos GP, Spandidos DA. Role of stress in the pathogenesis of cancer (Review). Int J Oncol 2023; 63:124. [PMID: 37711028 PMCID: PMC10552722 DOI: 10.3892/ijo.2023.5572] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Stress is a state of disrupted homeostasis, triggered by intrinsic or extrinsic factors, the stressors, which are counteracted by various physiological and behavioural adaptive responses. Stress has been linked to cancer development and incidence for decades; however, epidemiological studies and clinical trials have yielded contradictory results. The present review discusses the effects of stress on cancer development and the various underlying mechanisms. Animal studies have revealed a clear link between stress and cancer progression, revealing molecular, cellular and endocrine processes that are implicated in these effects. Thus, stress hormones, their receptor systems and their intracellular molecular pathways mediate the effects of stress on cancer initiation, progression and the development of metastases. The mechanisms linking stress and cancer progression can either be indirect, mediated by changes in the cancer microenvironment or immune system dysregulation, or direct, through the binding of neuroendocrine stress‑related signalling molecules to cancer cell receptors. Stress affects numerous anti‑ and pro‑cancer immune system components, including host resistance to metastasis, tumour retention and/or immune suppression. Chronic psychological stress through the elevation of catecholamine levels may increase cancer cell death resistance. On the whole, stress is linked to cancer development and incidence, with psychological stressors playing a crucial role. Animal studies have revealed a better link than human ones, with stress‑related hormones influencing tumour development, migration, invasion and cell proliferation. Randomized controlled trials are required to further evaluate the long‑term cancer outcomes of stress and its management.
Collapse
Affiliation(s)
- Ioannis G. Lempesis
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Georgios P. Chrousos
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
5
|
Hardardottir H, Aspelund T, Fall K, Broström E, Sigurdsson BB, Cook E, Valdimarsdottir H, Fang F, Sloan EK, Lutgendorf SK, Jansson C, Valdimarsdottir UA. Psychobiological stress response to a lung cancer diagnosis: a prospective study of patients in Iceland and Sweden. Acta Oncol 2023; 62:1338-1347. [PMID: 37747345 DOI: 10.1080/0284186x.2023.2258445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND A diagnostic work-up leading to a lung cancer diagnosis is a severely stressful experience that may impact tumor progression. Yet, prospective data are scarce on psychological and biological components of stress at the time of lung cancer diagnosis. The aim of this study was to assess pre-to-post diagnosis change in psychological distress and urinary excretion of catecholamines in patients with suspected lung cancer. METHODS Participants were 167 patients within the LUCASS study, recruited at referral for suspected lung cancer to University Hospitals in Iceland and Sweden. Patients completed questionnaires on perceived distress (Hospital Anxiety and Depression Scale, HADS) before and after diagnosis of lung cancer or a non-malignant origin. A subpopulation of 85 patients also provided overnight urine for catecholamine analysis before and at a median of 24 days after diagnosis but before treatment. RESULTS A lung cancer diagnosis was confirmed in 123 (73.7%) patients, with a mean age of 70.1 years. Patients diagnosed with lung cancer experienced a post-diagnosis increase in psychological distress (p = 0.010), while patients with non-malignant lung pathology showed a reduction in distress (p = 0.070). Both urinary epinephrine (p = 0.001) and norepinephrine (p = 0.032) levels were higher before the diagnosis among patients eventually diagnosed with lung cancer compared to those with non-malignant lung pathology. We observed indications of associations between pre-to-post diagnosis changes in perceived distress and changes in urinary catecholamine levels. CONCLUSION Receiving a lung cancer diagnosis is associated with an increase in psychological distress, while elevated catecholamine levels are evident already before lung cancer diagnosis.
Collapse
Affiliation(s)
- Hronn Hardardottir
- Centre of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Respiratory Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Thor Aspelund
- Centre of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Katja Fall
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erika Broström
- Department of Immunology, Genetics and Pathology, Clinical and Experimental Pathology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Baldur B Sigurdsson
- Department of Clinical Chemistry, Landspitali University Hospital, Reykjavik, Iceland
| | - Elizabeth Cook
- Department of Clinical Chemistry, Landspitali University Hospital, Reykjavik, Iceland
| | - Heiddis Valdimarsdottir
- Department of Psychology, Reykjavik University, Reykjavik, Iceland
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erica K Sloan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Susan K Lutgendorf
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Christer Jansson
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Unnur A Valdimarsdottir
- Centre of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
6
|
Bombarda-Rocha V, Silva D, Badr-Eddine A, Nogueira P, Gonçalves J, Fresco P. Challenges in Pharmacological Intervention in Perilipins (PLINs) to Modulate Lipid Droplet Dynamics in Obesity and Cancer. Cancers (Basel) 2023; 15:4013. [PMID: 37568828 PMCID: PMC10417315 DOI: 10.3390/cancers15154013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Perilipins (PLINs) are the most abundant proteins in lipid droplets (LD). These LD-associated proteins are responsible for upgrading LD from inert lipid storage structures to fully functional organelles, fundamentally integrated in the lipid metabolism. There are five distinct perilipins (PLIN1-5), each with specific expression patterns and metabolic activation, but all capable of regulating the activity of lipases on LD. This plurality creates a complex orchestrated mechanism that is directly related to the healthy balance between lipogenesis and lipolysis. Given the essential role of PLINs in the modulation of the lipid metabolism, these proteins can become interesting targets for the treatment of lipid-associated diseases. Since reprogrammed lipid metabolism is a recognized cancer hallmark, and obesity is a known risk factor for cancer and other comorbidities, the modulation of PLINs could either improve existing treatments or create new opportunities for the treatment of these diseases. Even though PLINs have not been, so far, directly considered for pharmacological interventions, there are many established drugs that can modulate PLINs activity. Therefore, the aim of this study is to assess the involvement of PLINs in diseases related to lipid metabolism dysregulation and whether PLINs can be viewed as potential therapeutic targets for cancer and obesity.
Collapse
Affiliation(s)
- Victória Bombarda-Rocha
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Allal Badr-Eddine
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
| | - Patrícia Nogueira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Roy AC, Prasad A, Priya K, Das P, Singh S, Ghosh C, Ghosh I. Anticancer effect of antioxidant-rich methanolic extract of Rauvolfia serpentina (L.) Benth. ex Kurz leaves in HepG2 and HeLa cells: A mechanistic insight. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
8
|
ß-Adrenoreceptors in Human Cancers. Int J Mol Sci 2023; 24:ijms24043671. [PMID: 36835082 PMCID: PMC9964924 DOI: 10.3390/ijms24043671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Cancer is the leading cause of death and represents a significant economic burden worldwide. The numbers are constantly growing as a result of increasing life expectancy, toxic environmental factors, and adoption of Western lifestyle. Among lifestyle factors, stress and the related signaling pathways have recently been implicated in the development of tumors. Here we present some epidemiological and preclinical data concerning stress-related activation of the ß-adrenoreceptors (ß-ARs), which contributes to the formation, sequential transformation, and migration of different tumor cell types. We focused our survey on research results for breast and lung cancer, melanoma, and gliomas published in the past five years. Based on the converging evidence, we present a conceptual framework of how cancer cells hijack a physiological mechanism involving ß-ARs toward a positive modulation of their own survival. In addition, we also highlight the potential contribution of ß-AR activation to tumorigenesis and metastasis formation. Finally, we outline the antitumor effects of targeting the ß-adrenergic signaling pathways, methods for which primarily include repurposed ß-blocker drugs. However, we also call attention to the emerging (though as yet largely explorative) method of chemogenetics, which has a great potential in suppressing tumor growth either by selectively modulating neuronal cell groups involved in stress responses affecting cancer cells or by directly manipulating specific (e.g., the ß-AR) receptors on a tumor and its microenvironment.
Collapse
|
9
|
Escudero-Feliu J, García-Costela M, Moreno-SanJuan S, Puentes-Pardo JD, Arrabal SR, González-Novoa P, Núñez MI, Carazo Á, Jimenez-Lopez JC, León J. Narrow Leafed Lupin ( Lupinus angustifolius L.) β-Conglutin Seed Proteins as a New Natural Cytotoxic Agents against Breast Cancer Cells. Nutrients 2023; 15:nu15030523. [PMID: 36771230 PMCID: PMC9919070 DOI: 10.3390/nu15030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Breast cancer (BC) is the most widespread tumor in women and the second type of most common cancer worldwide. Despite all the technical and medical advances in existing therapies, between 30 and 50% of patients with BC will develop metastasis, which contributes to the failure of existing treatments. This situation urges the need to find more effective prevention and treatment strategies like the use of plant-based nutraceutical compounds. In this context, we purified three Narrow Leafed Lupin (NLL) β-conglutins isoforms using affinity-chromatography and evaluated their effectiveness in terms of viability, proliferation, apoptosis, stemness properties, and mechanism of action on both BC cell lines and a healthy one. NLL β-conglutins proteins have very promising effects at the molecular level on BC cells at very low concentrations, emerging as a potential natural cytotoxic agent and preserving the viability of healthy cells. These proteins could act through a dual mechanism involving tumorigenic and stemness-related genes such as SIRT1 and FoxO1, depending on the state of p53. More studies must be carried out to completely understand the underlying mechanisms of action of these nutraceutical compounds in BC in vitro and in vivo, and their potential use for the inhibition of other cancer cell types.
Collapse
Affiliation(s)
| | | | - Sara Moreno-SanJuan
- Cytometry and Microscopy Research Service, Biosanitary Research Institute of Granada (ibs.GRANADA), E-18012 Granada, Spain
| | - Jose D. Puentes-Pardo
- Biosanitary Research Institute of Granada (ibs.GRANADA), E-18012 Granada, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, E-18011 Granada, Spain
| | - Sandra Ríos Arrabal
- Biosanitary Research Institute of Granada (ibs.GRANADA), E-18012 Granada, Spain
| | | | - María Isabel Núñez
- Biosanitary Research Institute of Granada (ibs.GRANADA), E-18012 Granada, Spain
- Department of Radiology and Physical Medicine, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
| | - Ángel Carazo
- Biosanitary Research Institute of Granada (ibs.GRANADA), E-18012 Granada, Spain
| | - Jose C. Jimenez-Lopez
- Department of Stress, Development and Plant Signalling, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), E-18008 Granada, Spain
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Correspondence: (J.C.J.-L.); (J.L.)
| | - Josefa León
- Biosanitary Research Institute of Granada (ibs.GRANADA), E-18012 Granada, Spain
- Clinical Management Unit of Digestive Disease and UNAI, San Cecilio University Hospital, E-18006 Granada, Spain
- Correspondence: (J.C.J.-L.); (J.L.)
| |
Collapse
|
10
|
Activation of β-Adrenoceptors Promotes Lipid Droplet Accumulation in MCF-7 Breast Cancer Cells via cAMP/PKA/EPAC Pathways. Int J Mol Sci 2023; 24:ijms24010767. [PMID: 36614209 PMCID: PMC9820888 DOI: 10.3390/ijms24010767] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Physiologically, β-adrenoceptors are major regulators of lipid metabolism, which may be reflected in alterations in lipid droplet dynamics. β-adrenoceptors have also been shown to participate in breast cancer carcinogenesis. Since lipid droplets may be seen as a hallmark of cancer, the present study aimed to investigate the role of β-adrenoceptors in the regulation of lipid droplet dynamics in MCF-7 breast cancer cells. Cells were treated for up to 72 h with adrenaline (an endogenous adrenoceptor agonist), isoprenaline (a non-selective β-adrenoceptor agonist) and salbutamol (a selective β2-selective agonist), and their effects on lipid droplets were evaluated using Nile Red staining. Adrenaline or isoprenaline, but not salbutamol, caused a lipid-accumulating phenotype in the MCF-7 cells. These effects were significantly reduced by selective β1- and β3-antagonists (10 nM atenolol and 100 nM L-748,337, respectively), indicating a dependence on both β1- and β3-adrenoceptors. These effects were dependent on the cAMP signalling pathway, involving both protein kinase A (PKA) and cAMP-dependent guanine-nucleotide-exchange (EPAC) proteins: treatment with cAMP-elevating agents (forskolin or 8-Br-cAMP) induced lipid droplet accumulation, whereas either 1 µM H-89 or 1 µM ESI-09 (PKA or EPAC inhibitors, respectively) abrogated this effect. Taken together, the present results demonstrate the existence of a β-adrenoceptor-mediated regulation of lipid droplet dynamics in breast cancer cells, likely involving β1- and β3-adrenoceptors, revealing a new mechanism by which adrenergic stimulation may influence cancer cell metabolism.
Collapse
|
11
|
Jabir NR, Firoz CK, Zughaibi TA, Alsaadi MA, Abuzenadah AM, Al-Asmari AI, Alsaieedi A, Ahmed BA, Ramu AK, Tabrez S. A literature perspective on the pharmacological applications of yohimbine. Ann Med 2022; 54:2861-2875. [PMID: 36263866 PMCID: PMC9590431 DOI: 10.1080/07853890.2022.2131330] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction: Phytochemicals have garnered much attention because they are useful in managing several human diseases. Yohimbine is one such phytochemical with significant pharmacological potential and could be exploited for research by medicinal chemists. It is an indole alkaloid obtained from various natural/synthetic sources.Aims and Results: The research on yohimbine started early, and its use as a stimulant and aphrodisiac by humans has been reported for a long time. The pharmacological activity of yohimbine is mediated by the combined action of the central and peripheral nervous systems. It selectively blocks the pre and postsynaptic α2-adrenergic receptors and has a moderate affinity for α1 and α2 subtypes. Yohimbine also binds to other behaviourally relevant monoaminergic receptors in the following order: α-2 NE > 5HT-1A>, 5HT-1B > 1-D > D3 > D2 receptors.Conclusion: The current review highlights some significant findings that contribute to developing yohimbine-based drugs. It also highlights the therapeutic potential of yohimbine against selected human diseases. However, further research is recommended on the pharmacokinetics, molecular mechanisms, and drug safety requirements using well-designed randomized clinical trials to produce yohimbine as a pharmaceutical agent for human use.Key MessagesYohimbine is a natural indole alkaloid with significant pharmacological potential.Humans have used it as a stimulant and aphrodisiac from a relatively early time.It blocks the pre- and postsynaptic α2-adrenergic receptors that could be exploited for managing erectile dysfunction, myocardial dysfunction, inflammatory disorders, and cancer.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- Department of Biochemistry and Biotechnology, Centre for Research and Development, PRIST University, Vallam, Thanjavur, India
| | - Chelapram K Firoz
- Department of Medical Laboratory Technology, MIMS College of Allied Health Sciences, ASTER MIMS Academy, Malappuram, Kerala University of Health Sciences, Kerala, India
| | - Torki A Zughaibi
- Toxicology and Forensic Science Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Abdullah Alsaadi
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel M Abuzenadah
- Toxicology and Forensic Science Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Ibrahim Al-Asmari
- Toxicology and Forensic Science Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Laboratory Department, King Abdul-Aziz Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Ahdab Alsaieedi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bakrudeen Ali Ahmed
- Department of Biochemistry and Biotechnology, Centre for Research and Development, PRIST University, Vallam, Thanjavur, India
| | - Arun Kumar Ramu
- Department of Biochemistry and Biotechnology, Centre for Research and Development, PRIST University, Vallam, Thanjavur, India
| | - Shams Tabrez
- Toxicology and Forensic Science Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Crosstalk between the peripheral nervous system and breast cancer influences tumor progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188828. [DOI: 10.1016/j.bbcan.2022.188828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
|
13
|
Jabir NR, Khan MS, Alafaleq NO, Naz H, Ahmed BA. Anticancer potential of yohimbine in drug-resistant oral cancer KB-ChR-8-5 cells. Mol Biol Rep 2022; 49:9565-9573. [PMID: 35970968 DOI: 10.1007/s11033-022-07847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The demand for environmentally friendly and cost-effective plant-based products for the development of cancer therapeutics has been increasing. Yohimbine (α2-adrenergic receptor antagonist) is a stimulant and aphrodisiac used to improve erectile dysfunction. In this study, we aimed to evaluate the anticancer potential of yohimbine in drug-resistant oral cancer KB-ChR-8-5 cells using different biomolecular techniques. METHODS We estimated the anticancer efficacy of yohimbine using different assays, such as MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell cytotoxicity, cell morphology, cell apoptosis, reactive oxygen species (ROS) formation, and modulation in the mitochondrial membrane potential (MMP). RESULTS Yohimbine showed a dose-dependent increase in cytotoxicity with a 50% inhibitory concentration (IC50) of 44 µM against KB-ChR-8-5 cancer cell lines. Yohimbine treatment at 40 µM and 50 µM resulted in a considerable change in cell morphology, including shrinkage, detachment, membrane blebbing, and deformed shape. Moreover, at the dose of IC50 and above, a significant induction was observed in the generation of ROS and depolarization of MMP. The possible mechanisms of action of yohimbine underlying the dose-dependent increase in cytotoxicity may be due to the induction of apoptosis, ROS generation, and modulation of MMP. CONCLUSION Overall, yohimbine showed a significant anticancer potential against drug-resistant oral cancer KB-ChR-8-5 cells. Our study suggests that besides being an aphrodisiac, yohimbine can be used as a drug repurposing agent. However, more research is required in different in vitro and in vivo models to confirm the feasibility of yohimbine in clinics.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, 613403, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Nouf Omar Alafaleq
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Huma Naz
- Department of Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Bakrudeen Ali Ahmed
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, 613403, India.
| |
Collapse
|
14
|
Rousseau B, Murugan S, Palagani A, Sarkar DK. Beta 2 adrenergic receptor and mu opioid receptor interact to potentiate the aggressiveness of human breast cancer cell by activating the glycogen synthase kinase 3 signaling. Breast Cancer Res 2022; 24:33. [PMID: 35568869 PMCID: PMC9107672 DOI: 10.1186/s13058-022-01526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Opioid and beta-adrenergic receptors are recently shown to cross talk via formation of receptor heterodimers to control the growth and proliferation of breast cancer cells. However, the underlying cell signaling mechanism remained unclear. METHODS To determine the effect of the interaction of the two systems in breast cancer, we employed triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468, CRISPR or chemical inhibition or activation of beta-adrenergic receptors (B2AR) and mu-opioid receptors (MOR) gene, and PCR array technology and studied aggressive tumor phenotype and signaling cascades. RESULTS We show here that in triple-negative breast cancer cells, the reduction in expression B2AR and MOR by genetic and pharmacological tools leads to a less aggressive phenotype of triple-negative breast cancer cells in vitro and in animal xenografts. Genomic analysis indicates the glycogen synthase kinase 3 (GSK3) pathway as a possible candidate messenger system involved in B2AR and MOR cross talk. GSK3 inactivation in MDA-MB-231 and MDA-MB-468 cells induced similar phenotypic changes as the inhibition of B2AR and/or MOR, while a GSK3 activation by wortmannin reversed the effects of B2AR and/or MOR knockdown on these cells. GSK3 inactivation also prevents B2AR agonist norepinephrine or MOR agonist DAMGO from affecting MDA-MB-231 and MDA-MB-468 cell proliferation. CONCLUSIONS These data confirm a role of B2AR and MOR interaction in the control of breast cancer cell growth and identify a possible role of the GSK3 signaling system in mediation of these two receptors' cross talk. Screening for ligands targeting B2AR and MOR interaction and/or the GSK3 system may help to identify novel drugs for the prevention of triple-negative breast cancer cell growth and metastasis.
Collapse
Affiliation(s)
- Bénédicte Rousseau
- Endocrine Research Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, 67 Poultry Farm Lane, New Brunswick, NJ, 08901, USA
| | - Sengottuvelan Murugan
- Endocrine Research Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, 67 Poultry Farm Lane, New Brunswick, NJ, 08901, USA
| | - Ajay Palagani
- Endocrine Research Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, 67 Poultry Farm Lane, New Brunswick, NJ, 08901, USA
| | - Dipak K Sarkar
- Endocrine Research Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, 67 Poultry Farm Lane, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
15
|
Silva D, Quintas C, Gonçalves J, Fresco P. Contribution of adrenergic mechanisms for the stress-induced breast cancer carcinogenesis. J Cell Physiol 2022; 237:2107-2127. [PMID: 35243626 DOI: 10.1002/jcp.30707] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 02/12/2022] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common and deadliest type of cancer in women. Stress exposure has been associated with carcinogenesis and the stress released neurotransmitters, noradrenaline and adrenaline, and their cognate receptors, can participate in the carcinogenesis process, either by regulating tumor microenvironment or by promoting systemic changes. This work intends to provide an overview of the research done in this area and try to unravel the role of adrenergic ligands in the context of breast carcinogenesis. In the initiation phase, adrenergic signaling may favor neoplastic transformation of breast epithelial cells whereas, during cancer progression, may favor the metastatic potential of breast cancer cells. Additionally, adrenergic signaling can alter the function and activity of other cells present in the tumor microenvironment towards a protumor phenotype, namely macrophages, fibroblasts, and by altering adipocyte's function. Adrenergic signaling also promotes angiogenesis and lymphangiogenesis and, systemically, may induce the formation of preneoplastic niches, cancer-associated cachexia and alterations in the immune system which contribute for the loss of quality of life of breast cancer patients and their capacity to fight cancer. Most studies points to a major contribution of β2 -adrenoceptor activated pathways on these effects. The current knowledge of the mechanistic pathways activated by β2 -adrenoceptors in physiology and pathophysiology, the availability of selective drugs approved for clinical use and a deeper knowledge of the basic cellular and molecular pathways by which adrenergic stimulation may influence cancer initiation and progression, opens the possibility to use new therapeutic alternatives to improve efficacy of breast cancer treatments.
Collapse
Affiliation(s)
- Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Clara Quintas
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Eckerling A, Ricon-Becker I, Sorski L, Sandbank E, Ben-Eliyahu S. Stress and cancer: mechanisms, significance and future directions. Nat Rev Cancer 2021; 21:767-785. [PMID: 34508247 DOI: 10.1038/s41568-021-00395-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
The notion that stress and cancer are interlinked has dominated lay discourse for decades. More recent animal studies indicate that stress can substantially facilitate cancer progression through modulating most hallmarks of cancer, and molecular and systemic mechanisms mediating these effects have been elucidated. However, available clinical evidence for such deleterious effects is inconsistent, as epidemiological and stress-reducing clinical interventions have yielded mixed effects on cancer mortality. In this Review, we describe and discuss specific mediating mechanisms identified by preclinical research, and parallel clinical findings. We explain the discrepancy between preclinical and clinical outcomes, through pointing to experimental strengths leveraged by animal studies and through discussing methodological and conceptual obstacles that prevent clinical studies from reflecting the impacts of stress. We suggest approaches to circumvent such obstacles, based on targeting critical phases of cancer progression that are more likely to be stress-sensitive; pharmacologically limiting adrenergic-inflammatory responses triggered by medical procedures; and focusing on more vulnerable populations, employing personalized pharmacological and psychosocial approaches. Recent clinical trials support our hypothesis that psychological and/or pharmacological inhibition of excess adrenergic and/or inflammatory stress signalling, especially alongside cancer treatments, could save lives.
Collapse
Affiliation(s)
- Anabel Eckerling
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Itay Ricon-Becker
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Liat Sorski
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elad Sandbank
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Correia AS, Duarte D, Silva I, Reguengo H, Oliveira JC, Vale N. Serotonin after β-Adrenoreceptors' Exposition: New Approaches for Personalized Data in Breast Cancer Cells. J Pers Med 2021; 11:jpm11100954. [PMID: 34683096 PMCID: PMC8537807 DOI: 10.3390/jpm11100954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023] Open
Abstract
Serotonin is an important monoamine in the human body, playing crucial roles, such as a neurotransmitter in the central nervous system. Previously, our group reported that β-adrenergic drugs (ICI 118,551, isoprenaline, and propranolol) influence the proliferation of breast cancer cells (MCF-7 cells) and their inherent production of adrenaline. Thus, we aimed to investigate the production of serotonin in MCF-7 cells, clarifying if there is a relationship between this production and the viability of the cells. To address this question, briefly, we treated the MCF-7 cells with ICI 118,551, isoprenaline, and propranolol, and evaluated cellular viability and serotonin production by using MTT, Sulforhodamine B (SRB) and Neutral Red (NR) assays, and HPLC-ECD analysis, respectively. Our results demonstrate that isoprenaline promotes the most pronounced endogenous synthesis of serotonin, about 3.5-fold greater than control cells. Propranolol treatment also increased the synthesis of serotonin (when compared to control). On the other hand, treatment with the drug ICI 118,551 promoted a lower endogenous synthesis of serotonin, about 1.1-fold less than what was observed in the control. Together, these results reveal that MCF-7 cells can produce serotonin, and the drugs propranolol, isoprenaline and ICI 118,551 influence this endogenous production. For the first time, after modulation of the β-adrenergic system, a pronounced cellular growth can be related to higher consumption of serotonin by the cells, resulting in decreased levels of serotonin in cell media, indicative of the importance of serotonin in the growth of MCF-7 cells.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; (A.S.C.); (D.D.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; (A.S.C.); (D.D.)
- Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Isabel Silva
- Clinical Chemistry, Department of Laboratory Pathology, Centro Hospitalar Universitário do Porto (CHUP), Largo Prof. Abel Salazar, 4099-313 Porto, Portugal; (I.S.); (H.R.); (J.C.O.)
| | - Henrique Reguengo
- Clinical Chemistry, Department of Laboratory Pathology, Centro Hospitalar Universitário do Porto (CHUP), Largo Prof. Abel Salazar, 4099-313 Porto, Portugal; (I.S.); (H.R.); (J.C.O.)
- Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - José Carlos Oliveira
- Clinical Chemistry, Department of Laboratory Pathology, Centro Hospitalar Universitário do Porto (CHUP), Largo Prof. Abel Salazar, 4099-313 Porto, Portugal; (I.S.); (H.R.); (J.C.O.)
- Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; (A.S.C.); (D.D.)
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Correspondence: ; Tel.: +351-225-513-622
| |
Collapse
|