1
|
Kutscha R, Tomin T, Birner-Gruenberger R, Bekiaris PS, Klamt S, Pflügl S. Efficiency of acetate-based isopropanol synthesis in Escherichia coli W is controlled by ATP demand. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:110. [PMID: 39103876 DOI: 10.1186/s13068-024-02534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Due to increasing ecological concerns, microbial production of biochemicals from sustainable carbon sources like acetate is rapidly gaining importance. However, to successfully establish large-scale production scenarios, a solid understanding of metabolic driving forces is required to inform bioprocess design. To generate such knowledge, we constructed isopropanol-producing Escherichia coli W strains. RESULTS Based on strain screening and metabolic considerations, a 2-stage process was designed, incorporating a growth phase followed by a nitrogen-starvation phase. This process design yielded the highest isopropanol titers on acetate to date (13.3 g L-1). Additionally, we performed shotgun and acetylated proteomics, and identified several stress conditions in the bioreactor scenarios, such as acid stress and impaired sulfur uptake. Metabolic modeling allowed for an in-depth characterization of intracellular flux distributions, uncovering cellular demand for ATP and acetyl-CoA as limiting factors for routing carbon toward the isopropanol pathway. Moreover, we asserted the importance of a balance between fluxes of the NADPH-providing isocitrate dehydrogenase (ICDH) and the product pathway. CONCLUSIONS Using the newly gained system-level understanding for isopropanol production from acetate, we assessed possible engineering approaches and propose process designs to maximize production. Collectively, our work contributes to the establishment and optimization of acetate-based bioproduction systems.
Collapse
Affiliation(s)
- Regina Kutscha
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria
| | - Pavlos Stephanos Bekiaris
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| |
Collapse
|
2
|
Seong H, Han SH, Kim G, Han NS. Viability and probiotic activity of Lactiplantibacillus plantarum PMO08 in human gastrointestinal tract analyzed by in vitro gut model. Food Sci Biotechnol 2024; 33:2223-2231. [PMID: 39130653 PMCID: PMC11315860 DOI: 10.1007/s10068-024-01622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 08/13/2024] Open
Abstract
This study aimed to evaluate the survivability of Lactiplantibacillus plantarum PMO08 in the human gastrointestinal tract and its adaptability in the colon using in vitro models. After exposure to gastric and small intestinal conditions, the majority (92.70 ± 1.14%) of PMO08 was found to be damaged, as determined by confocal microscopy and flow cytometry. During in vitro colonic fermentation, PMO08 not only increased abundance up to 0.47 ± 0.04% compared with the control sample (0.00 ± 0.00%) at 24 h but also facilitated the growth of beneficial or commensal bacteria, thereby increasing the α-diversity indices. Additionally, PMO08 significantly elevated the levels of short-chain fatty acids (SCFAs) and various organic acids. Our results demonstrate that PMO08 possesses moderate viability under gastrointestinal conditions but exhibits superior probiotic activity in the colon.
Collapse
Affiliation(s)
- Hyunbin Seong
- Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk Republic of Korea
| | - Seung Hee Han
- Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk Republic of Korea
| | - Geonhee Kim
- Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk Republic of Korea
| | - Nam Soo Han
- Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk Republic of Korea
| |
Collapse
|
3
|
Losantos D, Sarra M, Caminal G. OPFR removal by white rot fungi: screening of removers and approach to the removal mechanism. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1387541. [PMID: 38827887 PMCID: PMC11140845 DOI: 10.3389/ffunb.2024.1387541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
The persistent presence of organophosphate flame retardants (OPFRs) in wastewater (WW) effluents raises significant environmental and health concerns, highlighting the limitations of conventional treatments for their remotion. Fungi, especially white rot fungi (WRF), offer a promising alternative for OPFR removal. This study sought to identify fungal candidates (from a selection of four WRF and two Ascomycota fungi) capable of effectively removing five frequently detected OPFRs in WW: tributyl phosphate (TnBP), tributoxy ethyl phosphate (TBEP), trichloroethyl phosphate (TCEP), trichloro propyl phosphate (TCPP) and triethyl phosphate (TEP). The objective was to develop a co-culture approach for WW treatment, while also addressing the utilization of less assimilable carbon sources present in WW. Research was conducted on carbon source uptake and OPFR removal by all fungal candidates, while the top degraders were analyzed for biomass sorption contribution. Additionally, the enzymatic systems involved in OPFR degradation were identified, along with toxicity of samples after fungal contact. Acetate (1.4 g·L-1), simulating less assimilable organic matter in the carbon source uptake study, was eliminated by all tested fungi in 4 days. However, during the initial screening where the removal of four OPFRs (excluding TCPP) was tested, WRF outperformed Ascomycota fungi. Ganoderma lucidum and Trametes versicolor removed over 90% of TnBP and TBEP within 4 days, with Pleorotus ostreatus and Pycnoporus sanguineus also displaying effective removal. TCEP removal was challenging, with only G. lucidum achieving partial removal (47%). A subsequent screening with selected WRF and the addition of TCPP revealed TCPP's greater susceptibility to degradation compared to TCEP, with T. versicolor exhibiting the highest removal efficiency (77%). This observation, plus the poor degradation of TEP by all fungal candidates suggests that polarity of an OPFR inversely correlates with its susceptibility to fungal degradation. Sorption studies confirmed the ability of top-performing fungi of each selected OPFR to predominantly degrade them. Enzymatic system tests identified the CYP450 intracellular system responsible for OPFR degradation, so reactions of hydroxylation, dealkylation and dehalogenation are possibly involved in the degradation pathway. Finally, toxicity tests revealed transformation products obtained by fungal degradation to be more toxic than the parent compounds, emphasizing the need to identify them and their toxicity contributions. Overall, this study provides valuable insights into OPFR degradation by WRF, with implications for future WW treatment using mixed consortia, emphasizing the importance of reducing generated toxicity.
Collapse
Affiliation(s)
- Diana Losantos
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d’Enginyeria, Cerdanyola del Vallès, Spain
| | - Montserrat Sarra
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d’Enginyeria, Cerdanyola del Vallès, Spain
| | - Glòria Caminal
- Institut de Quiímica Avançada de Catalunya (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| |
Collapse
|
4
|
Pérez-Fernández BA, Calzadilla L, Enrico Bena C, Del Giudice M, Bosia C, Boggiano T, Mulet R. Sodium acetate increases the productivity of HEK293 cells expressing the ECD-Her1 protein in batch cultures: experimental results and metabolic flux analysis. Front Bioeng Biotechnol 2024; 12:1335898. [PMID: 38659646 PMCID: PMC11039900 DOI: 10.3389/fbioe.2024.1335898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Human Embryonic Kidney cells (HEK293) are a popular host for recombinant protein expression and production in the biotechnological industry. This has driven within both, the scientific and the engineering communities, the search for strategies to increase their protein productivity. The present work is inserted into this search exploring the impact of adding sodium acetate (NaAc) into a batch culture of HEK293 cells. We monitored, as a function of time, the cell density, many external metabolites, and the supernatant concentration of the heterologous extra-cellular domain ECD-Her1 protein, a protein used to produce a candidate prostate cancer vaccine. We observed that by adding different concentrations of NaAc (0, 4, 6 and 8 mM), the production of ECD-Her1 protein increases consistently with increasing concentration, whereas the carrying capacity of the medium decreases. To understand these results we exploited a combination of experimental and computational techniques. Metabolic Flux Analysis (MFA) was used to infer intracellular metabolic fluxes from the concentration of external metabolites. Moreover, we measured independently the extracellular acidification rate and oxygen consumption rate of the cells. Both approaches support the idea that the addition of NaAc to the culture has a significant impact on the metabolism of the HEK293 cells and that, if properly tuned, enhances the productivity of the heterologous ECD-Her1 protein.
Collapse
Affiliation(s)
- Bárbara Ariane Pérez-Fernández
- Group of Complex Systems and Statistical Physics, Department of Applied Physics, Physics Faculty, University of Havana, Havana, Cuba
| | | | | | | | - Carla Bosia
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | | | - Roberto Mulet
- Group of Complex Systems and Statistical Physics, Department of Theoretical Physics, Physics Faculty, University of Havana, Havana, Cuba
| |
Collapse
|
5
|
Kurt E, Qin J, Williams A, Zhao Y, Xie D. Perspectives for Using CO 2 as a Feedstock for Biomanufacturing of Fuels and Chemicals. Bioengineering (Basel) 2023; 10:1357. [PMID: 38135948 PMCID: PMC10740661 DOI: 10.3390/bioengineering10121357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Microbial cell factories offer an eco-friendly alternative for transforming raw materials into commercially valuable products because of their reduced carbon impact compared to conventional industrial procedures. These systems often depend on lignocellulosic feedstocks, mainly pentose and hexose sugars. One major hurdle when utilizing these sugars, especially glucose, is balancing carbon allocation to satisfy energy, cofactor, and other essential component needs for cellular proliferation while maintaining a robust yield. Nearly half or more of this carbon is inevitably lost as CO2 during the biosynthesis of regular metabolic necessities. This loss lowers the production yield and compromises the benefit of reducing greenhouse gas emissions-a fundamental advantage of biomanufacturing. This review paper posits the perspectives of using CO2 from the atmosphere, industrial wastes, or the exhausted gases generated in microbial fermentation as a feedstock for biomanufacturing. Achieving the carbon-neutral or -negative goals is addressed under two main strategies. The one-step strategy uses novel metabolic pathway design and engineering approaches to directly fix the CO2 toward the synthesis of the desired products. Due to the limitation of the yield and efficiency in one-step fixation, the two-step strategy aims to integrate firstly the electrochemical conversion of the exhausted CO2 into C1/C2 products such as formate, methanol, acetate, and ethanol, and a second fermentation process to utilize the CO2-derived C1/C2 chemicals or co-utilize C5/C6 sugars and C1/C2 chemicals for product formation. The potential and challenges of using CO2 as a feedstock for future biomanufacturing of fuels and chemicals are also discussed.
Collapse
Affiliation(s)
- Elif Kurt
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Jiansong Qin
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Alexandria Williams
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Youbo Zhao
- Physical Sciences Inc., 20 New England Business Ctr., Andover, MA 01810, USA;
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| |
Collapse
|
6
|
Singh A, Schnürer A, Dolfing J, Westerholm M. Syntrophic entanglements for propionate and acetate oxidation under thermophilic and high-ammonia conditions. THE ISME JOURNAL 2023; 17:1966-1978. [PMID: 37679429 PMCID: PMC10579422 DOI: 10.1038/s41396-023-01504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Propionate is a key intermediate in anaerobic digestion processes and often accumulates in association with perturbations, such as elevated levels of ammonia. Under such conditions, syntrophic ammonia-tolerant microorganisms play a key role in propionate degradation. Despite their importance, little is known about these syntrophic microorganisms and their cross-species interactions. Here, we present metagenomes and metatranscriptomic data for novel thermophilic and ammonia-tolerant syntrophic bacteria and the partner methanogens enriched in propionate-fed reactors. A metagenome for a novel bacterium for which we propose the provisional name 'Candidatus Thermosyntrophopropionicum ammoniitolerans' was recovered, together with mapping of its highly expressed methylmalonyl-CoA pathway for syntrophic propionate degradation. Acetate was degraded by a novel thermophilic syntrophic acetate-oxidising candidate bacterium. Electron removal associated with syntrophic propionate and acetate oxidation was mediated by the hydrogen/formate-utilising methanogens Methanoculleus sp. and Methanothermobacter sp., with the latter observed to be critical for efficient propionate degradation. Similar dependence on Methanothermobacter was not seen for acetate degradation. Expression-based analyses indicated use of both H2 and formate for electron transfer, including cross-species reciprocation with sulphuric compounds and microbial nanotube-mediated interspecies interactions. Batch cultivation demonstrated degradation rates of up to 0.16 g propionate L-1 day-1 at hydrogen partial pressure 4-30 Pa and available energy was around -20 mol-1 propionate. These observations outline the multiple syntrophic interactions required for propionate oxidation and represent a first step in increasing knowledge of acid accumulation in high-ammonia biogas production systems.
Collapse
Affiliation(s)
- Abhijeet Singh
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Newcastle-upon-Tyne, NE18QH, UK
| | - Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
7
|
Kostešić E, Mitrović M, Kajan K, Marković T, Hausmann B, Orlić S, Pjevac P. Microbial Diversity and Activity of Biofilms from Geothermal Springs in Croatia. MICROBIAL ECOLOGY 2023; 86:2305-2319. [PMID: 37209180 PMCID: PMC10640420 DOI: 10.1007/s00248-023-02239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Hot spring biofilms are stable, highly complex microbial structures. They form at dynamic redox and light gradients and are composed of microorganisms adapted to the extreme temperatures and fluctuating geochemical conditions of geothermal environments. In Croatia, a large number of poorly investigated geothermal springs host biofilm communities. Here, we investigated the microbial community composition of biofilms collected over several seasons at 12 geothermal springs and wells. We found biofilm microbial communities to be temporally stable and highly dominated by Cyanobacteria in all but one high-temperature sampling site (Bizovac well). Of the physiochemical parameters recorded, temperature had the strongest influence on biofilm microbial community composition. Besides Cyanobacteria, the biofilms were mainly inhabited by Chloroflexota, Gammaproteobacteria, and Bacteroidota. In a series of incubations with Cyanobacteria-dominated biofilms from Tuhelj spring and Chloroflexota- and Pseudomonadota-dominated biofilms from Bizovac well, we stimulated either chemoorganotrophic or chemolithotrophic community members, to determine the fraction of microorganisms dependent on organic carbon (in situ predominantly produced via photosynthesis) versus energy derived from geochemical redox gradients (here simulated by addition of thiosulfate). We found surprisingly similar levels of activity in response to all substrates in these two distinct biofilm communities, and observed microbial community composition and hot spring geochemistry to be poor predictors of microbial activity in the study systems.
Collapse
Affiliation(s)
- Ema Kostešić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Maja Mitrović
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Katarina Kajan
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia
| | | | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Sandi Orlić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria.
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Hann EC, Harland-Dunaway M, Garcia AJ, Meuser JE, Jinkerson RE. Alternative carbon sources for the production of plant cellular agriculture: a case study on acetate. FRONTIERS IN PLANT SCIENCE 2023; 14:1104751. [PMID: 37954996 PMCID: PMC10639172 DOI: 10.3389/fpls.2023.1104751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/09/2023] [Indexed: 11/14/2023]
Abstract
Plant cellular agriculture aims to disrupt the way plant derived products are produced. Plant cell cultures are typically grown with sucrose as the primary carbon and energy source, but alternative carbon sources may have advantages over sucrose including less strain on food systems, lower costs, and more sustainable sourcing. Here we review carbon and energy sources that may serve as alternatives to sucrose in the cultivation of plant cell cultures. We identified acetate as a promising candidate and took the first steps to evaluate its potential for use in growing tobacco plant cell cultures. When added to media containing sucrose, acetate concentrations above 8 mM completely inhibit growth. Lower concentrations of acetate (2-4 mM) can support an increase in dry weight without sucrose but do not provide enough energy for substantial growth. 13C labeling indicates that tobacco plant cell cultures can incorporate carbon from exogenous acetate into proteins and carbohydrates. Analysis of transcriptome data showed that genes encoding glyoxylate cycle enzymes are expressed at very low levels compared to genes from the TCA cycle and glycolysis. Adaptive laboratory evolution experiments were able to increase tobacco cell cultures tolerance to acetate, demonstrating the potential for this type of approach going forward. Overall, our results indicate that acetate can be metabolized by plant cell cultures and suggest that further adaptive laboratory evolution or strain engineering efforts may enable acetate to serve as a sole carbon and energy source for tobacco plant cell cultures. This assessment of acetate provides a framework for evaluating other carbon and energy sources for plant cell cultures, efforts that will help reduce the costs and environmental impact, and increase the commercial potential of plant cellular agriculture.
Collapse
Affiliation(s)
- Elizabeth C. Hann
- Center for Industrial Biotechnology, Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, United States
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Marcus Harland-Dunaway
- Center for Industrial Biotechnology, Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, United States
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Adrian J. Garcia
- Center for Industrial Biotechnology, Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, United States
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | | | - Robert E. Jinkerson
- Center for Industrial Biotechnology, Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, United States
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Chi Botanic, Alameda, CA, United States
| |
Collapse
|
9
|
Gu P, Zhao S, Niu H, Li C, Jiang S, Zhou H, Li Q. Synthesis of isobutanol using acetate as sole carbon source in Escherichia coli. Microb Cell Fact 2023; 22:196. [PMID: 37759284 PMCID: PMC10537434 DOI: 10.1186/s12934-023-02197-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND With concerns about depletion of fossil fuel and environmental pollution, synthesis of biofuels such as isobutanol from low-cost substrate by microbial cell factories has attracted more and more attention. As one of the most promising carbon sources instead of food resources, acetate can be utilized by versatile microbes and converted into numerous valuable chemicals. RESULTS An isobutanol synthetic pathway using acetate as sole carbon source was constructed in E. coli. Pyruvate was designed to be generated via acetyl-CoA by pyruvate-ferredoxin oxidoreductase YdbK or anaplerotic pathway. Overexpression of transhydrogenase and NAD kinase increased the isobutanol titer of recombinant E. coli from 121.21 mg/L to 131.5 mg/L under batch cultivation. Further optimization of acetate supplement concentration achieved 157.05 mg/L isobutanol accumulation in WY002, representing the highest isobutanol titer by using acetate as sole carbon source. CONCLUSIONS The utilization of acetate as carbon source for microbial production of valuable chemicals such as isobutanol could reduce the consumption of food-based substrates and save production cost. Engineering strategies applied in this study will provide a useful reference for microbial production of pyruvate derived chemical compounds from acetate.
Collapse
Affiliation(s)
- Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Shuo Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Hao Niu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Chengwei Li
- RZBC GROUP CO., LTD, Rizhao, 276800, Shandong, China
| | | | - Hao Zhou
- RZBC GROUP CO., LTD, Rizhao, 276800, Shandong, China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
10
|
Crandall BS, Overa S, Shin H, Jiao F. Turning Carbon Dioxide into Sustainable Food and Chemicals: How Electrosynthesized Acetate Is Paving the Way for Fermentation Innovation. Acc Chem Res 2023. [PMID: 37205870 DOI: 10.1021/acs.accounts.3c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
ConspectusThe agricultural and chemical industries are major contributors to climate change. To address this issue, hybrid electrocatalytic-biocatalytic systems have emerged as a promising solution for reducing the environmental impact of these key sectors while providing economic onboarding for carbon capture technology. Recent advancements in the production of acetate via CO2/CO electrolysis as well as advances in precision fermentation technology have prompted electrochemical acetate to be explored as an alternative carbon source for synthetic biology. Tandem CO2 electrolysis coupled with improved reactor design has accelerated the commercial viability of electrosynthesized acetate in recent years. Simultaneously, innovations in metabolic engineering have helped leverage pathways that facilitate acetate upgrading to higher carbons for sustainable food and chemical production via precision fermentation. Current precision fermentation technology has received much criticism for reliance upon food crop-derived sugars and starches as feedstock which compete with the human food chain. A shift toward electrosynthesized acetate feedstocks could help preserve arable land for a rapidly growing population.Technoeconomic analysis shows that using electrochemical acetate instead of glucose as a fermentation feedstock reduces the production costs of food and chemicals by 16% and offers improved market price stability. Moreover, given the rapid decline in utility-scale renewable electricity prices, electro-synthesized acetate may become more affordable than conventional production methods at scale. This work provides an outlook on strategies to further advance and scale-up electrochemical acetate production. Additional perspective is offered to help ensure the successful integration of electrosynthesized acetate and precision fermentation technologies. In the electrocatalytic step, it is critical that relatively high purity acetate can be produced in low-concentration electrolyte to help ensure that minimal treatment of the electrosynthesized acetate stream is needed prior to fermentation. In the biocatalytic step, it is critical that microbes with increased tolerances to elevated acetate concentrations are engineered to help promote acetate uptake and accelerate product formation. Additionally, tighter regulation of acetate metabolism via strain engineering is essential to improving cellular efficiency. The implementation of these strategies would allow the coupling of electrosynthesized acetate with precision fermentation to offer a promising approach to sustainably produce chemicals and food. Reducing the environmental impact of the chemical and agricultural sectors is necessary to avoid climate catastrophe and preserve the habitability of the planet for future generations.
Collapse
Affiliation(s)
- Bradie S Crandall
- Center for Catalytic Science & Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Sean Overa
- Center for Catalytic Science & Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Haeun Shin
- Center for Catalytic Science & Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Feng Jiao
- Center for Catalytic Science & Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
11
|
Chong SG, Ismail IS, Ahmad Azam A, Tan SJ, Shaari K, Tan JK. Nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry metabolomics studies on non-organic soybeans versus organic soybeans (Glycine max), and their fermentation by Rhizopus oligosporus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3146-3156. [PMID: 36426592 DOI: 10.1002/jsfa.12355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/20/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Soybeans (Glycine max) are high in proteins and isoflavones, which offer many health benefits. It has been suggested that the fermentation process enhances the nutrients in the soybeans. Organic foods are perceived as better than non-organic foods in terms of health benefits, yet little is known about the difference in the phytochemical content that distinguishes the quality of organic soybeans from non-organic soybeans. This study investigated the chemical profiles of non-organic (G, T, U, UB) and organic (C, COF, A, R, B, Z) soybeans (G. max [L.] Merr.) and their metabolite changes after fermentation with Rhizopus oligosporus. RESULTS A clear separation was only observed between non-organic G and organic Z, which were then selected for further investigation in the fermentation of soybeans (GF and ZF). All four groups (G, Z, GF, ZF) were analyzed using nuclear magnetic resonance (NMR) spectroscopy along with liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this way a total of 41 and 47 metabolites were identified respectively, with 12 in common. A clear variation (|log1.5 FC| > 2 and P < 0.05) was observed between Z and ZF: most of the sugars and isoflavone glycosides were found only in Z, while more amino acids and organic acids were found in ZF. An additional four metabolites clustered as C-glycosylflavonoids were discovered from MS/MS-based molecular networking. CONCLUSION Chemical profiles of non-organic and organic soybeans exhibited no significant difference. However, the metabolite profile of the unfermented soybeans, which were higher in sugars, shifted to higher amino acid and organic acid content after fermentation, thereby potentially enhancing their nutritional value. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Siok-Geok Chong
- Natural Medicines and Products Research Laboratory, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Intan S Ismail
- Natural Medicines and Products Research Laboratory, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Amalina Ahmad Azam
- Center for Healthy Ageing and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia Campus Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Shih-Jen Tan
- Natural Medicines and Products Research Laboratory, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Khozirah Shaari
- Natural Medicines and Products Research Laboratory, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jen-Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Ricci L, Seifert A, Bernacchi S, Fino D, Pirri CF, Re A. Leveraging substrate flexibility and product selectivity of acetogens in two-stage systems for chemical production. Microb Biotechnol 2023; 16:218-237. [PMID: 36464980 PMCID: PMC9871533 DOI: 10.1111/1751-7915.14172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 12/09/2022] Open
Abstract
Carbon dioxide (CO2 ) stands out as sustainable feedstock for developing a circular carbon economy whose energy supply could be obtained by boosting the production of clean hydrogen from renewable electricity. H2 -dependent CO2 gas fermentation using acetogenic microorganisms offers a viable solution of increasingly demonstrated value. While gas fermentation advances to achieve commercial process scalability, which is currently limited to a few products such as acetate and ethanol, it is worth taking the best of the current state-of-the-art technology by its integration within innovative bioconversion schemes. This review presents multiple scenarios where gas fermentation by acetogens integrate into double-stage biotechnological production processes that use CO2 as sole carbon feedstock and H2 as energy carrier for products' synthesis. In the integration schemes here reviewed, the first stage can be biotic or abiotic while the second stage is biotic. When the first stage is biotic, acetogens act as a biological platform to generate chemical intermediates such as acetate, formate and ethanol that become substrates for a second fermentation stage. This approach holds the potential to enhance process titre/rate/yield metrics and products' spectrum. Alternatively, when the first stage is abiotic, the integrated two-stage scheme foresees, in the first stage, the catalytic transformation of CO2 into C1 products that, in the second stage, can be metabolized by acetogens. This latter scheme leverages the metabolic flexibility of acetogens in efficient utilization of the products of CO2 abiotic hydrogenation, namely formate and methanol, to synthesize multicarbon compounds but also to act as flexible catalysts for hydrogen storage or production.
Collapse
Affiliation(s)
- Luca Ricci
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| | | | | | - Debora Fino
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| | - Candido Fabrizio Pirri
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| | - Angela Re
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| |
Collapse
|
13
|
Kiefer D, Tadele LR, Lilge L, Henkel M, Hausmann R. High-level recombinant protein production with Corynebacterium glutamicum using acetate as carbon source. Microb Biotechnol 2022; 15:2744-2757. [PMID: 36178056 PMCID: PMC9618323 DOI: 10.1111/1751-7915.14138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022] Open
Abstract
In recent years, biotechnological conversion of the alternative carbon source acetate has attracted much attention. So far, acetate has been mainly used for microbial production of bioproducts with bulk applications. In this study, we aimed to investigate the potential of acetate as carbon source for heterologous protein production using the acetate-utilizing platform organism Corynebacterium glutamicum. For this purpose, expression of model protein eYFP with the promoter systems T7lac and tac was characterized during growth of C. glutamicum on acetate as sole carbon source. The results indicated a 3.3-fold higher fluorescence level for acetate-based eYFP production with T7 expression strain MB001(DE3) pMKEx2-eyfp compared to MB001 pEKEx2-eyfp. Interestingly, comparative eyfp expression studies on acetate or glucose revealed an up to 83% higher biomass-specific production for T7 RNAP-dependent eYFP production using acetate as carbon source. Furthermore, high-level protein accumulation on acetate was demonstrated for the first time in a high cell density cultivation process with pH-coupled online feeding control, resulting in a final protein titer of 2.7 g/L and product yield of 4 g per 100 g cell dry weight. This study presents a first proof of concept for efficient microbial upgrading of potentially low-cost acetate into high-value bioproducts, such as recombinant proteins.
Collapse
Affiliation(s)
- Dirk Kiefer
- Department of Bioprocess EngineeringInstitute of Food Science and Biotechnology, University of HohenheimStuttgartGermany
| | - Lea Rahel Tadele
- Department of Bioprocess EngineeringInstitute of Food Science and Biotechnology, University of HohenheimStuttgartGermany
| | - Lars Lilge
- Department of Bioprocess EngineeringInstitute of Food Science and Biotechnology, University of HohenheimStuttgartGermany
| | - Marius Henkel
- Cellular AgricultureTUM School of Life Sciences, Technical University of MunichFreisingGermany
| | - Rudolf Hausmann
- Department of Bioprocess EngineeringInstitute of Food Science and Biotechnology, University of HohenheimStuttgartGermany
| |
Collapse
|
14
|
Mutyala S, Kim JR. Recent advances and challenges in the bioconversion of acetate to value-added chemicals. BIORESOURCE TECHNOLOGY 2022; 364:128064. [PMID: 36195215 DOI: 10.1016/j.biortech.2022.128064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Acetate is a major byproduct of the bioconversion of the greenhouse gas carbon dioxide, pretreatment of lignocellulose biomass, and microbial fermentation. The utilization and valorization of acetate have been emphasized in transforming waste to clean energy and value-added platform chemicals, contributing to the development of a closed carbon loop toward a low-carbon circular bio-economy. Acetate has been used to produce several platform chemicals, including succinate, 3-hydroxypropionate, and itaconic acid, highlighting the potential of acetate to synthesize many biochemicals and biofuels. On the other hand, the yields and titers have not reached the theoretical maximum. Recently, recombinant strain development and pathway regulation have been suggested to overcome this limitation. This review provides insights into the important constraints limiting the yields and titers of the biochemical and metabolic pathways of bacteria capable of metabolizing acetate for acetate bioconversion. The current developments in recombinant strain engineering are also discussed.
Collapse
Affiliation(s)
- Sakuntala Mutyala
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
15
|
Efficient production of poly-3-hydroxybutyrate from acetate and butyrate by halophilic bacteria Salinivibrio spp. TGB4 and TGB19. Int J Biol Macromol 2022; 221:1365-1372. [PMID: 36126806 DOI: 10.1016/j.ijbiomac.2022.09.141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022]
Abstract
Volatile fatty acids (VFAs) derived from biomass are considered to be economical and environmentally friendly feedstocks for microbial fermentation. Converting VFAs to polyhydroxyalkanoate (PHA) could reduce the substrate cost and provide an economically viable route for the commercialization of PHA. The halophilic bacteria Salinivibrio spp. TGB4 and TGB19, newly isolated from salt fields, were found to accumulate poly-3-hydroxybutyrate (PHB) using acetate or butyrate as the substrate. Both strains exhibited considerable cell growth (OD600 of ~8) even at acetate concentration of 100 g/L. In shake flask cultures, TGB4 produced PHB titers of 0.90 and 1.34 g/L, while TGB19 produced PHB titers of 0.25 and 2.53 g/L with acetate and butyrate, respectively. When acetate and butyrate were both applied, PHB production was significantly increased, and the PHB titer of TGB4 and TGB19 reached 6.14 and 6.84 g/L, respectively. After optimizing the culture medium, TGB19 produced 8.42 g/L PHB, corresponding to 88.55 wt% of cell dry weight. During fed-batch cultivation, TGB19 produced a PHB titer of 53.23 g/L. This is the highest reported PHB titer using acetate and butyrate by pure microbial cultures and would provide promising hosts for the industrial production of PHA from VFAs.
Collapse
|
16
|
Stark C, Münßinger S, Rosenau F, Eikmanns BJ, Schwentner A. The Potential of Sequential Fermentations in Converting C1 Substrates to Higher-Value Products. Front Microbiol 2022; 13:907577. [PMID: 35722332 PMCID: PMC9204031 DOI: 10.3389/fmicb.2022.907577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Today production of (bulk) chemicals and fuels almost exclusively relies on petroleum-based sources, which are connected to greenhouse gas release, fueling climate change. This increases the urgence to develop alternative bio-based technologies and processes. Gaseous and liquid C1 compounds are available at low cost and often occur as waste streams. Acetogenic bacteria can directly use C1 compounds like CO, CO2, formate or methanol anaerobically, converting them into acetate and ethanol for higher-value biotechnological products. However, these microorganisms possess strict energetic limitations, which in turn pose limitations to their potential for biotechnological applications. Moreover, efficient genetic tools for strain improvement are often missing. However, focusing on the metabolic abilities acetogens provide, they can prodigiously ease these technological disadvantages. Producing acetate and ethanol from C1 compounds can fuel via bio-based intermediates conversion into more energy-demanding, higher-value products, by deploying aerobic organisms that are able to grow with acetate/ethanol as carbon and energy source. Promising new approaches have become available combining these two fermentation steps in sequential approaches, either as separate fermentations or as integrated two-stage fermentation processes. This review aims at introducing, comparing, and evaluating the published approaches of sequential C1 fermentations, delivering a list of promising organisms for the individual fermentation steps and giving an overview of the existing broad spectrum of products based on acetate and ethanol. Understanding of these pioneering approaches allows collecting ideas for new products and may open avenues toward making full use of the technological potential of these concepts for establishment of a sustainable biotechnology.
Collapse
Affiliation(s)
- Christina Stark
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Sini Münßinger
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, University of Ulm, Ulm, Germany
| | - Bernhard J. Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
- *Correspondence: Bernhard J. Eikmanns,
| | - Andreas Schwentner
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| |
Collapse
|
17
|
Adaptive Laboratory Evolution of Halomonas bluephagenesis Enhances Acetate Tolerance and Utilization to Produce Poly(3-hydroxybutyrate). Molecules 2022; 27:molecules27093022. [PMID: 35566371 PMCID: PMC9103988 DOI: 10.3390/molecules27093022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
Acetate is a promising economical and sustainable carbon source for bioproduction, but it is also a known cell-growth inhibitor. In this study, adaptive laboratory evolution (ALE) with acetate as selective pressure was applied to Halomonas bluephagenesis TD1.0, a fast-growing and contamination-resistant halophilic bacterium that naturally accumulates poly(3-hydroxybutyrate) (PHB). After 71 transfers, the evolved strain, B71, was isolated, which not only showed better fitness (in terms of tolerance and utilization rate) to high concentrations of acetate but also produced a higher PHB titer compared with the parental strain TD1.0. Subsequently, overexpression of acetyl-CoA synthetase (ACS) in B71 resulted in a further increase in acetate utilization but a decrease in PHB production. Through whole-genome resequencing, it was speculated that genetic mutations (single-nucleotide variation (SNV) in phaB, mdh, and the upstream of OmpA, and insertion of TolA) in B71 might contribute to its improved acetate adaptability and PHB production. Finally, in a 5 L bioreactor with intermittent feeding of acetic acid, B71 was able to produce 49.79 g/L PHB and 70.01 g/L dry cell mass, which were 147.2% and 82.32% higher than those of TD1.0, respectively. These results highlight that ALE provides a reliable method to harness H. bluephagenesis to metabolize acetate for the production of PHB or other high-value chemicals more efficiently.
Collapse
|
18
|
Gupta A, Rangarajan PN. Histidine is essential for growth of Komagataella phaffii cultured in YPA medium. FEBS Open Bio 2022; 12:1241-1252. [PMID: 35416413 PMCID: PMC9157411 DOI: 10.1002/2211-5463.13408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
Komagataella phaffii (a.k.a. Pichia pastoris) requires histidine for optimal growth when cultured in a medium containing yeast extract, peptone (YP) and acetate (YPA). We demonstrate that HIS4-deficient, K. phaffii strain GS115 exhibits a growth defect on YP-media containing acetate, but not on other carbon sources. K. phaffii X33, a prototroph, grows better than K. phaffii GS115 (his4), a histidine auxotroph in YPA. Normal growth of GS115 is restored either by the expression of HIS4 or by culturing in YPA containing ≥0.6 mM histidine. In presence of histidine, expression of several genes is altered including those encoding key subunits of mitochondrial ATP synthase, transporters of amino acids and nutrients, as well as biosynthetic enzymes. Thus, histidine should be included as an essential component for optimal growth of K.phaffii histidine auxotrophs cultured in YPA.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Pundi N Rangarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
19
|
Kiefer D, Merkel M, Lilge L, Hausmann R, Henkel M. High cell density cultivation of Corynebacterium glutamicum on bio-based lignocellulosic acetate using pH-coupled online feeding control. BIORESOURCE TECHNOLOGY 2021; 340:125666. [PMID: 34352645 DOI: 10.1016/j.biortech.2021.125666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Acetate represents a promising alternative carbon source for future industrial biotechnology. In this study, the high potential of Corynebacterium glutamicum for utilizing acetate as sole carbon source was demonstrated. Batch culture studies revealed that C. glutamicum ATCC 13032 naturally exhibits high acetate tolerance with maximum growth rates (µmax = 0.47 h-1) similar to those on D-glucose. Based on a simple and auto-regulated pH-coupled feeding strategy which utilizes bio-acetic acid in pure form, a novel and high-efficient fed-batch process was developed in a 42 L stirred-tank bioreactor. By optimizing the carbon-to-nitrogen (C/N) feeding ratio, maximum biomass concentrations of 80.2 gCDW/L were achieved with a space-time yield of 66.6 gCDW/L·d. In addition, a process model was implemented describing the time-courses of biomass growth and substrate concentrations. This is the first study in which an industrial platform organism was grown to high cell densities using green, lignocellulosic acetate as an alternative carbon source.
Collapse
Affiliation(s)
- Dirk Kiefer
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Manuel Merkel
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Lars Lilge
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Rudolf Hausmann
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Marius Henkel
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany.
| |
Collapse
|
20
|
Jia D, He M, Tian Y, Shen S, Zhu X, Wang Y, Zhuang Y, Jiang W, Gu Y. Metabolic Engineering of Gas-Fermenting Clostridium ljungdahlii for Efficient Co-production of Isopropanol, 3-Hydroxybutyrate, and Ethanol. ACS Synth Biol 2021; 10:2628-2638. [PMID: 34549587 DOI: 10.1021/acssynbio.1c00235] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rational design and modification of autotrophic bacteria to efficiently produce high-value chemicals and biofuels are crucial for establishing a sustainable and economically viable process for one-carbon (C1) source utilization, which, however, remains a challenge in metabolic engineering. In this study, autotrophic Clostridium ljungdahlii was metabolically engineered to efficiently co-produce three important bulk chemicals, isopropanol, 3-hydroxybutyrate (3-HB), and ethanol (together, IHE), using syngas (CO2/CO). An artificial isopropanol-producing pathway was first constructed and optimized in C. ljungdahlii to achieve an efficient production of isopropanol and an unexpected product, 3-HB. Based on this finding, an endogenous active dehydrogenase capable of converting acetoacetate to 3-HB was identified in C. ljungdahlii, thereby revealing an efficient 3-HB-producing pathway. The engineered strain was further optimized to reassimilate acetic acid and synthesize 3-HB by introducing heterologous functional genes. Finally, the best-performing strain was able to produce 13.4, 3.0, and 28.4 g/L of isopropanol, 3-HB, and ethanol, respectively, in continuous gas fermentation. Therefore, this work represents remarkable progress in microbial production of bulk chemicals using C1 gases.
Collapse
Affiliation(s)
- Dechen Jia
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiyu He
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yi Tian
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shaohuang Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xianfeng Zhu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yonghong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Gu
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
21
|
Metabolic engineering of Vibrio natriegens. Essays Biochem 2021; 65:381-392. [PMID: 33835156 PMCID: PMC8314017 DOI: 10.1042/ebc20200135] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Vibrio natriegens is emerging as a promising host for biotechnology which is basically due to the remarkable intrinsic properties such as the exceptionally high growth and substrate consumption rates. The facultatively anaerobic marine bacterium possesses a versatile metabolism, is able to utilize a variety of substrates as carbon and energy sources and is easy to handle in the lab. These features initiated the rapid development of genetic tools and resulted in extensive engineering of production strains in the past years. Although recent examples illustrate the potential of V. natriegens for biotechnology, a comprehensive understanding of the metabolism and its regulation is still lacking but essential to exploit the full potential of this bacterium. In this review, we summarize the current knowledge on the physiological traits and the genomic organization, provide an overview of the available genetic engineering tools and recent advances in metabolic engineering of V. natriegens. Finally, we discuss the obstacles which have to be overcome in order to establish V. natriegens as industrial production host.
Collapse
|