1
|
Islam MSU, Akter N, Zohra FT, Rashid SB, Hasan N, Rahman SM, Sarkar MAR. Genome-wide identification and characterization of cation-proton antiporter (CPA) gene family in rice (Oryza sativa L.) and their expression profiles in response to phytohormones. PLoS One 2025; 20:e0317008. [PMID: 39854520 PMCID: PMC11761165 DOI: 10.1371/journal.pone.0317008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/17/2024] [Indexed: 01/26/2025] Open
Abstract
The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated. In this study, we use rice public data and information techniques, 29 OsCPA candidate genes were identified in the rice japonica variety (referred to as OsCPA) and phylogenetically categorized into K+ efflux antiporter (KEA), Na+/H+ exchanger (NHX), and cation/H+ exchanger (CHX) groups containing 4, 7, and 18 OsCPA genes. The OsCPA proteins were predominantly localized in the plasma membrane and unevenly scattered on 11 chromosomes. The structural analysis of OsCPA proteins revealed higher similarities within groups. Prediction of selection pressure, collinearity, and synteny analysis indicated that all duplicated OsCPA genes had undergone strong purifying selection throughout their evolution. The cis-acting regulatory elements (CAREs) analysis identified 56 CARE motifs responsive to light, tissue, hormones, and stresses. Additionally, 124 miRNA families were identified in the gene promoters, and OsNHX7 was targeted by the highest number of miRNAs (43 miRNAs). Gene Ontology analysis demonstrated the numerous functions of OsCPA genes associated with biological processes (57.14%), cellular components (7.94%), and molecular functions (34.92%). A total of 12 transcription factor families (TFFs), including 40 TFs were identified in gene promoters, with the highest numbers of TFFs (5TFFs) linked to OsCHX13, and OsCHX15. Protein-protein interaction analysis suggested maximum functional similarities between rice and Arabidopsis CPA proteins. Based on expression analysis, OsKEA1, OsKEA2, OsNHX3, and OsNHX7 were frequently expressed in rice tissues. Furthermore, OsNHX3, OsNHX4, OsNHX6, OsNHX7, OsCHX8, and OsCHX17 in abscisic acid, OsKEA1, OsNHX3, and OsCHX8 in gibberellic acid, OsKEA1, OsKEA3, OsNHX1, and OsNHX3 in indole-3-acetic acid treatment were demonstrated as potential candidates in response to hormone. These findings highlight potential candidates for further characterization of OsCPA genes, which may aid in the development of rice varieties.
Collapse
Affiliation(s)
- Md. Shohel Ul Islam
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Nasrin Akter
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shuraya Beente Rashid
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Naimul Hasan
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Shaikh Mizanur Rahman
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
2
|
Santhoshi Y, Anjana AB, Zala H, Bosamia T, Tiwari K, Prajapati K, Patel P, Soni N, Patel N, Solanki S, Kadam US. Comprehensive Analysis of the NHX Gene Family and Its Regulation Under Salt and Drought Stress in Quinoa ( Chenopodium quinoa Willd.). Genes (Basel) 2025; 16:70. [PMID: 39858617 PMCID: PMC11765057 DOI: 10.3390/genes16010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Abiotic stresses such as salinity and drought significantly constrain crop cultivation and affect productivity. Quinoa (Chenopodium quinoa Willd.), a facultative halophyte, exhibits remarkable tolerance to drought and salinity stresses, making it a valued model for understanding stress adaptation mechanisms. The objective of this study was to identify and characterize Sodium/Hydrogen antiporter (NHX) genes from the quinoa genome and study their role in stress tolerance. Methods: We identified and characterized 10 NHX genes from the quinoa genome, which belong to the monovalent cation/proton antiporter 1 (CPA1) superfamily. Comprehensive analysis, including phylogenetic relationships, motif patterns, and structural characteristics, was performed to classify these genes into three subfamilies. Physicochemical properties such as isoelectric point (pI), GRAVY, and transmembrane domains were examined. Promoter analysis was conducted to identify cis-elements linked to abiotic stress responses, phytohormone signalling, and light regulation. qPCR analysis was used to assess the differential expression patterns of CqNHX genes under salt and drought stress. Results: The analysis revealed that the NHX genes were divided into three subfamilies localized to vacuolar, plasma, and endosomal membranes. These genes exhibited structural and functional diversity. Promoter analysis indicated the presence of cis-elements associated with abiotic stress responses, phytohormone signalling, and light regulation, suggesting diverse regulatory roles. qPCR analysis revealed differential expression patterns of CqNHX genes under salt and drought stress, with vacuolar NHXs showing higher induction in leaf tissues under salinity. This underscores their critical role in sodium sequestration and ion homeostasis. Evolutionary analysis indicated a high degree of conservation within subfamilies, alongside evidence of purifying selection. Conclusions: The findings enhance our understanding of the molecular basis of stress tolerance in quinoa and provide valuable targets for genetic engineering to improve crop resilience to environmental challenges.
Collapse
Affiliation(s)
- Yalla Santhoshi
- Department of Genetics and Plant Breeding, C. P. College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar 385 506, Gujarat, India
| | - Asha Bindhu Anjana
- Department of Genetics and Plant Breeding, C. P. College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar 385 506, Gujarat, India
| | - Harshvardhan Zala
- Department of Genetics and Plant Breeding, C. P. College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar 385 506, Gujarat, India
| | - Tejas Bosamia
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364 002, Gujarat, India
| | - Kapil Tiwari
- Bio-Science Research Centre, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar 385 506, Gujarat, India
| | - Ketan Prajapati
- Department of Genetics and Plant Breeding, C. P. College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar 385 506, Gujarat, India
| | - Pranay Patel
- Department of Genetics and Plant Breeding, C. P. College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar 385 506, Gujarat, India
| | - Nishit Soni
- Department of Genetics and Plant Breeding, C. P. College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar 385 506, Gujarat, India
| | - Nitin Patel
- Department of Genetics and Plant Breeding, C. P. College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar 385 506, Gujarat, India
| | - Satyanarayan Solanki
- Department of Genetics and Plant Breeding, C. P. College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar 385 506, Gujarat, India
| | - Ulhas Sopanrao Kadam
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
3
|
Singh AK, Pal P, Sahoo UK, Sharma L, Pandey B, Prakash A, Sarangi PK, Prus P, Pașcalău R, Imbrea F. Enhancing Crop Resilience: The Role of Plant Genetics, Transcription Factors, and Next-Generation Sequencing in Addressing Salt Stress. Int J Mol Sci 2024; 25:12537. [PMID: 39684248 DOI: 10.3390/ijms252312537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Salt stress is a major abiotic stressor that limits plant growth, development, and agricultural productivity, especially in regions with high soil salinity. With the increasing salinization of soils due to climate change, developing salt-tolerant crops has become essential for ensuring food security. This review consolidates recent advances in plant genetics, transcription factors (TFs), and next-generation sequencing (NGS) technologies that are pivotal for enhancing salt stress tolerance in crops. It highlights critical genes involved in ion homeostasis, osmotic adjustment, and stress signaling pathways, which contribute to plant resilience under saline conditions. Additionally, specific TF families, such as DREB, NAC (NAM, ATAF, and CUC), and WRKY, are explored for their roles in activating salt-responsive gene networks. By leveraging NGS technologies-including genome-wide association studies (GWASs) and RNA sequencing (RNA-seq)-this review provides insights into the complex genetic basis of salt tolerance, identifying novel genes and regulatory networks that underpin adaptive responses. Emphasizing the integration of genetic tools, TF research, and NGS, this review presents a comprehensive framework for accelerating the development of salt-tolerant crops, contributing to sustainable agriculture in saline-prone areas.
Collapse
Affiliation(s)
- Akhilesh Kumar Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India
| | - Priti Pal
- Environmental Engineering, Shri Ramswaroop Memorial College of Engineering & Management, Tewariganj, Faizabad, Road, Lucknow 226028, India
| | | | - Laxuman Sharma
- Department of Horticulture, Sikkim University, Gangtok 737102, India
| | - Brijesh Pandey
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India
| | - Anand Prakash
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India
| | | | - Piotr Prus
- Department of Agronomy, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - Raul Pașcalău
- Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, 300645 Timisoara, Romania
| | - Florin Imbrea
- Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, 300645 Timisoara, Romania
| |
Collapse
|
4
|
Ying J, Hu J, M'mbone Muleke E, Shen F, Wen S, Ye Y, Cai Y, Qian R. RsOBP2a, a member of OBF BINDING PROTEIN transcription factors, inhibits two chlorophyll degradation genes in green radish. Int J Biol Macromol 2024; 277:134139. [PMID: 39059533 DOI: 10.1016/j.ijbiomac.2024.134139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The green radish (Raphanus sativus L.) contains abundant chlorophyll (Chl). DOF-type transcription factor OBF BINDING PROTEIN (OBP) plays crucial functions in plant growth, development, maturation and responses to various abiotic stresses. However, the metabolism by which OBP transcription factors regulate light-induced Chl metabolism in green radish is not well understood. In this study, six OBP genes were identified from the radish genome, distributed unevenly across five chromosomes. Among these genes, RsOBP2a showed significantly higher expression in the green flesh compared to the white flesh of green radish. Analysis of promoter elements suggested that RsOBPs might be involved in stress responses, particularly in light-related processes. Overexpression of RsOBP2a led to increase Chl levels in cotyledons and adventitious roots of radish, while silencing RsOBP2a expression through TYMV-induced gene silencing accelerated leaf senescence. Further investigations revealed that RsOBP2a was localized in the nucleus and served as a transcriptional repressor. RsOBP2a was induced by light and directly suppressed the expression of STAYGREEN (SGR) and RED CHLOROPHYLL CATABOLITE REDUCTASE (RCCR), thereby delaying senescence in radish. Overall, a novel regulatory model involving RsOBP2a, RsSGR, and RsRCCR was proposed to govern Chl metabolism in response to light, offering insights for the enhancement of green radish germplasm.
Collapse
Affiliation(s)
- Jiali Ying
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou 325005, Zhejiang, China
| | - Jinbin Hu
- Ningbo Weimeng Seed Industry Co., Ltd., Ningbo 315100, Zhejiang, China
| | - Everlyne M'mbone Muleke
- Department of Agriculture and Land Use Management, Masinde Muliro University of Science and Technology, Kenya
| | - Feng Shen
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224002, Jiangsu, China
| | - Shuangshuang Wen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou 325005, Zhejiang, China
| | - Youju Ye
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou 325005, Zhejiang, China
| | - Yunfei Cai
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou 325005, Zhejiang, China
| | - Renjuan Qian
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou 325005, Zhejiang, China.
| |
Collapse
|
5
|
Zhang HC, Gong YH, Tao T, Lu S, Zhou WY, Xia H, Zhang XY, Yang QQ, Zhang MQ, Hong LM, Guo QQ, Ren XZ, Yang ZD, Cai XL, Ren DY, Gao JP, Jin SK, Leng YJ. Genome-wide identification of R2R3-MYB transcription factor subfamily genes involved in salt stress in rice (Oryza sativa L.). BMC Genomics 2024; 25:797. [PMID: 39179980 PMCID: PMC11342600 DOI: 10.1186/s12864-024-10693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND R2R3-MYB transcription factors belong to one of the largest gene subfamilies in plants, and they are involved in diverse biological processes. However, the role of R2R3-MYB transcription factor subfamily genes in the response of rice (Oryza sativa L.) to salt stress has been rarely reported. RESULTS In this study, we performed a genome-wide characterization and expression identification of rice R2R3-MYB transcription factor subfamily genes. We identified a total of 117 R2R3-MYB genes in rice and characterized their gene structure, chromosomal location, and cis-regulatory elements. According to the phylogenetic relationships and amino acid sequence homologies, the R2R3-MYB genes were divided into four groups. qRT-PCR of the R2R3-MYB genes showed that the expression levels of 10 genes significantly increased after 3 days of 0.8% NaCl treatment. We selected a high expression gene OsMYB2-115 for further analysis. OsMYB2-115 was highly expressed in the roots, stem, leaf, and leaf sheath. OsMYB2-115 was found to be localized in the nucleus, and the yeast hybrid assay showed that OsMYB2-115 has transcriptional activation activity. CONCLUSION This result provides important information for the functional analyses of rice R2R3-MYB transcription factor subfamily genes related to the salt stress response and reveals that OsMYB2-115 may be an important gene associated with salt tolerance in rice.
Collapse
Affiliation(s)
- Hao-Cheng Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yuan-Hang Gong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Tao Tao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Shuai Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Wen-Yu Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Han Xia
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xin-Yi Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Qing-Qing Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Ming-Qiu Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Lian-Min Hong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Qian-Qian Guo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xin-Zhe Ren
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Zhi-Di Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiu-Ling Cai
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - De-Yong Ren
- State Key Laboratory of Rice Biology and Breeding, National Rice Research Institute, Hangzhou, 310006, China
| | - Ji-Ping Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
| | - Su-Kui Jin
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Yu-Jia Leng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Liu S, An Z, Li Y, Yang R, Lai Z. Genome-Wide Identification of the Cation/Proton Antiporter (CPA) Gene Family and Functional Analysis of AtrNHX8 under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1701. [PMID: 38931134 PMCID: PMC11207833 DOI: 10.3390/plants13121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Amaranthus tricolor is an important vegetable, and its quality is affected by salt stress. Cation/proton antiporters (CPA) contribute to plant development and tolerance to salt stress. In this study, 35 CPA genes were identified from a genome database for A. tricolor, including 9 NHX, 5 KEA, and 21 CPA2 genes. Furthermore, in A. tricolor, the expression levels of most AtrNHX genes were higher at a low salinity level (50 or 100 mM NaCl) than in the control or 200 mM NaCl treatment. Levels of most AtrNHX genes were elevated in the stem. Moreover, AtrNHX8 was homologous to AtNHX4, which is involved in the regulation of sodium homeostasis and salt stress response. After AtrNHX8 overexpression in Arabidopsis thaliana, seed germination was better, and the flowering time was earlier than that of wild-type plants. Additionally, the overexpression of AtrNHX8 in A. thaliana improved salt tolerance. These results reveal the roles of AtrNHX genes under salt stress and provide valuable information on this gene family in amaranth.
Collapse
Affiliation(s)
- Shengcai Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.A.); (Y.L.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zixian An
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.A.); (Y.L.)
| | - Yixuan Li
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.A.); (Y.L.)
| | - Rongzhi Yang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.A.); (Y.L.)
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.A.); (Y.L.)
| |
Collapse
|
7
|
Chen H, Li H, Chong X, Zhou T, Lu X, Wang X, Zheng B. Transcriptome Analysis of the Regulatory Mechanisms of Holly ( Ilex dabieshanensis) under Salt Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:1638. [PMID: 38931069 PMCID: PMC11207398 DOI: 10.3390/plants13121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The holly Ilex dabieshanensis K. Yao & M. B. Deng, a tree endemic to the Dabieshan Mountains region in China, is a commonly used landscaping plant. Like other crops, its growth is affected by salt stress. The molecular mechanism underlying salt tolerance in holly is still unclear. In this study, we used NaCl treatment and RNA sequencing (RNA-seq) at different times to identify the salt stress response genes of holly. A total of 4775 differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the DEGs obtained at different salt treatment times (3, 6, 9, 12, and 24 h), as compared to control (ck, 0 h), showed that plant hormone signal transduction and carotenoid biosynthesis were highly enriched. The mechanism by which holly responds to salt stress involves many plant hormones, among which the accumulation of abscisic acid (ABA) and its signal transduction may play an important role. In addition, ion homeostasis, osmotic metabolism, accumulation of antioxidant enzymes and nonenzymatic antioxidant compounds, and transcription factors jointly regulate the physiological balance in holly, providing important guarantees for its growth and development under conditions of salt stress. These results lay the foundation for studying the molecular mechanisms of salt tolerance in holly and for the selection of salt-tolerant varieties.
Collapse
Affiliation(s)
- Hong Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A & F University, Hangzhou 311300, China
| | - Huihui Li
- Fuyang Academy of Agricultural Sciences, Fuyang 236065, China
| | - Xinran Chong
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Ting Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Xiaoqing Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Xiaolong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Bingsong Zheng
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
8
|
Liu J, Li D, Wang J, Wang Q, Guo X, Fu Q, Kear P, Zhu G, Yang X. Genome-wide characterization of the CPA gene family in potato and a preliminary functional analysis of its role in NaCl tolerance. BMC Genomics 2024; 25:144. [PMID: 38317113 PMCID: PMC10840148 DOI: 10.1186/s12864-024-10000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The cation/proton antiporter (CPA) superfamily plays a crucial role in regulating ion homeostasis and pH in plant cells, contributing to stress resistance. However, in potato (Solanum tuberosum L.), systematic identification and analysis of CPA genes are lacking. RESULTS A total of 33 StCPA members were identified and classified into StNHX (n = 7), StKEA (n = 6), and StCHX (n = 20) subfamilies. StCHX owned the highest number of conserved motifs, followed by StKEA and StNHX. The StNHX and StKEA subfamilies owned more exons than StCHX. NaCl stress induced the differentially expression of 19 genes in roots or leaves, among which StCHX14 and StCHX16 were specifically induced in leaves, while StCHX2 and StCHX19 were specifically expressed in the roots. A total of 11 strongly responded genes were further verified by qPCR. Six CPA family members, StNHX1, StNHX2, StNHX3, StNHX5, StNHX6 and StCHX19, were proved to transport Na+ through yeast complementation experiments. CONCLUSIONS This study provides comprehensive insights into StCPAs and their response to NaCl stress, facilitating further functional characterization.
Collapse
Affiliation(s)
- Jintao Liu
- Key Lab for Potato Biology in Universities of Yunnan, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| | - Dianjue Li
- Key Lab for Potato Biology in Universities of Yunnan, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Jing Wang
- Key Lab for Potato Biology in Universities of Yunnan, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Qian Wang
- Key Lab for Potato Biology in Universities of Yunnan, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Xiao Guo
- Institute of Vegetables, Shandong Academy of Agricultural Sciences/Molecular Biology Key Laboratory of Shandong Facility Vegetable/National Vegetable Improvement Center Shandong Sub-Center, Jinan, 250100, China
| | - Qi Fu
- Key Lab for Potato Biology in Universities of Yunnan, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Philip Kear
- International Potato Center (CIP), CIP China Center for Asia Pacific, Beijing, 100081, China
| | - Guangtao Zhu
- Key Lab for Potato Biology in Universities of Yunnan, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650500, China.
| | - Xiaohui Yang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences/Molecular Biology Key Laboratory of Shandong Facility Vegetable/National Vegetable Improvement Center Shandong Sub-Center, Jinan, 250100, China.
| |
Collapse
|
9
|
Yue CP, Han L, Sun SS, Chen JF, Feng YN, Huang JY, Zhou T, Hua YP. Genome-wide identification of the cation/proton antiporter (CPA) gene family and functional characterization of the key member BnaA05.NHX2 in allotetraploid rapeseed. Gene 2024; 894:148025. [PMID: 38007163 DOI: 10.1016/j.gene.2023.148025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Rapeseed (Brassica napus L.) is susceptible to nutrient stresses during growth and development; however, the CPA (cation proton antiporter) family genes have not been identified in B. napus and their biological functions remain unclear. This study was aimed to identify the molecular characteristics of rapeseed CPAs and their transcriptional responses to multiple nutrient stresses. Through bioinformatics analysis, 117 BnaCPAs, consisting of three subfamilies: Na+/H+ antiporter (NHX), K+ efflux antiporter (KEA), and cation/H+ antiporter (CHX), were identified in the rapeseed genome. Transcriptomic profiling showed that BnaCPAs, particularly BnaNHXs, were transcriptionally responsive to diverse nutrient stresses, including Cd toxicity, K starvation, salt stress, NH4+ toxicity, and low Pi. We found that the salt tolerance of the transgenic rapeseed lines overexpressing BnaA05.NHX2 was significantly higher than that of wild type. Subcellular localization showed that BnaA05.NHX2 was localized on the tonoplast, and TEM combined with X-ray energy spectrum analysis revealed that the vacuolar Na+ concentrations of the BnaA05.NHX2-overexpressing rapeseed plants were significantly higher than those of wild type. The findings of this study will provide insights into the complexity of the BnaCPA family and a valuable resource to explore the in-depth functions of CPAs in B. napus.
Collapse
Affiliation(s)
- Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Liao Han
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Si-Si Sun
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jun-Fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ying-Na Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jin-Yong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
10
|
Jia Q, Song J, Zheng C, Fu J, Qin B, Zhang Y, Liu Z, Jia K, Liang K, Lin W, Fan K. Genome-Wide Analysis of Cation/Proton Antiporter Family in Soybean ( Glycine max) and Functional Analysis of GmCHX20a on Salt Response. Int J Mol Sci 2023; 24:16560. [PMID: 38068884 PMCID: PMC10705888 DOI: 10.3390/ijms242316560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Monovalent cation proton antiporters (CPAs) play crucial roles in ion and pH homeostasis, which is essential for plant development and environmental adaptation, including salt tolerance. Here, 68 CPA genes were identified in soybean, phylogenetically dividing into 11 Na+/H+ exchangers (NHXs), 12 K+ efflux antiporters (KEAs), and 45 cation/H+ exchangers (CHXs). The GmCPA genes are unevenly distributed across the 20 chromosomes and might expand largely due to segmental duplication in soybean. The GmCPA family underwent purifying selection rather than neutral or positive selections. The cis-element analysis and the publicly available transcriptome data indicated that GmCPAs are involved in development and various environmental adaptations, especially for salt tolerance. Based on the RNA-seq data, twelve of the chosen GmCPA genes were confirmed for their differentially expression under salt or osmotic stresses using qRT-PCR. Among them, GmCHX20a was selected due to its high induction under salt stress for the exploration of its biological function on salt responses by ectopic expressing in Arabidopsis. The results suggest that the overexpression of GmCHX20a increases the sensitivity to salt stress by altering the redox system. Overall, this study provides comprehensive insights into the CPA family in soybean and has the potential to supply new candidate genes to develop salt-tolerant soybean varieties.
Collapse
Affiliation(s)
- Qi Jia
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
| | - Junliang Song
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Chengwen Zheng
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Jiahui Fu
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Bin Qin
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
| | - Yongqiang Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Zhongjuan Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Kunzhi Jia
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Kangjing Liang
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Wenxiong Lin
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Kai Fan
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
| |
Collapse
|
11
|
Cavusoglu E, Sari U, Tiryaki I. Genome-wide identification and expression analysis of Na+/ H+antiporter ( NHX) genes in tomato under salt stress. PLANT DIRECT 2023; 7:e543. [PMID: 37965196 PMCID: PMC10641485 DOI: 10.1002/pld3.543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/09/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023]
Abstract
Plant Na +/H + antiporter (NHX) genes enhance salt tolerance by preventing excessive Na+ accumulation in the cytosol through partitioning of Na+ ions into vacuoles or extracellular transport across the plasma membrane. However, there is limited detailed information regarding the salt stress responsive SlNHXs in the most recent tomato genome. We investigated the role of this gene family's expression patterns in the open flower tissues under salt shock in Solanum lycopersicum using a genome-wide approach. A total of seven putative SlNHX genes located on chromosomes 1, 4, 6, and 10 were identified, but no ortholog of the NHX5 gene was identified in the tomato genome. Phylogenetic analysis revealed that these genes are divided into three different groups. SlNHX proteins with 10-12 transmembrane domains were hypothetically localized in vacuoles or cell membranes. Promoter analysis revealed that SlNHX6 and SlNHX8 are involved with the stress-related MeJA hormone in response to salt stress signaling. The structural motif analysis of SlNHX1, -2, -3, -4, and -6 proteins showed that they have highly conserved amiloride binding sites. The protein-protein network revealed that SlNHX7 and SlNHX8 interact physically with Salt Overly Sensitive (SOS) pathway proteins. Transcriptome analysis demonstrated that the SlNHX2 and SlNHX6 genes were substantially expressed in the open flower tissues. Moreover, quantitative PCR analysis indicated that all SlNHX genes, particularly SlNHX6 and SlNHX8, are significantly upregulated by salt shock in the open flower tissues. Our results provide an updated framework for future genetic research and development of breeding strategies against salt stress in the tomato.
Collapse
Affiliation(s)
- Erman Cavusoglu
- Department of Agricultural Biotechnology, Faculty of AgricultureCanakkale Onsekiz Mart University, Terzioglu CampusCanakkaleTurkey
| | - Ugur Sari
- Department of Agricultural Biotechnology, Faculty of AgricultureCanakkale Onsekiz Mart University, Terzioglu CampusCanakkaleTurkey
| | - Iskender Tiryaki
- Department of Agricultural Biotechnology, Faculty of AgricultureCanakkale Onsekiz Mart University, Terzioglu CampusCanakkaleTurkey
| |
Collapse
|
12
|
Ying J, Wang Y, Xu L, Yao S, Wang K, Dong J, Ma Y, Wang L, Xie Y, Yan K, Li J, Liu L. RsGLK2.1-RsNF-YA9a module positively regulates the chlorophyll biosynthesis by activating RsHEMA2 in green taproot of radish. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111768. [PMID: 37343602 DOI: 10.1016/j.plantsci.2023.111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Radish (Raphanus sativus L.) is an economically important and widely cultivated root vegetable crop. The coloration of the green skin and green flesh is an important trait influencing the nutrition and flavor quality in fruit radish. GOLDEN2-LIKEs (GLKs) play critically important roles in plastid development and chlorophyll biosynthesis in plants. However, the molecular mechanism underlying chlorophyll biosynthesis still remain elusive in green fruit radish taproot. Herein, the RsGLK2.1 gene exhibited higher expression level in taproot with a green skin (GS) and green flesh (GF) than that in taproot of the white or red radish genotypes. RsGLK2.1 is a nuclear transcription factor that has intrinsic transcriptional activation activity. Overexpression of RsGLK2.1 increased the total chlorophyll content of 20.68%-45.84% in radish leaves. Knockout of the RsGLK2.1 gene via CRISPR/Cas9 technology resulted in a significant decrease in the chlorophyll content. Overexpression of the RsGLK2.1 gene could restore the phenotype of the glk1glk2 mutant Arabidopsis. RsGLK2.1 was participated in regulating the chlorophyll biosynthesis by directly binding to the promoter of RsHEMA2 and activating its transcription. The interaction of RsNF-YA9a with RsGLK2.1 increased the transcriptional activity of the downstream gene RsHEMA2 under the light condition rather than the dark condition, indicating that both of them regulate the chlorophyll biosynthesis in a light-dependent manner of radish. Overall, these results provided insights into the molecular framework of the RsGLK2.1-RsNF-YA9a module, and could facilitate dissecting the regulatory mechanism underlying chlorophyll biosynthesis in green taproot of radish, and genetic improvement of quality traits in fruit radish breeding programs.
Collapse
Affiliation(s)
- Jiali Ying
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liang Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuqi Yao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kai Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Junhui Dong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yinbo Ma
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, PR China
| | - Lun Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, PR China
| | - Yang Xie
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kang Yan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jingxue Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
13
|
Khodaeiaminjan M, Knoch D, Ndella Thiaw MR, Marchetti CF, Kořínková N, Techer A, Nguyen TD, Chu J, Bertholomey V, Doridant I, Gantet P, Graner A, Neumann K, Bergougnoux V. Genome-wide association study in two-row spring barley landraces identifies QTL associated with plantlets root system architecture traits in well-watered and osmotic stress conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1125672. [PMID: 37077626 PMCID: PMC10106628 DOI: 10.3389/fpls.2023.1125672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Water availability is undoubtedly one of the most important environmental factors affecting crop production. Drought causes a gradual deprivation of water in the soil from top to deep layers and can occur at diverse stages of plant development. Roots are the first organs that perceive water deficit in soil and their adaptive development contributes to drought adaptation. Domestication has contributed to a bottleneck in genetic diversity. Wild species or landraces represent a pool of genetic diversity that has not been exploited yet in breeding program. In this study, we used a collection of 230 two-row spring barley landraces to detect phenotypic variation in root system plasticity in response to drought and to identify new quantitative trait loci (QTL) involved in root system architecture under diverse growth conditions. For this purpose, young seedlings grown for 21 days in pouches under control and osmotic-stress conditions were phenotyped and genotyped using the barley 50k iSelect SNP array, and genome-wide association studies (GWAS) were conducted using three different GWAS methods (MLM GAPIT, FarmCPU, and BLINK) to detect genotype/phenotype associations. In total, 276 significant marker-trait associations (MTAs; p-value (FDR)< 0.05) were identified for root (14 and 12 traits under osmotic-stress and control conditions, respectively) and for three shoot traits under both conditions. In total, 52 QTL (multi-trait or identified by at least two different GWAS approaches) were investigated to identify genes representing promising candidates with a role in root development and adaptation to drought stress.
Collapse
Affiliation(s)
- Mortaza Khodaeiaminjan
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Dominic Knoch
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | - Cintia F. Marchetti
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Nikola Kořínková
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Alexie Techer
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Thu D. Nguyen
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Jianting Chu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Valentin Bertholomey
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain Centre de Recherche, Chappes, France
| | - Ingrid Doridant
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain Centre de Recherche, Chappes, France
| | - Pascal Gantet
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
- Unité Mixte de Recherche DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Andreas Graner
- Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Kerstin Neumann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Véronique Bergougnoux
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| |
Collapse
|
14
|
Dong J, Wang Y, Xu L, Li B, Wang K, Ying J, He Q, Liu L. RsCLE22a regulates taproot growth through an auxin signaling-related pathway in radish (Raphanus sativus L.). JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:233-250. [PMID: 36239471 DOI: 10.1093/jxb/erac406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptides are a class of small molecules involved in plant growth and development. Although radish (Raphanus sativus) is an important root vegetable crop worldwide, the functions of CLE peptides in its taproot formation remain elusive. Here, a total of 48 RsCLE genes were identified from the radish genome. RNA in situ hybridization showed that RsCLE22a gene was highly expressed in the vascular cambium. Overexpression of RsCLE22a inhibited root growth by impairing stem cell proliferation in Arabidopsis, and radish plants with exogenous supplementation of RsCLE22 peptide (CLE22p) showed a similar phenotype. The vascular cambial activity was increased in RsCLE22a-silenced plants. Transcriptome analysis revealed that CLE22p altered the expression of several genes involved in meristem development and hormone signal transduction in radish. Immunolocalization results showed that CLE22p increased auxin accumulation in vascular cambium. Yeast one-hybrid and dual-luciferase assays showed that the WUSCHEL-RELATED HOMEOBOX 4 (RsWOX4) binds to RsCLE22a promoter and activates its transcription. The expression level of RsWOX4 was related to vascular cambial activity and was regulated by auxin. Furthermore, a RsCLE22a-RsWOX4 module is proposed to regulate taproot vascular cambium activity through an auxin signaling-related pathway in radish. These findings provide novel insights into the regulation of root growth in a horticultural crop.
Collapse
Affiliation(s)
- Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingshuang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Wang R, Li Y, Gao M, Han M, Liu H. Genome-wide identification and characterization of the bHLH gene family and analysis of their potential relevance to chlorophyll metabolism in Raphanus sativus L. BMC Genomics 2022; 23:548. [PMID: 35915410 DOI: 10.1186/s12864-022-08782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Green-fleshed radish (Raphanus sativus L.) is an economically important root vegetable of the Brassicaceae family, and chlorophyll accumulates in its root tissues. It was reported that the basic helix-loop-helix (bHLH) transcription factors play vital roles in the process of chlorophyll metabolism. Nevertheless, a comprehensive study on the bHLH gene family has not been performed in Raphanus sativus L. RESULTS In this study, a total of 213 Raphanus sativus L. bHLH (RsbHLH) genes were screened in the radish genome, which were grouped into 22 subfamilies. 204 RsbHLH genes were unevenly distributed on nine chromosomes, and nine RsbHLH genes were located on the scaffolds. Gene structure analysis showed that 25 RsbHLH genes were intron-less. Collineation analysis revealed the syntenic orthologous bHLH gene pairs between radish and Arabidopsis thaliana/Brassica rapa/Brassica oleracea. 162 RsbHLH genes were duplicated and retained from the whole genome duplication event, indicating that the whole genome duplication contributed to the expansion of the RsbHLH gene family. RNA-seq results revealed that RsbHLH genes had a variety of expression patterns at five development stages of green-fleshed radish and white-fleshed radish. In addition, the weighted gene co-expression network analysis confirmed four RsbHLH genes closely related to chlorophyll content. CONCLUSIONS A total of 213 RsbHLH genes were identified, and we systematically analyzed their gene structure, evolutionary and collineation relationships, conserved motifs, gene duplication, cis-regulatory elements and expression patterns. Finally, four bHLH genes closely involved in chlorophyll content were identified, which may be associated with the photosynthesis of the green-fleshed radish. The current study would provide valuable information for further functional exploration of RsbHLH genes, and facilitate clarifying the molecular mechanism underlying photosynthesis process in green-fleshed radish.
Collapse
Affiliation(s)
- Ruihua Wang
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China
| | - Yuanyuan Li
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China.
| | - Minggang Gao
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China
| | - Min Han
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China
| | - Huilian Liu
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China
| |
Collapse
|
16
|
Ankit A, Kamali S, Singh A. Genomic & structural diversity and functional role of potassium (K +) transport proteins in plants. Int J Biol Macromol 2022; 208:844-857. [PMID: 35367275 DOI: 10.1016/j.ijbiomac.2022.03.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/03/2023]
Abstract
Potassium (K+) is an essential macronutrient for plant growth and productivity. It is the most abundant cation in plants and is involved in various cellular processes. Variable K+ availability is sensed by plant roots, consequently K+ transport proteins are activated to optimize K+ uptake. In addition to K+ uptake and translocation these proteins are involved in other important physiological processes like transmembrane voltage regulation, polar auxin transport, maintenance of Na+/K+ ratio and stomata movement during abiotic stress responses. K+ transport proteins display tremendous genomic and structural diversity in plants. Their key structural features, such as transmembrane domains, N-terminal domains, C-terminal domains and loops determine their ability of K+ uptake and transport and thus, provide functional diversity. Most K+ transporters are regulated at transcriptional and post-translational levels. Genetic manipulation of key K+ transporters/channels could be a prominent strategy for improving K+ utilization efficiency (KUE) in plants. This review discusses the genomic and structural diversity of various K+ transport proteins in plants. Also, an update on the function of K+ transport proteins and their regulatory mechanism in response to variable K+ availability, in improving KUE, biotic and abiotic stresses is provided.
Collapse
Affiliation(s)
- Ankit Ankit
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi 110067, India.
| |
Collapse
|
17
|
Rössner C, Lotz D, Becker A. VIGS Goes Viral: How VIGS Transforms Our Understanding of Plant Science. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:703-728. [PMID: 35138878 DOI: 10.1146/annurev-arplant-102820-020542] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Virus-induced gene silencing (VIGS) has developed into an indispensable approach to gene function analysis in a wide array of species, many of which are not amenable to stable genetic transformation. VIGS utilizes the posttranscriptional gene silencing (PTGS) machinery of plants to restrain viral infections systemically and is used to downregulate the plant's endogenous genes. Here, we review the molecular mechanisms of DNA- and RNA-virus-based VIGS, its inherent connection to PTGS, and what is known about the systemic spread of silencing. Recently, VIGS-based technologies have been expanded to enable not only gene silencing but also overexpression [virus-induced overexpression (VOX)], genome editing [virus-induced genome editing (VIGE)], and host-induced gene silencing (HIGS). These techniques expand the genetic toolbox for nonmodel organisms even more. Further, we illustrate the versatility of VIGS and the methods derived from it in elucidating molecular mechanisms, using tomato fruit ripening and programmed cell death as examples. Finally, we discuss challenges of and future perspectives on the use of VIGS to advance gene function analysis in nonmodel plants in the postgenomic era.
Collapse
Affiliation(s)
- Clemens Rössner
- Institute of Botany, Justus-Liebig University Gießen, Gießen, Germany;
| | - Dominik Lotz
- Institute of Botany, Justus-Liebig University Gießen, Gießen, Germany;
| | - Annette Becker
- Institute of Botany, Justus-Liebig University Gießen, Gießen, Germany;
| |
Collapse
|
18
|
Plant Responses and Tolerance to Salt Stress: Physiological and Molecular Interventions. Int J Mol Sci 2022; 23:ijms23094810. [PMID: 35563198 PMCID: PMC9103774 DOI: 10.3390/ijms23094810] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/17/2022] [Indexed: 02/05/2023] Open
|
19
|
Huang L, Li Z, Sun C, Yin S, Wang B, Duan T, Liu Y, Li J, Pu G. Genome-wide identification, molecular characterization, and gene expression analyses of honeysuckle NHX antiporters suggest their involvement in salt stress adaptation. PeerJ 2022; 10:e13214. [PMID: 35462769 PMCID: PMC9029436 DOI: 10.7717/peerj.13214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/12/2022] [Indexed: 01/12/2023] Open
Abstract
Background Ion homeostasis is an essential process for the survival of plants under salt stress. Na+/H+ antiporters (NHXs) are secondary ion transporters that regulate Na+ compartmentalization or efflux reduce Na+ toxicity and play a critical role during plant development and stress responses. Methods and Results To gain insight into the functional divergence of NHX genes in honeysuckle, a total of seven LjNHX genes were identified on the whole genome level and were renamed according to their chromosomal positions. All LjNHXs possessed the Na+/H+ exchanger domain and the amiloride-binding site was presented in all NHX proteins except LjNHX4. The phylogenetic analysis divided the seven NHX genes into Vac-clade (LjNHX1/2/3/4/5/7) and PM-clade (LjNHX6) based on their subcellular localization and validated by the distribution of conserved protein motifs and exon/intron organization analysis. The protein-protein interaction network showed that LjNHX4/5/6/7 shared the same putatively interactive proteins, including SOS2, SOS3, HKT1, and AVP1. Cis-acting elements and gene ontology (GO) analysis suggested that most LjNHXs involve in the response to salt stress through ion transmembrane transport. The expression profile analysis revealed that the expression levels of LjNHX3/7 were remarkably affected by salinity. These results suggested that LjNHXs play significant roles in honeysuckle development and response to salt stresses. Conclusions The theoretical foundation was established in the present study for the further functional characterization of the NHX gene family in honeysuckle.
Collapse
Affiliation(s)
- Luyao Huang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Chunyong Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shijie Yin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tongyao Duan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jia Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gaobin Pu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
20
|
Genome-Wide Identification, Primary Functional Characterization of the NHX Gene Family in Canavalia rosea, and Their Possible Roles for Adaptation to Tropical Coral Reefs. Genes (Basel) 2021; 13:genes13010033. [PMID: 35052375 PMCID: PMC8774410 DOI: 10.3390/genes13010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
Canavalia rosea, distributed in the coastal areas of tropical and subtropical regions, is an extremophile halophyte with good adaptability to high salinity/alkaline and drought tolerance. Plant sodium/hydrogen (Na+/H+) exchanger (NHX) genes encode membrane transporters involved in sodium ion (Na+), potassium ion (K+), and lithium ion (Li+) transport and pH homeostasis, thereby playing key roles in salinity tolerance. However, the NHX family has not been reported in this leguminous halophyte. In the present study, a genome-wide comprehensive analysis was conducted and finally eight CrNHXs were identified in C. rosea genome. Based on the bioinformatics analysis about the chromosomal location, protein domain, motif organization, and phylogenetic relationships of CrNHXs and their coding proteins, as well as the comparison with plant NHXs from other species, the CrNHXs were grouped into three major subfamilies (Vac-, Endo-, and PM-NHX). Promoter analyses of cis-regulatory elements indicated that the expression of different CrNHXs was affected by a series of stress challenges. Six CrNHXs showed high expression levels in five tested tissues of C. rosea in different levels, while CrNHX1 and CrNHX3 were expressed at extremely low levels, indicating that CrNHXs might be involved in regulating the development of C. rosea plant. The expression analysis based on RNA-seq showed that the transcripts of most CrNHXs were obviously decreased in mature leaves of C. rosea plant growing on tropical coral reefs, which suggested their involvement in this species' adaptation to reefs and specialized islands habitats. Furthermore, in the single-factor stress treatments mimicking the extreme environments of tropical coral reefs, the RNA-seq data also implied CrNHXs holding possible gene-specific regulatory roles in the environmental adaptation. The qRT-PCR based expression profiling exhibited that CrNHXs responded to different stresses to varying degrees, which further confirmed the specificity of CrNHXs' in responding to abiotic stresses. Moreover, the yeast functional complementation test proved that some CrNHXs could partially restore the salt tolerance of the salt-sensitive yeast mutant AXT3. This study provides comprehensive bio-information and primary functional identification of NHXs in C. rosea, which could help improve the salt/alkaline tolerance of genetically modified plants for further studies. This research also contributes to our understanding of the possible molecular mechanism whereby NHXs maintain the ion balance in the natural ecological adaptability of C. rosea to tropical coral islands and reefs.
Collapse
|
21
|
RsSOS1 Responding to Salt Stress Might Be Involved in Regulating Salt Tolerance by Maintaining Na+ Homeostasis in Radish (Raphanus sativus L.). HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Radish is a kind of moderately salt-sensitive vegetable. Salt stress seriously decreases the yield and quality of radish. The plasma membrane Na+/H+ antiporter protein Salt Overly Sensitive 1 (SOS1) plays a crucial role in protecting plant cells against salt stress, but the biological function of the RsSOS1 gene in radish remains to be elucidated. In this study, the RsSOS1 gene was isolated from radish genotype ‘NAU-TR17’, and contains an open reading frame of 3414 bp encoding 1137 amino acids. Phylogenetic analysis showed that RsSOS1 had a high homology with BnSOS1, and clustered together with Arabidopsis plasma membrane Na+/H+ antiporter (AtNHX7). The result of subcellular localization indicated that the RsSOS1 was localized in the plasma membrane. Furthermore, RsSOS1 was strongly induced in roots of radish under 150 mmol/L NaCl treatment, and its expression level in salt-tolerant genotypes was significantly higher than that in salt-sensitive ones. In addition, overexpression of RsSOS1 in Arabidopsis could significantly improve the salt tolerance of transgenic plants. Meanwhile, the transformation of RsSOS1△999 could rescue Na+ efflux function of AXT3 yeast. In summary, the plasma membrane Na+/H+ antiporter RsSOS1 plays a vital role in regulating salt-tolerance of radish by controlling Na+ homeostasis. These results provided useful information for further functional characterization of RsSOS1 and facilitate clarifying the molecular mechanism underlying salt stress response in radish.
Collapse
|
22
|
Shen F, Ying J, Xu L, Sun X, Wang J, Wang Y, Mei Y, Zhu Y, Liu L. Characterization of Annexin gene family and functional analysis of RsANN1a involved in heat tolerance in radish ( Raphanus sativus L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2027-2041. [PMID: 34629776 PMCID: PMC8484430 DOI: 10.1007/s12298-021-01056-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Plant annexins are a kind of conserved Ca2+-dependent phospholipid-binding proteins which are involved in plant growth, development and stress tolerance. Radish is an economically important annual or biennial root vegetable crop worldwide. However, the genome-wide characterization of annexin (RsANN) gene family remain largely unexplored in radish. In this study, a comprehensive identification of annexin gene family was performed at the whole genome level in radish. In total, ten RsANN genes were identified, and these putative RsANN proteins shared typical characteristics of the annexin family proteins. Phylogenetic analysis showed that the RsANNs together with annexin from Arabidopsis and rice were clustered into five groups with shared similar motif patterns. Chromosomal localization showed that these ten RsANN genes were distributed on six chromosomes (R3-R8) of radish. Several cis-elements involved in abiotic stress response were identified in the promoter regions of RsANN genes. Expression profile analysis indicated that the RsANN genes exhibited tissue-specific patterns at different growth stages and tissues. The Real-time quantitative PCR (RT-qPCR) revealed that the expression of most RsANN genes was induced under various abiotic stresses including heat, drought, salinity, oxidization and ABA stress. In addition, stress assays showed that overexpression of RsANN1a improved plant's growth and heat tolerance, while artificial microRNAs (amiRNA)-mediated knockdown of RsANN1a caused dramatically decreased survival ratio of Arabidopsis plants. These findings not only demonstrate that RsANN1a might play a critical role in the heat stress response of radish, but also facilitate clarifying the molecular mechanism of RsANN genes in regulating the biological process governing plant growth and development. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01056-5.
Collapse
Affiliation(s)
- Feng Shen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, 224002 China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaochuan Sun
- Huaiyin Institute of Technology, Huaian, 223003 China
| | - Jizhong Wang
- Huaiyin Institute of Technology, Huaian, 223003 China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yi Mei
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, 224002 China
| | - Yuelin Zhu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
23
|
He G, Tian W, Qin L, Meng L, Wu D, Huang Y, Li D, Zhao D, He T. Identification of novel heavy metal detoxification proteins in Solanum tuberosum: Insights to improve food security protection from metal ion stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146197. [PMID: 33744586 DOI: 10.1016/j.scitotenv.2021.146197] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/07/2021] [Accepted: 02/25/2021] [Indexed: 05/22/2023]
Abstract
With increasingly serious environmental pollution problems, research has focused on identifying functional genes within plants that can help ensure food security and soil governance. In particular, plants seem to have been able to evolve specific functional genes to respond to environmental changes by losing partial gene functions, thereby representing a novel adaptation mechanism. Herein, a new category of functional genes was identified and investigated, providing new directions for understanding heavy metal detoxification mechanisms. Interestingly, this category of proteins appears to exhibit specific complexing functions for heavy metals. Further, a new approach was established to evaluate ATP-binding cassette (ABC) transporter family functions using microRNA targeted inhibition. Moreover, mutant and functional genes were identified for future research targets. Expression profiling under five heavy metal stress treatments provided an important framework to further study defense responses of plants to metal exposure. In conclusion, the new insights identified here provide a theoretical basis and reference to better understand the mechanisms of heavy metal tolerance in potato plants. Further, these new data provide additional directions and foundations for mining gene resources for heavy metal tolerance genes to improve safe, green crop production and plant treatment of heavy metal soil pollution.
Collapse
Affiliation(s)
- Guandi He
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China.
| | - Weijun Tian
- Agricultural College, Guizhou University, Guiyang 550025, China.
| | - Lijun Qin
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China.
| | - Lulu Meng
- Agricultural College, Guizhou University, Guiyang 550025, China.
| | - Danxia Wu
- Agricultural College, Guizhou University, Guiyang 550025, China.
| | - Yun Huang
- Agricultural College, Guizhou University, Guiyang 550025, China.
| | - Dandan Li
- Agricultural College, Guizhou University, Guiyang 550025, China.
| | - Degang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou Academy of Agricultural Science, Guiyang 550025, China.
| | - Tengbing He
- Agricultural College, Guizhou University, Guiyang 550025, China; Institute of New Rural Development of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
24
|
Wu L, Wu M, Liu H, Gao Y, Chen F, Xiang Y. Identification and characterisation of monovalent cation/proton antiporters (CPAs) in Phyllostachys edulis and the functional analysis of PheNHX2 in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:205-221. [PMID: 34004558 DOI: 10.1016/j.plaphy.2021.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/03/2021] [Indexed: 05/16/2023]
Abstract
Plant monovalent cation/proton antiporters (CPAs), types of transmembrane transporters, play important roles in resistance to salt stress. In this study, 37 CPA genes from moso bamboo (Phyllostachys edulis) were identified and characterised. The expression profiles of 10 CPA1 genes (PheNHXs) of moso bamboo were detected by qRT-PCR, which showed that they were specifically expressed in six tissues. In addition, the expression of 10 PheNHXs in leaves and roots changed significantly under 150/200 mM NaCl and 100 μM ABA treatments. In particular, the expression of PheNHX2 in leaves and roots was significantly upregulated under NaCl treatment, thus, we cloned PheNHX2 and analysed its function. Subcellular localisation analysis showed that PheNHX2 was located on the vacuolar membrane. Overexpression of PheNHX2 reduced seed germination and root growth of Arabidopsis thaliana under salt stress, as well as severely affecting cellular Na+ and K+ content, which in turn reduced the salt tolerance of transgenic Arabidopsis. Measurements of physiological indicators, including chlorophyll content, malondialdehyde content, peroxidase and catalase enzyme activities and relative electrical conductivity, all supported this conclusion. Under salt stress, PheNHX2 also inhibited the expression of some stress-related and ion transport-related genes in transgenic Arabidopsis. Overall, these results indicate that overexpression of PheNHX2 reduces the salt tolerance of transgenic Arabidopsis. This investigation establishes a foundation for subsequent functional studies of moso bamboo CPA genes, and it provides a deeper understanding of PheNHX2 regulation in relation to the salt tolerance of moso bamboo.
Collapse
Affiliation(s)
- Lin Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Huanlong Liu
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Yameng Gao
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Feng Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|