1
|
Li X, Li Q, Wang L, Ding H, Wang Y, Liu Y, Gong T. The interaction between oral microbiota and gut microbiota in atherosclerosis. Front Cardiovasc Med 2024; 11:1406220. [PMID: 38932989 PMCID: PMC11199871 DOI: 10.3389/fcvm.2024.1406220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis (AS) is a complex disease caused by multiple pathological factors threatening human health-the pathogenesis is yet to be fully elucidated. In recent years, studies have exhibited that the onset of AS is closely involved with oral and gut microbiota, which may initiate or worsen atherosclerotic processes through several mechanisms. As for how the two microbiomes affect AS, existing mechanisms include invading plaque, producing active metabolites, releasing lipopolysaccharide (LPS), and inducing elevated levels of inflammatory mediators. Considering the possible profound connection between oral and gut microbiota, the effect of the interaction between the two microbiomes on the initiation and progression of AS has been investigated. Findings are oral microbiota can lead to gut dysbiosis, and exacerbate intestinal inflammation. Nevertheless, relevant research is not commendably refined and a concrete review is needed. Hence, in this review, we summarize the most recent mechanisms of the oral microbiota and gut microbiota on AS, illustrate an overview of the current clinical and epidemiological evidence to support the bidirectional connection between the two microbiomes and AS.
Collapse
Affiliation(s)
- Xinsi Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Qian Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Li Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Huifen Ding
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yizhong Wang
- Department of Research & Development, Zhejiang Charioteer Pharmaceutical Co., Ltd, Taizhou, China
| | - Yunfei Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Gong
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Manshouri S, Seif F, Kamali M, Bahar MA, Mashayekh A, Molatefi R. The interaction of inflammasomes and gut microbiota: novel therapeutic insights. Cell Commun Signal 2024; 22:209. [PMID: 38566180 PMCID: PMC10986108 DOI: 10.1186/s12964-024-01504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/28/2024] [Indexed: 04/04/2024] Open
Abstract
Inflammasomes are complex platforms for the cleavage and release of inactivated IL-1β and IL-18 cytokines that trigger inflammatory responses against damage-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs). Gut microbiota plays a pivotal role in maintaining gut homeostasis. Inflammasome activation needs to be tightly regulated to limit aberrant activation and bystander damage to the host cells. Several types of inflammasomes, including Node-like receptor protein family (e.g., NLRP1, NLRP3, NLRP6, NLRP12, NLRC4), PYHIN family, and pyrin inflammasomes, interact with gut microbiota to maintain gut homeostasis. This review discusses the current understanding of how inflammasomes and microbiota interact, and how this interaction impacts human health. Additionally, we introduce novel biologics and antagonists, such as inhibitors of IL-1β and inflammasomes, as therapeutic strategies for treating gastrointestinal disorders when inflammasomes are dysregulated or the composition of gut microbiota changes.
Collapse
Affiliation(s)
- Shirin Manshouri
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Valiasr St, Niayesh Intersection, Tehran, 1995614331, Iran
| | - Farhad Seif
- Department of Photodynamic Therapy, Medical Laser Research Center, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Monireh Kamali
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Valiasr St, Niayesh Intersection, Tehran, 1995614331, Iran
| | - Mohammad Ali Bahar
- Department of Immunology, Medical School, Iran University of Medical Sciences, Tehran, Iran
| | - Arshideh Mashayekh
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Valiasr St, Niayesh Intersection, Tehran, 1995614331, Iran.
| | - Rasol Molatefi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Pediatric Department of Bou Ali Hospital, Ardabil University of Medical Sciences, Ardabil, 56189-85991, Iran.
| |
Collapse
|
3
|
Cheng X, Han X, Zhou L, Sun Y, Zhou Q, Lin X, Gao Z, Wang J, Zhao W. Cabernet sauvignon dry red wine ameliorates atherosclerosis in mice by regulating inflammation and endothelial function, activating AMPK phosphorylation, and modulating gut microbiota. Food Res Int 2023; 169:112942. [PMID: 37254366 DOI: 10.1016/j.foodres.2023.112942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Limited evidence suggests that the abundance of antioxidant polyphenols in dry red wine (DRW) may prevent cardiovascular diseases, a benefit likely attributed to abundant antioxidant polyphenols present in DRW. Here, we examined the anti-atherosclerotic effect of Cabernet Sauvignon DRW (CSDRW) in a mouse model of atherosclerosis (AS) using metabolomic profiling and molecular techniques. Oral administration of CSDRW reduced atherosclerotic lesion size in ApoE-/- mice, alleviated hyperlipidemia, ameliorated hepatic lipid accumulation mediated by AMPK activation, and promoted lipid metabolism via PPARγ-LXR-α-ABCA1 pathway regulation. CSDRW increased the relative abundance of beneficial gut microbiota, including Bacteroidetes, Verrucomicrobiota, and Akkermansiaceae. Metabolic analysis using liquid chromatography-tandem mass spectrometry revealed that CSDRW contained various polyphenols, including flavanol, phenolic acid, flavonol, and resveratrol, which possibly mediate the beneficial effects in AS by reducing inflammation, restoring normal endothelial function, regulating hepatic lipid metabolism, and modulating gut microbiota composition.
Collapse
Affiliation(s)
- Xinlong Cheng
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Xue Han
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China; School of Public Health, Hebei University, Baoding 071000, PR China
| | - Liangfu Zhou
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Yasai Sun
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Qian Zhou
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Xuan Lin
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Zhe Gao
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Jie Wang
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Wen Zhao
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China.
| |
Collapse
|
4
|
Yang Y, Karampoor S, Mirzaei R, Borozdkin L, Zhu P. The interplay between microbial metabolites and macrophages in cardiovascular diseases: A comprehensive review. Int Immunopharmacol 2023; 121:110546. [PMID: 37364331 DOI: 10.1016/j.intimp.2023.110546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/11/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
The gut microbiome has emerged as a crucial player in developing and progressing cardiovascular diseases (CVDs). Recent studies have highlighted the role of microbial metabolites in modulating immune cell function and their impact on CVD. Macrophages, which have a significant function in the pathogenesis of CVD, are very vulnerable to the effects of microbial metabolites. Microbial metabolites, such as short-chain fatty acids (SCFAs) and trimethylamine-N-oxide (TMAO), have been linked to atherosclerosis and the regulation of immune functions. Butyrate has been demonstrated to reduce monocyte migration and inhibit monocyte attachment to injured endothelial cells, potentially contributing to the attenuation of the inflammatory response and the progression of atherosclerosis. On the other hand, TMAO, another compound generated by gut bacteria, has been linked to atherosclerosis due to its impact on lipid metabolism and the accumulation of cholesterol in macrophages. Indole-3-propionic acid, a tryptophan metabolite produced solely by microbes, has been found to promote the development of atherosclerosis by stimulating macrophage reverse cholesterol transport (RCT) and raising the expression of ABCA1. This review comprehensively discusses how various microbiota-produced metabolites affect macrophage polarization, inflammation, and foam cell formation in CVD. We also highlight the mechanisms underlying these effects and the potential therapeutic applications of targeting microbial metabolites in treating CVD.
Collapse
Affiliation(s)
- Yongzheng Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Leonid Borozdkin
- Department of Maxillofacial Surgery, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510100, China.
| |
Collapse
|
5
|
Nesci A, Carnuccio C, Ruggieri V, D'Alessandro A, Di Giorgio A, Santoro L, Gasbarrini A, Santoliquido A, Ponziani FR. Gut Microbiota and Cardiovascular Disease: Evidence on the Metabolic and Inflammatory Background of a Complex Relationship. Int J Mol Sci 2023; 24:ijms24109087. [PMID: 37240434 DOI: 10.3390/ijms24109087] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Several studies in recent years have demonstrated that gut microbiota-host interactions play an important role in human health and disease, including inflammatory and cardiovascular diseases. Dysbiosis has been linked to not only well-known inflammatory diseases, such as inflammatory bowel diseases, rheumatoid arthritis, and systemic lupus erythematous, but also to cardiovascular risk factors, such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity, and type 2 diabetes mellitus. The ways the microbiota is involved in modulating cardiovascular risk are multiple and not only related to inflammatory mechanisms. Indeed, human and the gut microbiome cooperate as a metabolically active superorganism, and this affects host physiology through metabolic pathways. In turn, congestion of the splanchnic circulation associated with heart failure, edema of the intestinal wall, and altered function and permeability of the intestinal barrier result in the translocation of bacteria and their products into the systemic circulation, further enhancing the pro-inflammatory conditions underlying cardiovascular disorders. The aim of the present review is to describe the complex interplay between gut microbiota, its metabolites, and the development and evolution of cardiovascular diseases. We also discuss the possible interventions intended to modulate the gut microbiota to reduce cardiovascular risk.
Collapse
Affiliation(s)
- Antonio Nesci
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Claudia Carnuccio
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Vittorio Ruggieri
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Alessia D'Alessandro
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Angela Di Giorgio
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Santoro
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center (CEMAD), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Angelo Santoliquido
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center (CEMAD), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
6
|
Giannos P, Prokopidis K, Isanejad M, Wright HL. Markers of immune dysregulation in response to the ageing gut: insights from aged murine gut microbiota transplants. BMC Gastroenterol 2022; 22:533. [PMID: 36544093 PMCID: PMC9773626 DOI: 10.1186/s12876-022-02613-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Perturbations in the composition and diversity of the gut microbiota are accompanied by a decline in immune homeostasis during ageing, characterized by chronic low-grade inflammation and enhanced innate immunity. Genetic insights into the interaction between age-related alterations in the gut microbiota and immune function remain largely unexplored. METHODS We investigated publicly available transcriptomic gut profiles of young germ-free mouse hosts transplanted with old donor gut microbiota to identify immune-associated differentially expressed genes (DEGs). Literature screening of the Gene Expression Omnibus and PubMed identified one murine (Mus musculus) gene expression dataset (GSE130026) that included small intestine tissues from young (5-6 weeks old) germ-free mice hosts that were compared following 8 weeks after transplantation with either old (~ 24-month old; n = 5) or young (5-6 weeks old; n = 4) mouse donor gut microbiota. RESULTS A total of 112 differentially expressed genes (DEGs) were identified and used to construct a gut network of encoded proteins, in which DEGs were functionally annotated as being involved in an immune process based on gene ontology. The association between the expression of immune-process DEGs and abundance of immune infiltrates from gene signatures in normal colorectal tissues was estimated from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) project. The analysis revealed a 25-gene signature of immune-associated DEGs and their expression profile was positively correlated with naïve T-cell, effector memory T-cell, central memory T-cell, resident memory T-cell, exhausted T-cell, resting Treg T-cell, effector Treg T-cell and Th1-like colorectal gene signatures. Conclusions These genes may have a potential role as candidate markers of immune dysregulation during gut microbiota ageing. Moreover, these DEGs may provide insights into the altered immune response to microbiota in the ageing gut, including reduced antigen presentation and alterations in cytokine and chemokine production.
Collapse
Affiliation(s)
- Panagiotis Giannos
- Society of Meta-Research and Biomedical Innovation, London, UK.,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Konstantinos Prokopidis
- Society of Meta-Research and Biomedical Innovation, London, UK.,Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Masoud Isanejad
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Helen L Wright
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
7
|
Wang Q, Wang Y, Xu D. Research progress on Th17 and T regulatory cells and their cytokines in regulating atherosclerosis. Front Cardiovasc Med 2022; 9:929078. [PMID: 36211578 PMCID: PMC9534355 DOI: 10.3389/fcvm.2022.929078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Coronary heart disease due to atherosclerosis is the leading cause of death worldwide. Atherosclerosis is considered a chronic inflammatory state in the arterial wall that promotes disease progression and outcome, and immune cells play an important role in the inflammatory process. Purpose We review the mechanisms of CD4+ T subsets, i.e., helper T17 (Th17) cells and regulatory T cells (Tregs), in regulating atherosclerosis, focusing on the role of interleukin (IL)-17, IL-10, and other cytokines in this disease and the factors influencing the effects of these cytokines. Results IL-17 secreted by Th17 cells can promote atherosclerosis, but few studies have reported that IL-17 can also stabilize atherosclerotic plaques. Tregs play a protective role in atherosclerosis, and Th17/Treg imbalance also plays an important role in atherosclerosis. Conclusion The immune response is important in regulating atherosclerosis, and studying the mechanism of action of each immune cell on atherosclerosis presents directions for the treatment of atherosclerosis. Nevertheless, the current studies are insufficient for elucidating the mechanism of action, and further in-depth studies are needed to provide a theoretical basis for clinical drug development.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yurong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Danyan Xu
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Vesnina A, Prosekov A, Atuchin V, Minina V, Ponasenko A. Tackling Atherosclerosis via Selected Nutrition. Int J Mol Sci 2022; 23:8233. [PMID: 35897799 PMCID: PMC9368664 DOI: 10.3390/ijms23158233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
The development and pathogenesis of atherosclerosis are significantly influenced by lifestyle, particularly nutrition. The modern level of science and technology development promote personalized nutrition as an efficient preventive measure against atherosclerosis. In this survey, the factors were revealed that contribute to the formation of an individual approach to nutrition: genetic characteristics, the state of the microbiota of the gastrointestinal tract (GIT) and environmental factors (diets, bioactive components, cardioprotectors, etc.). In the course of the work, it was found that in order to analyze the predisposition to atherosclerosis associated with nutrition, genetic features affecting the metabolism of nutrients are significant. The genetic features include the presence of single nucleotide polymorphisms (SNP) of genes and epigenetic factors. The influence of telomere length on the pathogenesis of atherosclerosis and circadian rhythms was also considered. Relatively new is the study of the relationship between chrono-nutrition and the development of metabolic diseases. That is, to obtain the relationship between nutrition and atherosclerosis, a large number of genetic markers should be considered. In this relation, the question arises: "How many genetic features need to be analyzed in order to form a personalized diet for the consumer?" Basically, companies engaged in nutrigenetic research and choosing a diet for the prevention of a number of metabolic diseases use SNP analysis of genes that accounts for lipid metabolism, vitamins, the body's antioxidant defense system, taste characteristics, etc. There is no set number of genetic markers. The main diets effective against the development of atherosclerosis were considered, and the most popular were the ketogenic, Mediterranean, and DASH-diets. The advantage of these diets is the content of foods with a low amount of carbohydrates, a high amount of vegetables, fruits and berries, as well as foods rich in antioxidants. However, due to the restrictions associated with climatic, geographical, material features, these diets are not available for a number of consumers. The way out is the use of functional products, dietary supplements. In this approach, the promising biologically active substances (BAS) that exhibit anti-atherosclerotic potential are: baicalin, resveratrol, curcumin, quercetin and other plant metabolites. Among the substances, those of animal origin are popular: squalene, coenzyme Q10, omega-3. For the prevention of atherosclerosis through personalized nutrition, it is necessary to analyze the genetic characteristics (SNP) associated with the metabolism of nutrients, to assess the state of the microbiota of the GIT. Based on the data obtained and food preferences, as well as the individual capabilities of the consumer, the optimal diet can be selected. It is topical to exclude nutrients of which their excess consumption stimulates the occurrence and pathogenesis of atherosclerosis and to enrich the diet with functional foods (FF), BAS containing the necessary anti-atherosclerotic, and stimulating microbiota of the GIT nutrients. Personalized nutrition is a topical preventive measure and there are a number of problems hindering the active use of this approach among consumers. The key factors include weak evidence of the influence of a number of genetic features, the high cost of the approach, and difficulties in the interpretation of the results. Eliminating these deficiencies will contribute to the maintenance of a healthy state of the population through nutrition.
Collapse
Affiliation(s)
- Anna Vesnina
- Laboratory of Natural Nutraceuticals Biotesting, Research Department, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Laboratory of Applied Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
- Department of Industrial Machinery Design, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
- R&D Center “Advanced Electronic Technologies”, Tomsk State University, 634034 Tomsk, Russia
| | - Varvara Minina
- Department of Genetic and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia;
| | - Anastasia Ponasenko
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia;
| |
Collapse
|
9
|
Wang C, Deng H, Liu F, Yin Q, Xia L. The Role of Gut Microbiota in the Immunopathology of Atherosclerosis: focus on immune cells. Scand J Immunol 2022; 96:e13174. [PMID: 35474231 DOI: 10.1111/sji.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/27/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022]
Abstract
Gut microbiota (GM) play important roles in multiple organ function, homeostasis and several diseases. More recently, increasing evidences have suggested that the compositional and functional alterations of GM play a crucial role in the accumulation of foam cells and the formation of atherosclerotic plaque in atherosclerosis. In particular, the effects of bacterial components and metabolites on innate and adaptive immune cells have been explored as the underlying mechanisms. Understanding the effects of GM and metabolites on immunoregulation are important for clinical therapy for atherosclerosis. Herein, we summarize the potential role of the GM (such as bacterial components lipopolysaccharide and peptidoglycan) and GM-derived metabolites (such as short-chain fatty acids, trimethylamine N-oxide and bile acids) in the immunopathology of atherosclerosis. Based on that, we further discuss the anti-atherosclerotic effects of GM-directed dietary bioactive factors such as dietary fibers, dietary polyphenols and probiotics. Because of drug-induced adverse events in anti-inflammatory therapies, personalized dietary interventions would be potential therapies for atherosclerosis, and the interactions between GM-derived products and immune cells should be studied further.
Collapse
Affiliation(s)
- Chong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China
| | - Hualing Deng
- Operating room, Weihai Municipal Hospital, Weihai, China
| | - Fang Liu
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Qing Yin
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Bandopadhyay P, Ganguly D. Gut dysbiosis and metabolic diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:153-174. [DOI: 10.1016/bs.pmbts.2022.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Batko B. Exploring the Diverse Immune and Genetic Landscape of Psoriatic Arthritis. J Clin Med 2021; 10:jcm10245926. [PMID: 34945224 PMCID: PMC8706996 DOI: 10.3390/jcm10245926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Psoriatic arthritis (PsA) is characterized by delays in diagnosis and modest effect of treatment in terms of joint response. An understanding of molecular pathomechanisms may aid in developing diagnostic and prognostic models. Genetic susceptibility (e.g., HLA class I genes, IL-23-related genes) can be responsible for the pattern of psoriatic manifestations and affinity for tissue involvement. Gene expression analysis indicates an inflammatory profile that is distinct for PsA, but disparate across tissues. This has clinical implications, as for example, dual blockade of IL-17A and IL-17F can lead to superior clinical effects if there is differential expression of IL-17 receptors in tissues. Structural and functional impairment of barrier tissue, including host-microbiome interactions, may be the source of immune activation. Interplay between different cell populations of innate and adaptive immunity is emerging, potentially providing a link between the transition of skin-to-joint disease. Th17 subsets, IL-17A, IL-17F and IL-23 are crucial in PsA pathogenesis, with both clinical and experimental evidence suggesting a differential molecular landscape in cutaneous and articular compartments.
Collapse
Affiliation(s)
- Bogdan Batko
- Department of Rheumatology and Immunology, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University, 30-705 Krakow, Poland
| |
Collapse
|
12
|
Trimethylamine N-Oxide, a Gut Microbiota-Derived Metabolite, Is Associated with Cardiovascular Risk in Psoriasis: A Cross-Sectional Pilot Study. Dermatol Ther (Heidelb) 2021; 11:1277-1289. [PMID: 33983475 PMCID: PMC8322249 DOI: 10.1007/s13555-021-00547-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Introduction Trimethylamine N-oxide (TMAO), a gut microbiota metabolite from dietary phosphatidylcholine, is involved in the pathogenesis of atherosclerosis and cardiovascular diseases. Psoriasis is associated with increased cardiovascular risk that is not captured by traditional biomarkers. The aim of the present study was to assess TMAO concentration in psoriasis and evaluate the relationship between TMAO and cardiovascular risk in psoriatic patients. Methods In 72 patients with psoriasis and 40 age- and sex-matched non-psoriatic controls, we evaluated fasting plasma TMAO, measured by high-performance liquid chromatography, and cardiovascular risk assessed by various scoring systems such as Framingham, QRISK2, AHA/ACC, and Reynolds risk scores. Results In patients with psoriasis, TMAO concentration was significantly higher than in the control group (195.68 [133.54–332.58] ng/ml versus 126.06 [84.29–156.88] ng/ml, respectively; p < 0.001). Plasma TMAO concentration was significantly correlated with age, total cholesterol, triglycerides, systolic and diastolic blood pressure. Furthermore, the receiver-operating characteristic (ROC) and multiple regression analysis showed that TMAO is an independent predictor of cardiovascular risk. Conclusion TMAO is a valuable candidate for biomarker and a translational link between dysbiosis and atherosclerosis in psoriasis.
Collapse
|
13
|
Juul F, Vaidean G, Parekh N. Ultra-processed Foods and Cardiovascular Diseases: Potential Mechanisms of Action. Adv Nutr 2021; 12:1673-1680. [PMID: 33942057 PMCID: PMC8483964 DOI: 10.1093/advances/nmab049] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/02/2021] [Accepted: 03/31/2021] [Indexed: 12/31/2022] Open
Abstract
Ultra-processed foods are industrially manufactured ready-to-eat or ready-to-heat formulations containing food additives and little or no whole foods, in contrast to processed foods, which are whole foods preserved by traditional techniques such as canning or pickling. Recent epidemiological studies suggest that higher consumption of ultra-processed food is associated with increased risk of cardiovascular disease (CVD). However, epidemiological evidence needs to be corroborated with criteria of biological plausibility. This review summarizes the current evidence on the putative biological mechanisms underlying the associations between ultra-processed foods and CVD. Research ranging from laboratory-based to prospective epidemiological studies and experimental evidence suggest that ultra-processed foods may affect cardiometabolic health through a myriad of mechanisms, beyond the traditionally recognized individual nutrients. Processing induces significant changes to the food matrix, for which ultra-processed foods may affect health outcomes differently than unrefined whole foods with similar nutritional composition. Notably, the highly degraded physical structure of ultra-processed foods may affect cardiometabolic health by influencing absorption kinetics, satiety, glycemic response, and the gut microbiota composition and function. Food additives and neo-formed contaminants produced during processing may also play a role in CVD risk. Key biological pathways include altered serum lipid concentrations, modified gut microbiota and host-microbiota interactions, obesity, inflammation, oxidative stress, dysglycemia, insulin resistance, and hypertension. Further research is warranted to clarify the proportional harm associated with the nutritional composition, food additives, physical structure, and other attributes of ultra-processed foods. Understanding how ultra-processing changes whole foods and through which pathways these foods affect health is a prerequisite for eliminating harmful processing techniques and ingredients.
Collapse
Affiliation(s)
- Filippa Juul
- Department of Epidemiology, School of Global Public Health, New York University, New York, NY, USA
| | - Georgeta Vaidean
- School of Pharmacy and Health Sciences, Fairleigh Dickinson University, Florham Park, NJ, USA,Division of Cardiology, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | | |
Collapse
|
14
|
Bezsonov EE, Sobenin IA, Orekhov AN. Immunopathology of Atherosclerosis and Related Diseases: Focus on Molecular Biology. Int J Mol Sci 2021; 22:ijms22084080. [PMID: 33920897 PMCID: PMC8071216 DOI: 10.3390/ijms22084080] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Evgeny E. Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia;
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 2-4 Bol’shaya Pirogovskaya Ulitsa, 119435 Moscow, Russia
- Correspondence: (E.E.B.); (A.N.O.)
| | - Igor A. Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia;
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15a 3rd Cherepkovskaya Street, 121552 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia;
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
- Correspondence: (E.E.B.); (A.N.O.)
| |
Collapse
|
15
|
Feminò R, Feminò G, Cavezzi A, Troiani E. PCSK9 inhibition, LDL and lipopolysaccharides: a complex and "dangerous" relationship. INT ANGIOL 2021; 40:248-260. [PMID: 33739075 DOI: 10.23736/s0392-9590.21.04632-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Literature concerning the causative factors of atherosclerotic cardiovascular disease shows complex and sometimes contrasting evidence. Most guidelines suggest a strategy aimed at lowering circulating low density lipoproteins (LDL) and ApoB lipoprotein levels. The use of statins and of cholesteryl ester transfer protein inhibitors has led to a number of controversial outcomes, generating a certain degree of concern about the real efficacy and especially safety of these drugs. Literature data show that the use of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors results in a dramatic reduction of various markers of lipid metabolism (namely LDL); however, several critical scientific papers have questioned the value, the need and especially the safety of these innovative drugs. LDL are a protective factor against lipopolysaccharides and other microbial derivatives. Similarly, these gram-negative bacteria-derived compounds have been identified as probable culprits of cardiovascular atherogenesis; moreover, lipopolysaccharides increase hepatic synthesis of PCSK9, as defense mechanism. This enzyme modulates LDL receptors level in the liver, as well as in other organs, such as adrenal gland and reproductive organs. Hence, PCSK9 inhibition may influence glucocorticoid secretion and fertility. Lastly, the consequent reduction of circulating LDL may relevantly hindrance immune system and favor lipopolysaccharides diffusion.
Collapse
Affiliation(s)
- Raimondo Feminò
- Anesthesia and Intensive Care Unit, Department of General and Specialist Surgeries, Polyclinic of Modena, Modena, Italy
| | - Giovanni Feminò
- Division of Immunology, Euro Medical Center Srl, Florence, Italy
| | - Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, Ascoli Piceno, Italy -
| | - Emidio Troiani
- Unit of Cardiology, Social Security Institute, State Hospital, Cailungo, San Marino
| |
Collapse
|
16
|
Choudhry H. The Microbiome and Its Implications in Cancer Immunotherapy. Molecules 2021; 26:E206. [PMID: 33401586 PMCID: PMC7795182 DOI: 10.3390/molecules26010206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is responsible for ~18 million deaths globally each year, representing a major cause of death. Several types of therapy strategies such as radiotherapy, chemotherapy and more recently immunotherapy, have been implemented in treating various types of cancer. Microbes have recently been found to be both directly and indirectly involved in cancer progression and regulation, and studies have provided novel and clear insights into the microbiome-mediated emergence of cancers. Scientists around the globe are striving hard to identify and characterize these microbes and the underlying mechanisms by which they promote or suppress various kinds of cancer. Microbes may influence immunotherapy by blocking various cell cycle checkpoints and the production of certain metabolites. Hence, there is an urgent need to better understand the role of these microbes in the promotion and suppression of cancer. The identification of microbes may help in the development of future diagnostic tools to cure cancers possibly associated with the microbiome. This review mainly focuses on various microbes and their association with different types of cancer, responses to immunotherapeutic modulation, physiological responses, and prebiotic and postbiotic effects.
Collapse
Affiliation(s)
- Hani Choudhry
- Department of Biochemistry, Faculty of Sciences, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|