1
|
Deng Y, Wu W, Huang X, Yang X, Yu Y, Zhang Z, Hu Z, Zhou X, Zhou K, Liu Y, Zhang L. Characterization of rhizosphere bacterial communities in oilseed rape cultivars with different susceptibility to Plasmodiophora brassicae infection. FRONTIERS IN PLANT SCIENCE 2025; 15:1496770. [PMID: 39834703 PMCID: PMC11743679 DOI: 10.3389/fpls.2024.1496770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025]
Abstract
Rhizosphere microbiomes are constantly mobilized during plant-pathogen interactions, and this, in turn, affects their interactions. However, few studies have examined the activities of rhizosphere microbiomes in plants with different susceptibilities to soil-borne pathogens, especially those that cause clubroot disease. In this study, we compared the rhizosphere bacterial community in response to infection of Plasmodiophora brassicae among the four different clubroot susceptibility cultivars of oilseed rape (Brassica napus). Our results revealed obvious differences in the responses of rhizosphere bacterial community to the P. brassicae infection between the four cultivars of oilseed rape. Several bacterial genera that are associated with the nitrogen cycle, including Limnobacter, Thiobacillus, Anaeromyxobacter, Nitrosomonas, Tumebacillus, and Halomonas, showed significantly different changes between susceptible and resistant cultivars in the presence of P. brassicae infection. Moreover, increased connectedness and robustness were exhibited in the rhizosphere bacterial community co-occurrence network in clubroot-susceptible cultivars that were infected with P. brassicae, while only slight changes were observed in clubroot-resistant cultivars. Metagenomic analysis of microbial metabolism also indicated differences in the rhizosphere bacterial community between susceptible and resistant cultivars that were infected with P. brassicae. Functional analysis of the nitrogen cycle showed that genes related to nitrification (nxrB) were upregulated in susceptible cultivars, while genes related to assimilatory nitrate reduction (nasA, narB, and nirA) were upregulated in resistant cultivars that were infected with P. brassicae. These findings indicate that the synthesis and assimilation process of NO3 - content were promoted in susceptible and resistant cultivars, respectively. Our study revealed differences in the characteristics of rhizosphere bacterial communities in response to P. brassicae infection between clubroot-susceptible and clubroot-resistant cultivars as well as the potential impact of these differences on the plant-P. brassicae interaction.
Collapse
Affiliation(s)
- Yue Deng
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Wenxian Wu
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Xiaoqing Huang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Xiaoxiang Yang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yaoyin Yu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Zhongmei Zhang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Zijin Hu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiquan Zhou
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Kang Zhou
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Yong Liu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Lei Zhang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
2
|
Atem JEC, Gan L, Yu W, Huang F, Wang Y, Baloch A, Nwafor CC, Barrie AU, Chen P, Zhang C. Bioinformatics and functional analysis of EDS1 genes in Brassica napus in response to Plasmodiophora brassicae infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112175. [PMID: 38986913 DOI: 10.1016/j.plantsci.2024.112175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Enhanced Disease Susceptibility 1 (EDS1) is a key regulator of plant-pathogen-associated molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) responses. In the Brassica napus genome, we identified six novel EDS1 genes, among which four were responsive to clubroot infection, a major rapeseed disease resistant to chemical control. Developing resistant cultivars is a potent and economically viable strategy to control clubroot infection. Bioinformatics analysis revealed conserved domains and structural uniformity in Bna-EDS1 homologs. Bna-EDS1 promoters harbored elements associated with diverse phytohormones and stress responses, highlighting their crucial roles in plant defense. A functional analysis was performed with Bna-EDS1 overexpression and RNAi transgenic lines. Bna-EDS1 overexpression boosted resistance to clubroot and upregulated defense-associated genes (PR1, PR2, ICS1, and CBP60), while Bna-EDS1 RNAi increased plant susceptibility, indicating suppression of the defense signaling pathway downstream of NBS-LRRs. RNA-Seq analysis identified key transcripts associated with clubroot resistance, including phenylpropanoid biosynthesis. Activation of SA regulator NPR1, defense signaling markers PR1 and PR2, and upregulation of MYC-TFs suggested that EDS1-mediated clubroot resistance potentially involves the SA pathway. Our findings underscore the pivotal role of Bna-EDS1-dependent mechanisms in resistance of B. napus to clubroot disease, and provide valuable insights for fortifying resistance against Plasmodiophora brassicae infection in rapeseed.
Collapse
Affiliation(s)
- Jalal Eldeen Chol Atem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Longcai Gan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Wenlin Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Fan Huang
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE68588, USA; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Yanyan Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Amanullah Baloch
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Chinedu Charles Nwafor
- Guangdong Ocean University, Zhanjiang 524088, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Alpha Umaru Barrie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Peng Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Chunyu Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria.
| |
Collapse
|
3
|
Ce F, Mei J, Zhao Y, Li Q, Ren X, Song H, Qian W, Si J. Comparative Analysis of Transcriptomes Reveals Pathways and Verifies Candidate Genes for Clubroot Resistance in Brassica oleracea. Int J Mol Sci 2024; 25:9189. [PMID: 39273138 PMCID: PMC11395044 DOI: 10.3390/ijms25179189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Clubroot, a soil-borne disease caused by Plasmodiophora brassicae, is one of the most destructive diseases of Brassica oleracea all over the world. However, the mechanism of clubroot resistance remains unclear. In this research, transcriptome sequencing was conducted on root samples from both resistant (R) and susceptible (S) B. oleracea plants infected by P. brassicae. Then the comparative analysis was carried out between the R and S samples at different time points during the infection stages to reveal clubroot resistance related pathways and candidate genes. Compared with 0 days after inoculation, a total of 4991 differential expressed genes were detected from the S pool, while only 2133 were found from the R pool. Gene function enrichment analysis found that the effector-triggered immunity played a major role in the R pool, while the pathogen-associated molecular pattern triggered immune response was stronger in the S pool. Simultaneously, candidate genes were identified through weighted gene co-expression network analysis, with Bol010786 (CNGC13) and Bol017921 (SD2-5) showing potential for conferring resistance to clubroot. The findings of this research provide valuable insights into the molecular mechanisms underlying clubroot resistance and present new avenues for further research aimed at enhancing the clubroot resistance of B. oleracea through breeding.
Collapse
Affiliation(s)
- Fuquan Ce
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jiaqin Mei
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400716, China
| | - Yu Zhao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Qinfei Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| | - Xuesong Ren
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| | - Hongyuan Song
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400716, China
| | - Jun Si
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| |
Collapse
|
4
|
Javed MA, Mukhopadhyay S, Normandeau E, Brochu AS, Pérez-López E. Telomere-to-telomere Genome Assembly of the Clubroot Pathogen Plasmodiophora Brassicae. Genome Biol Evol 2024; 16:evae122. [PMID: 38857178 PMCID: PMC11191646 DOI: 10.1093/gbe/evae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
Plasmodiophora brassicae (Woronin, 1877), a biotrophic, obligate parasite, is the causal agent of clubroot disease in brassicas. The clubroot pathogen has been reported in more than 80 countries worldwide, causing economic losses of hundreds of millions every year. Despite its widespread impact, very little is known about the molecular strategies it employs to induce the characteristic clubs in the roots of susceptible hosts during infection, nor about the mechanisms it uses to overcome genetic resistance. Here, we provide the first telomere-to-telomere complete genome of P. brassicae. We generated ∼27 Gb of Illumina, Oxford Nanopore, and PacBio HiFi data from resting spores of strain Pb3A and produced a 25.3 Mb assembly comprising 20 chromosomes, with an N50 of 1.37 Mb. The BUSCO score, the highest reported for any member of the group Rhizaria (Eukaryota: 88.2%), highlights the limitations within the Eukaryota database for members of this lineage. Using available transcriptomic data and protein evidence, we annotated the Pb3A genome, identifying 10,521 protein-coding gene models. This high-quality, complete genome of P. brassicae will serve as a crucial resource for the plant pathology community to advance the much-needed understanding of the evolution of the clubroot pathogen.
Collapse
Affiliation(s)
- Muhammad Asim Javed
- Départment de Phytologie, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Plateforme de bio-informatique de l'IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Quebec City, Québec, Canada
- L’Institute EDS, Université Laval, Québec City, Québec, Canada
| | - Soham Mukhopadhyay
- Départment de Phytologie, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Plateforme de bio-informatique de l'IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Quebec City, Québec, Canada
- L’Institute EDS, Université Laval, Québec City, Québec, Canada
| | - Eric Normandeau
- Plateforme de bio-informatique de l'IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Quebec City, Québec, Canada
| | - Anne-Sophie Brochu
- Départment de Phytologie, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Plateforme de bio-informatique de l'IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Quebec City, Québec, Canada
- L’Institute EDS, Université Laval, Québec City, Québec, Canada
| | - Edel Pérez-López
- Départment de Phytologie, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Plateforme de bio-informatique de l'IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Quebec City, Québec, Canada
- L’Institute EDS, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
5
|
Adhikary D, Mehta D, Kisiala A, Basu U, Uhrig RG, Emery RN, Rahman H, Kav NNV. Proteome- and metabolome-level changes during early stages of clubroot infection in Brassica napus canola. Mol Omics 2024; 20:265-282. [PMID: 38334713 DOI: 10.1039/d3mo00210a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Clubroot is a destructive root disease of canola (Brassica napus L.) caused by Plasmodiophora brassicae Woronin. Despite extensive research into the molecular responses of B. napus to P. brassicae, there is limited information on proteome- and metabolome-level changes in response to the pathogen, especially during the initial stages of infection. In this study, we have investigated the proteome- and metabolome- level changes in the roots of clubroot-resistant (CR) and -susceptible (CS) doubled-haploid (DH) B. napus lines, in response to P. brassicae pathotype 3H at 1-, 4-, and 7-days post-inoculation (DPI). Root proteomes were analyzed using nanoflow liquid chromatography coupled with tandem mass spectrometry (nano LC-MS/MS). Comparisons of pathogen-inoculated and uninoculated root proteomes revealed 2515 and 1556 differentially abundant proteins at one or more time points (1-, 4-, and 7-DPI) in the CR and CS genotypes, respectively. Several proteins related to primary metabolites (e.g., amino acids, fatty acids, and lipids), secondary metabolites (e.g., glucosinolates), and cell wall reinforcement-related proteins [e.g., laccase, peroxidases, and plant invertase/pectin methylesterase inhibitors (PInv/PMEI)] were identified. Eleven nucleotides and nucleoside-related metabolites, and eight fatty acids and sphingolipid-related metabolites were identified in the metabolomics study. To our knowledge, this is the first report of root proteome-level changes and associated alterations in metabolites during the early stages of P. brassicae infection in B. napus.
Collapse
Affiliation(s)
- Dinesh Adhikary
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Devang Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Anna Kisiala
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Urmila Basu
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Rj Neil Emery
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Habibur Rahman
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Nat N V Kav
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
6
|
Yu Z, Fredua-Agyeman R, Strelkov SE, Hwang SF. RNA-Seq Bulked Segregant Analysis of an Exotic B. napus ssp. napobrassica (Rutabaga) F 2 Population Reveals Novel QTLs for Breeding Clubroot-Resistant Canola. Int J Mol Sci 2024; 25:4596. [PMID: 38731814 PMCID: PMC11083300 DOI: 10.3390/ijms25094596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, a rutabaga (Brassica napus ssp. napobrassica) donor parent FGRA106, which exhibited broad-spectrum resistance to 17 isolates representing 16 pathotypes of Plasmodiophora brassicae, was used in genetic crosses with the susceptible spring-type canola (B. napus ssp. napus) accession FG769. The F2 plants derived from a clubroot-resistant F1 plant were screened against three P. brassicae isolates representing pathotypes 3A, 3D, and 3H. Chi-square (χ2) goodness-of-fit tests indicated that the F2 plants inherited two major clubroot resistance genes from the CR donor FGRA106. The total RNA from plants resistant (R) and susceptible (S) to each pathotype were pooled and subjected to bulked segregant RNA-sequencing (BSR-Seq). The analysis of gene expression profiles identified 431, 67, and 98 differentially expressed genes (DEGs) between the R and S bulks. The variant calling method indicated a total of 12 (7 major + 5 minor) QTLs across seven chromosomes. The seven major QTLs included: BnaA5P3A.CRX1.1, BnaC1P3H.CRX1.2, and BnaC7P3A.CRX1.1 on chromosomes A05, C01, and C07, respectively; and BnaA8P3D.CRX1.1, BnaA8P3D.RCr91.2/BnaA8P3H.RCr91.2, BnaA8P3H.Crr11.3/BnaA8P3D.Crr11.3, and BnaA8P3D.qBrCR381.4 on chromosome A08. A total of 16 of the DEGs were located in the major QTL regions, 13 of which were on chromosome C07. The molecular data suggested that clubroot resistance in FGRA106 may be controlled by major and minor genes on both the A and C genomes, which are deployed in different combinations to confer resistance to the different isolates. This study provides valuable germplasm for the breeding of clubroot-resistant B. napus cultivars in Western Canada.
Collapse
Affiliation(s)
| | - Rudolph Fredua-Agyeman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (Z.Y.); (S.-F.H.)
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (Z.Y.); (S.-F.H.)
| | | |
Collapse
|
7
|
Chen X, Sun Y, Yang Y, Zhao Y, Zhang C, Fang X, Gao H, Zhao M, He S, Song B, Liu S, Wu J, Xu P, Zhang S. The EIN3 transcription factor GmEIL1 improves soybean resistance to Phytophthora sojae. MOLECULAR PLANT PATHOLOGY 2024; 25:e13452. [PMID: 38619823 PMCID: PMC11018115 DOI: 10.1111/mpp.13452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Phytophthora root and stem rot of soybean (Glycine max), caused by the oomycete Phytophthora sojae, is an extremely destructive disease worldwide. In this study, we identified GmEIL1, which encodes an ethylene-insensitive3 (EIN3) transcription factor. GmEIL1 was significantly induced following P. sojae infection of soybean plants. Compared to wild-type soybean plants, transgenic soybean plants overexpressing GmEIL1 showed enhanced resistance to P. sojae and GmEIL1-silenced RNA-interference lines showed more severe symptoms when infected with P. sojae. We screened for target genes of GmEIL1 and confirmed that GmEIL1 bound directly to the GmERF113 promoter and regulated GmERF113 expression. Moreover, GmEIL1 positively regulated the expression of the pathogenesis-related gene GmPR1. The GmEIL1-regulated defence response to P. sojae involved both ethylene biosynthesis and the ethylene signalling pathway. These findings suggest that the GmEIL1-GmERF113 module plays an important role in P. sojae resistance via the ethylene signalling pathway.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
- Crop Stress Molecular Biology LaboratoryHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Yan Sun
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Yu Yang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Yuxin Zhao
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Chuanzhong Zhang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Xin Fang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Hong Gao
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Ming Zhao
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Shengfu He
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Bo Song
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Shanshan Liu
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Junjiang Wu
- Key Laboratory of Soybean Cultivation of Ministry of AgricultureSoybean Research Institute of Heilongjiang Academy of Agricultural SciencesHarbinChina
| | - Pengfei Xu
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
- Plant Science Department, School of Agriculture and BiologyShanghai JiaoTong UniversityShanghaiChina
| |
Collapse
|
8
|
Zhang H, Liu X, Zhou J, Strelkov SE, Fredua-Agyeman R, Zhang S, Li F, Li G, Wu J, Sun R, Hwang SF, Zhang S. Identification of Clubroot ( Plasmodiophora brassicae) Resistance Loci in Chinese Cabbage ( Brassica rapa ssp. pekinensis) with Recessive Character. Genes (Basel) 2024; 15:274. [PMID: 38540333 PMCID: PMC10970103 DOI: 10.3390/genes15030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 06/15/2024] Open
Abstract
The soil-borne pathogen Plasmodiophora brassicae is the causal agent of clubroot, a major disease in Chinese cabbage (Brassica rapa ssp. pekinensis). The host's resistance genes often confer immunity to only specific pathotypes and may be rapidly overcome. Identification of novel clubroot resistance (CR) from germplasm sources is necessary. In this study, Bap246 was tested by being crossed with different highly susceptible B. rapa materials and showed recessive resistance to clubroot. An F2 population derived from Bap246 × Bac1344 was used to locate the resistance Quantitative Trait Loci (QTL) by Bulk Segregant Analysis Sequencing (BSA-Seq) and QTL mapping methods. Two QTL on chromosomes A01 (4.67-6.06 Mb) and A08 (10.42-11.43 Mb) were found and named Cr4Ba1.1 and Cr4Ba8.1, respectively. Fifteen and eleven SNP/InDel markers were used to narrow the target regions in the larger F2 population to 4.67-5.17 Mb (A01) and 10.70-10.84 Mb (A08), with 85 and 19 candidate genes, respectively. The phenotypic variation explained (PVE) of the two QTL were 30.97% and 8.65%, respectively. Combined with gene annotation, mutation site analysis, and real-time quantitative polymerase chain reaction (qRT-PCR) analysis, one candidate gene in A08 was identified, namely Bra020861. And an insertion and deletion (InDel) marker (co-segregated) named Crr1-196 was developed based on the gene sequence. Bra013275, Bra013299, Bra013336, Bra013339, Bra013341, and Bra013357 in A01 were the candidate genes that may confer clubroot resistance in Chinese cabbage. The resistance resource and the developed marker will be helpful in Brassica breeding programs.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Xitong Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Jinyan Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (S.E.S.); (R.F.-A.)
| | - Rudolph Fredua-Agyeman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (S.E.S.); (R.F.-A.)
| | - Shifan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Fei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Guoliang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Rifei Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (S.E.S.); (R.F.-A.)
| | - Shujiang Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| |
Collapse
|
9
|
Ochoa JC, Mukhopadhyay S, Bieluszewski T, Jędryczka M, Malinowski R, Truman W. Natural variation in Arabidopsis responses to Plasmodiophora brassicae reveals an essential role for Resistance to Plasmodiophora brasssicae 1 (RPB1). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1421-1440. [PMID: 37646674 DOI: 10.1111/tpj.16438] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Despite the identification of clubroot resistance genes in various Brassica crops our understanding of the genetic basis of immunity to Plasmodiophora brassicae infection in the model plant Arabidopsis thaliana remains limited. To address this issue, we performed a screen of 142 natural accessions and identified 11 clubroot-resistant Arabidopsis lines. Genome-wide association analysis identified several genetic loci significantly linked with resistance. Three genes from two of these loci were targeted for deletion by CRISPR/Cas9 mutation in resistant accessions Est-1 and Uod-1. Deletion of Resistance to Plasmodiophora brassicae 1 (RPB1) rendered both lines susceptible to the P. brassicae pathotype P1+. Further analysis of rpb1 knock-out Est-1 and Uod-1 lines showed that the RPB1 protein is required for activation of downstream defence responses, such as the expression of phytoalexin biosynthesis gene CYP71A13. RPB1 has recently been shown to encode a cation channel localised in the endoplasmic reticulum. The clubroot susceptible Arabidopsis accession Col-0 lacks a functional RPB1 gene; when Col-0 is transformed with RPB1 expression driven by its native promoter it is capable of activating RPB1 transcription in response to infection, but this is not sufficient to confer resistance. Transient expression of RPB1 in Nicotiana tabacum induced programmed cell death in leaves. We conclude that RPB1 is a critical component of the defence response to P. brassicae infection in Arabidopsis, acting downstream of pathogen recognition but required for the elaboration of effective resistance.
Collapse
Affiliation(s)
- Juan Camilo Ochoa
- Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479, Poznań, Poland
| | - Soham Mukhopadhyay
- Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479, Poznań, Poland
| | - Tomasz Bieluszewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Małgorzata Jędryczka
- Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479, Poznań, Poland
| | - Robert Malinowski
- Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479, Poznań, Poland
| | - William Truman
- Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479, Poznań, Poland
| |
Collapse
|
10
|
Jayasinghege CPA, Ozga JA, Manolii VP, Hwang SF, Strelkov SE. Impact of Susceptibility on Plant Hormonal Composition during Clubroot Disease Development in Canola ( Brassica napus). PLANTS (BASEL, SWITZERLAND) 2023; 12:2899. [PMID: 37631111 PMCID: PMC10459861 DOI: 10.3390/plants12162899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is a soilborne disease of crucifers associated with the formation of large root galls. This root enlargement suggests modulation of plant hormonal networks by the pathogen, stimulating cell division and elongation and influencing host defense. We studied physiological changes in two Brassica napus cultivars, including plant hormone profiles-salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), the auxin indole-3-acetic acid (IAA), and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC)-along with their selected derivatives following inoculation with virulent and avirulent P. brassicae pathotypes. In susceptible plants, water uptake declined from the initial appearance of root galls by 21 days after inoculation, but did not have a significant effect on photosynthetic rate, stomatal conductance, or leaf chlorophyll levels. Nonetheless, a strong increase in ABA levels indicated that hormonal mechanisms were triggered to cope with water stress due to the declining water uptake. The free SA level in the roots increased strongly in resistant interactions, compared with a relatively minor increase during susceptible interactions. The ratio of conjugated SA to free SA was higher in susceptible interactions, indicating that resistant interactions are linked to the plant's ability to maintain higher levels of bioactive free SA. In contrast, JA and its biologically active form JA-Ile declined up to 7-fold in susceptible interactions, while they were maintained during resistant interactions. The ACC level increased in the roots of inoculated plants by 21 days, irrespective of clubroot susceptibility, indicating a role of ethylene in response to pathogen interactions that is independent of disease severity. IAA levels at early and later infection stages were lower only in susceptible plants, suggesting a modulation of auxin homeostasis by the pathogen relative to the host defense system.
Collapse
Affiliation(s)
| | - Jocelyn A. Ozga
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (C.P.A.J.); (V.P.M.); (S.-F.H.)
| | | | | | - Stephen E. Strelkov
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (C.P.A.J.); (V.P.M.); (S.-F.H.)
| |
Collapse
|
11
|
Vañó MS, Nourimand M, MacLean A, Pérez-López E. Getting to the root of a club - Understanding developmental manipulation by the clubroot pathogen. Semin Cell Dev Biol 2023; 148-149:22-32. [PMID: 36792438 DOI: 10.1016/j.semcdb.2023.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Plasmodiophora brassicae Wor., the clubroot pathogen, is the perfect example of an "atypical" plant pathogen. This soil-borne protist and obligate biotrophic parasite infects the roots of cruciferous crops, inducing galls or clubs that lead to wilting, loss of productivity, and plant death. Unlike many other agriculturally relevant pathosystems, research into the molecular mechanisms that underlie clubroot disease and Plasmodiophora-host interactions is limited. After release of the first P. brassicae genome sequence and subsequent availability of transcriptomic data, the clubroot research community have implicated the involvement of phytohormones during the clubroot pathogen's manipulation of host development. Herein we review the main events leading to the formation of root galls and describe how modulation of select phytohormones may be key to modulating development of the plant host to the benefit of the pathogen. Effector-host interactions are at the base of different strategies employed by pathogens to hijack plant cellular processes. This is how we suspect the clubroot pathogen hijacks host plant metabolism and development to induce nutrient-sink roots galls, emphasizing a need to deepen our understanding of this master manipulator.
Collapse
Affiliation(s)
- Marina Silvestre Vañó
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada; Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada; Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Maryam Nourimand
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Allyson MacLean
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Edel Pérez-López
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada; Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada; Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
12
|
Application of the NanoString nCounter System as an Alternative Method to Investigate Molecular Mechanisms Involved in Host Plant Responses to Plasmodiophora brassicae. Int J Mol Sci 2022; 23:ijms232415581. [PMID: 36555223 PMCID: PMC9779335 DOI: 10.3390/ijms232415581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Clubroot, caused by the soilborne pathogen Plasmodiophora brassicae, is an important disease of canola (Brassica napus) and other crucifers. The recent application of RNA sequencing (RNA-seq) technologies to study P. brassicae−host interactions has generated large amounts of gene expression data, improving knowledge of the molecular mechanisms of pathogenesis and host resistance. Quantitative PCR (qPCR) analysis has been widely applied to examine the expression of a limited number of genes and to validate the results of RNA-seq studies, but may not be ideal for analyzing larger suites of target genes or increased sample numbers. Moreover, the need for intermediate steps such as cDNA synthesis may introduce variability that could affect the accuracy of the data generated by qPCR. Here, we report the validation of gene expression data from a previous RNA-seq study of clubroot using the NanoString nCounter System, which achieves efficient gene expression quantification in a fast and simple manner. We first confirm the robustness of the NanoString system by comparing the results with those generated by qPCR and RNA-seq and then discuss the importance of some candidate genes for resistance or susceptibility to P. brassicae in the host. The results show that the expression of genes measured using NanoString have a high correlation with the values obtained using the other two technologies, with R > 0.90 and p < 0.01, and the same expression patterns for most genes. The three methods (qPCR, RNA-seq, and NanoString) were also compared in terms of laboratory procedures, time, and cost. We propose that the NanoString nCounter System is a robust, sensitive, highly reproducible, and simple technology for gene expression analysis. NanoString could become a common alternative to qPCR to validate RNA-seq data or to create panels of genes for use as markers of resistance/susceptibility when plants are challenged with different P. brassicae pathotypes.
Collapse
|
13
|
Adhikary D, Kisiala A, Sarkar A, Basu U, Rahman H, Emery N, Kav NNV. Early-stage responses to Plasmodiophora brassicae at the transcriptome and metabolome levels in clubroot resistant and susceptible oilseed Brassica napus. Mol Omics 2022; 18:991-1014. [PMID: 36382681 DOI: 10.1039/d2mo00251e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Clubroot, a devastating soil-borne root disease, in Brassicaceae is caused by Plasmodiophora brassicae Woronin (P. brassicae W.), an obligate biotrophic protist. Plant growth and development, as well as seed yield of Brassica crops, are severely affected due to this disease. Several reports described the molecular responses of B. napus to P. brassicae; however, information on the early stages of pathogenesis is limited. In this study, we have used transcriptomics and metabolomics to characterize P. brassicae pathogenesis at 1-, 4-, and 7-days post-inoculation (DPI) in clubroot resistant (CR) and susceptible (CS) doubled-haploid (DH) canola lines. When we compared between inoculated and uninoculated groups, a total of 214 and 324 putative genes exhibited differential expression (q-value < 0.05) at one or more time-points in the CR and CS genotypes, respectively. When the inoculated CR and inoculated CS genotypes were compared, 4765 DEGs were differentially expressed (q-value < 0.05) at one or more time-points. Several metabolites related to organic acids (e.g., citrate, pyruvate), amino acids (e.g., proline, aspartate), sugars, and mannitol, were differentially accumulated in roots in response to pathogen infection when the CR and CS genotypes were compared. Several DEGs also corresponded to differentially accumulated metabolites, including pyrroline-5-carboxylate reductase (BnaC04g11450D), citrate synthase (BnaC02g39080D), and pyruvate kinase (BnaC04g23180D) as detected by transcriptome analysis. Our results suggest important roles for these genes in mediating resistance to clubroot disease. To our knowledge, this is the first report of an integrated transcriptome and metabolome analysis aimed at characterizing the molecular basis of resistance to clubroot in canola.
Collapse
Affiliation(s)
- Dinesh Adhikary
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Anna Kisiala
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Ananya Sarkar
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Urmila Basu
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Habibur Rahman
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Neil Emery
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Nat N V Kav
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
14
|
Shaw RK, Shen Y, Yu H, Sheng X, Wang J, Gu H. Multi-Omics Approaches to Improve Clubroot Resistance in Brassica with a Special Focus on Brassica oleracea L. Int J Mol Sci 2022; 23:9280. [PMID: 36012543 PMCID: PMC9409056 DOI: 10.3390/ijms23169280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Brassica oleracea is an agronomically important species of the Brassicaceae family, including several nutrient-rich vegetables grown and consumed across the continents. But its sustainability is heavily constrained by a range of destructive pathogens, among which, clubroot disease, caused by a biotrophic protist Plasmodiophora brassicae, has caused significant yield and economic losses worldwide, thereby threatening global food security. To counter the pathogen attack, it demands a better understanding of the complex phenomenon of Brassica-P. brassicae pathosystem at the physiological, biochemical, molecular, and cellular levels. In recent years, multiple omics technologies with high-throughput techniques have emerged as successful in elucidating the responses to biotic and abiotic stresses. In Brassica spp., omics technologies such as genomics, transcriptomics, ncRNAomics, proteomics, and metabolomics are well documented, allowing us to gain insights into the dynamic changes that transpired during host-pathogen interactions at a deeper level. So, it is critical that we must review the recent advances in omics approaches and discuss how the current knowledge in multi-omics technologies has been able to breed high-quality clubroot-resistant B. oleracea. This review highlights the recent advances made in utilizing various omics approaches to understand the host resistance mechanisms adopted by Brassica crops in response to the P. brassicae attack. Finally, we have discussed the bottlenecks and the way forward to overcome the persisting knowledge gaps in delivering solutions to breed clubroot-resistant Brassica crops in a holistic, targeted, and precise way.
Collapse
Affiliation(s)
| | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
15
|
Ludwig-Müller J. What Can We Learn from -Omics Approaches to Understand Clubroot Disease? Int J Mol Sci 2022; 23:ijms23116293. [PMID: 35682976 PMCID: PMC9180986 DOI: 10.3390/ijms23116293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Clubroot is one of the most economically significant diseases worldwide. As a result, many investigations focus on both curing the disease and in-depth molecular studies. Although the first transcriptome dataset for the clubroot disease describing the clubroot disease was published in 2006, many different pathogen-host plant combinations have only recently been investigated and published. Articles presenting -omics data and the clubroot pathogen Plasmodiophora brassicae as well as different host plants were analyzed to summarize the findings in the richness of these datasets. Although genome data for the protist have only recently become available, many effector candidates have been identified, but their functional characterization is incomplete. A better understanding of the life cycle is clearly required to comprehend its function. While only a few proteome studies and metabolome analyses were performed, the majority of studies used microarrays and RNAseq approaches to study transcriptomes. Metabolites, comprising chemical groups like hormones were generally studied in a more targeted manner. Furthermore, functional approaches based on such datasets have been carried out employing mutants, transgenic lines, or ecotypes/cultivars of either Arabidopsis thaliana or other economically important host plants of the Brassica family. This has led to new discoveries of potential genes involved in disease development or in (partial) resistance or tolerance to P. brassicae. The overall contribution of individual experimental setups to a larger picture will be discussed in this review.
Collapse
|
16
|
Wang J, Hu T, Wang W, Hu H, Wei Q, Yan Y, He J, Hu J, Bao C. Comparative transcriptome analysis reveals distinct responsive biological processes in radish genotypes contrasting for Plasmodiophora brassicae interaction. Gene 2022; 817:146170. [PMID: 35031420 DOI: 10.1016/j.gene.2021.146170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Plasmodiophora brassicae is a protozoan pathogen that causes clubroot disease, which is one of the most destructive diseases for Brassica crops, including radish. However, little is known about the molecular mechanism of clubroot resistance in radish. In this study, we performed a comparative transcriptome analysis between resistant and susceptible radish inoculated with P. brassicae. More differentially expressed genes (DEGs) were identified at 28 days after inoculation (DAI) compared to 7 DAI in both genotypes. Gene ontology (GO) and KEGG enrichment indicated that stress/defense response, secondary metabolic biosynthesis, hormone metabolic process, and cell periphery are directly involved in the defense response process. Further analysis of the transcriptome revealed that effector-triggered immunity (ETI) plays key roles in the defense response. The plant hormones jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA) related genes are activated in clubroot defense in the resistant line. Auxin (AUX) hormone related genes are activated in the developing galls of susceptible radish. Our study provides a global transcriptional overview for clubroot development for insights into the P. brassicae defense mechanisms in radish.
Collapse
Affiliation(s)
- Jinglei Wang
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tianhua Hu
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wuhong Wang
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haijiao Hu
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qingzhen Wei
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yaqin Yan
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiangming He
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Jingfeng Hu
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Chonglai Bao
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
17
|
Zhou Q, Jayawardhane KN, Strelkov SE, Hwang SF, Chen G. Identification of Arabidopsis Phospholipase A Mutants With Increased Susceptibility to Plasmodiophora brassicae. FRONTIERS IN PLANT SCIENCE 2022; 13:799142. [PMID: 35251078 PMCID: PMC8895301 DOI: 10.3389/fpls.2022.799142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Clubroot, caused by the obligate parasite Plasmodiophora brassicae, is one of the most devastating diseases of canola (Brassica napus) in Canada. The identification of novel genes that contribute to clubroot resistance is important for the sustainable management of clubroot, as these genes may be used in the development of resistant canola cultivars. Phospholipase As (PLAs) play important roles in plant defense signaling and stress tolerance, and thus are attractive targets for crop breeding. However, since canola is an allopolyploid and has multiple copies of each PLA gene, it is time-consuming to test the functions of PLAs directly in this crop. In contrast, the model plant Arabidopsis thaliana has a simpler genetic background and only one copy of each PLA. Therefore, it would be reasonable and faster to validate the potential utility of PLA genes in Arabidopsis first. In this study, we identified seven homozygous atpla knockout/knockdown mutants of Arabidopsis, and tested their performance following inoculation with P. brassicae. Four mutants (pla1-iiα, pla1-iγ3, pla1-iii, ppla-iiiβ, ppla-iiiδ) developed more severe clubroot than the wild-type, suggesting increased susceptibility to P. brassicae. The homologs of these Arabidopsis PLAs (AtPLAs) in B. napus (BnPLAs) were identified through Blast searches and phylogenic analysis. Expression of the BnPLAs was subsequently examined in transcriptomic datasets generated from canola infected by P. brassicae, and promising candidates for further characterization identified.
Collapse
|
18
|
Adhikary D, Mehta D, Uhrig RG, Rahman H, Kav NNV. A Proteome-Level Investigation Into Plasmodiophora brassicae Resistance in Brassica napus Canola. FRONTIERS IN PLANT SCIENCE 2022; 13:860393. [PMID: 35401597 PMCID: PMC8988049 DOI: 10.3389/fpls.2022.860393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/21/2022] [Indexed: 05/07/2023]
Abstract
Clubroot of Brassicaceae, an economically important soil borne disease, is caused by Plasmodiophora brassicae Woronin, an obligate, biotrophic protist. This disease poses a serious threat to canola and related crops in Canada and around the globe causing significant losses. The pathogen is continuously evolving and new pathotypes are emerging, which necessitates the development of novel resistant canola cultivars to manage the disease. Proteins play a crucial role in many biological functions and the identification of differentially abundant proteins (DAP) using proteomics is a suitable approach to understand plant-pathogen interactions to assist in the development of gene specific markers for developing clubroot resistant (CR) cultivars. In this study, P. brassicae pathotype 3 (P3H) was used to challenge CR and clubroot susceptible (CS) canola lines. Root samples were collected at three distinct stages of pathogenesis, 7-, 14-, and 21-days post inoculation (DPI), protein samples were isolated, digested with trypsin and subjected to liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. A total of 937 proteins demonstrated a significant (q-value < 0.05) change in abundance in at least in one of the time points when compared between control and inoculated CR-parent, CR-progeny, CS-parent, CS-progeny and 784 proteins were significantly (q < 0.05) changed in abundance in at least in one of the time points when compared between the inoculated- CR and CS root proteomes of parent and progeny across the three time points tested. Functional annotation of differentially abundant proteins (DAPs) revealed several proteins related to calcium dependent signaling pathways. In addition, proteins related to reactive oxygen species (ROS) biochemistry, dehydrins, lignin, thaumatin, and phytohormones were identified. Among the DAPs, 73 putative proteins orthologous to CR proteins and quantitative trait loci (QTL) associated with eight CR loci in different chromosomes including chromosomes A3 and A8 were identified. Proteins including BnaA02T0335400WE, BnaA03T0374600WE, BnaA03T0262200WE, and BnaA03T0464700WE are orthologous to identified CR loci with possible roles in mediating clubroot responses. In conclusion, these results have contributed to an improved understanding of the mechanisms involved in mediating response to P. brassicae in canola at the protein level.
Collapse
Affiliation(s)
- Dinesh Adhikary
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Devang Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - R. Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Nat N. V. Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Nat N. V. Kav,
| |
Collapse
|
19
|
A Novel Target (Oxidation Resistant 2) in Arabidopsis thaliana to Reduce Clubroot Disease Symptoms via the Salicylic Acid Pathway without Growth Penalties. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The clubroot disease (Plasmodiophora brassicae) is one of the most damaging diseases worldwide among brassica crops. Its control often relies on resistant cultivars, since the manipulation of the disease hormones, such as salicylic acid (SA) alters plant growth negatively. Alternatively, the SA pathway can be increased by the addition of beneficial microorganisms for biocontrol. However, this potential has not been exhaustively used. In this study, a recently characterized protein Oxidation Resistant 2 (OXR2) from Arabidopsis thaliana is shown to increase the constitutive pathway of SA defense without decreasing plant growth. Plants overexpressing AtOXR2 (OXR2-OE) show strongly reduced clubroot symptoms with improved plant growth performance, in comparison to wild type plants during the course of infection. Consequently, oxr2 mutants are more susceptible to clubroot disease. P. brassicae itself was reduced in these galls as determined by quantitative real-time PCR. Furthermore, we provide evidence for the transcriptional downregulation of the gene encoding a SA-methyltransferase from the pathogen in OXR2-OE plants that could contribute to the phenotype.
Collapse
|
20
|
Wei X, Zhang Y, Zhao Y, Xie Z, Hossain MR, Yang S, Shi G, Lv Y, Wang Z, Tian B, Su H, Wei F, Zhang X, Yuan Y. Root Transcriptome and Metabolome Profiling Reveal Key Phytohormone-Related Genes and Pathways Involved Clubroot Resistance in Brassica rapa L. FRONTIERS IN PLANT SCIENCE 2021; 12:759623. [PMID: 34975941 PMCID: PMC8715091 DOI: 10.3389/fpls.2021.759623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 05/14/2023]
Abstract
Plasmodiophora brassicae, an obligate biotrophic pathogen-causing clubroot disease, can seriously affect Brassica crops worldwide, especially Chinese cabbage. Understanding the transcriptome and metabolome profiling changes during the infection of P. brassicae will provide key insights in understanding the defense mechanism in Brassica crops. In this study, we estimated the phytohormones using targeted metabolome assays and transcriptomic changes using RNA sequencing (RNA-seq) in the roots of resistant (BrT24) and susceptible (Y510-9) plants at 0, 3, 9, and 20 days after inoculation (DAI) with P. brassicae. Differentially expressed genes (DEGs) in resistant vs. susceptible lines across different time points were identified. The weighted gene co-expression network analysis of the DEGs revealed six pathways including "Plant-pathogen interaction" and "Plant hormone signal transduction" and 15 hub genes including pathogenic type III effector avirulence factor gene (RIN4) and auxin-responsive protein (IAA16) to be involved in plants immune response. Inhibition of Indoleacetic acid, cytokinin, jasmonate acid, and salicylic acid contents and changes in related gene expression in R-line may play important roles in regulation of clubroot resistance (CR). Based on the combined metabolome profiling and hormone-related transcriptomic responses, we propose a general model of hormone-mediated defense mechanism. This study definitely enhances our current understanding and paves the way for improving CR in Brassica rapa.
Collapse
Affiliation(s)
- Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yingying Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Mohammad Rashed Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Gongyao Shi
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanyan Lv
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Fang Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Galindo-González L, Hwang SF, Strelkov SE. Candidate Effectors of Plasmodiophora brassicae Pathotype 5X During Infection of Two Brassica napus Genotypes. Front Microbiol 2021; 12:742268. [PMID: 34803960 PMCID: PMC8595600 DOI: 10.3389/fmicb.2021.742268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/11/2021] [Indexed: 01/28/2023] Open
Abstract
Clubroot, caused by Plasmodiophora brassicae, is one of the most important diseases of canola (Brassica napus) in Canada. Disease management relies heavily on planting clubroot resistant (CR) cultivars, but in recent years, new resistance-breaking pathotypes of P. brassicae have emerged. Current efforts against the disease are concentrated in developing host resistance using traditional genetic breeding, omics and molecular biology. However, because of its obligate biotrophic nature, limited resources have been dedicated to investigating molecular mechanisms of pathogenic infection. We previously performed a transcriptomic study with the cultivar resistance-breaking pathotype 5X on two B. napus hosts presenting contrasting resistance/susceptibility, where we evaluated the mechanisms of host response. Since cultivar-pathotype interactions are very specific, and pathotype 5X is one of the most relevant resistance-breaking pathotypes in Canada, in this study, we analyze the expression of genes encoding putative secreted proteins from this pathotype, predicted using a bioinformatics pipeline, protein modeling and orthologous comparisons with effectors from other pathosystems. While host responses were found to differ markedly in our previous study, many common effectors are found in the pathogen while infecting both hosts, and the gene response among biological pathogen replicates seems more consistent in the effectors associated with the susceptible interaction, especially at 21 days after inoculation. The predicted effectors indicate the predominance of proteins with interacting domains (e.g., ankyrin), and genes bearing kinase and NUDIX domains, but also proteins with protective action against reactive oxygen species from the host. Many of these genes confirm previous predictions from other clubroot studies. A benzoic acid/SA methyltransferase (BSMT), which methylates SA to render it inactive, showed high levels of expression in the interactions with both hosts. Interestingly, our data indicate that E3 ubiquitin proteasome elements are also potentially involved in pathogenesis. Finally, a gene with similarity to indole-3-acetaldehyde dehydrogenase is a promising candidate effector because of its involvement in indole acetic acid synthesis, since auxin is one of the major players in clubroot development.
Collapse
Affiliation(s)
| | | | - Stephen E. Strelkov
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|