1
|
Hogg CJ, Edwards RJ, Farquharson KA, Silver LW, Brandies P, Peel E, Escalona M, Jaya FR, Thavornkanlapachai R, Batley K, Bradford TM, Chang JK, Chen Z, Deshpande N, Dziminski M, Ewart KM, Griffith OW, Marin Gual L, Moon KL, Travouillon KJ, Waters P, Whittington CM, Wilkins MR, Helgen KM, Lo N, Ho SYW, Ruiz Herrera A, Paltridge R, Marshall Graves JA, Renfree M, Shapiro B, Ottewell K, Belov K. Extant and extinct bilby genomes combined with Indigenous knowledge improve conservation of a unique Australian marsupial. Nat Ecol Evol 2024; 8:1311-1326. [PMID: 38945974 PMCID: PMC11239497 DOI: 10.1038/s41559-024-02436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/03/2024] [Indexed: 07/02/2024]
Abstract
Ninu (greater bilby, Macrotis lagotis) are desert-dwelling, culturally and ecologically important marsupials. In collaboration with Indigenous rangers and conservation managers, we generated the Ninu chromosome-level genome assembly (3.66 Gbp) and genome sequences for the extinct Yallara (lesser bilby, Macrotis leucura). We developed and tested a scat single-nucleotide polymorphism panel to inform current and future conservation actions, undertake ecological assessments and improve our understanding of Ninu genetic diversity in managed and wild populations. We also assessed the beneficial impact of translocations in the metapopulation (N = 363 Ninu). Resequenced genomes (temperate Ninu, 6; semi-arid Ninu, 6; and Yallara, 4) revealed two major population crashes during global cooling events for both species and differences in Ninu genes involved in anatomical and metabolic pathways. Despite their 45-year captive history, Ninu have fewer long runs of homozygosity than other larger mammals, which may be attributable to their boom-bust life history. Here we investigated the unique Ninu biology using 12 tissue transcriptomes revealing expression of all 115 conserved eutherian chorioallantoic placentation genes in the uterus, an XY1Y2 sex chromosome system and olfactory receptor gene expansions. Together, we demonstrate the holistic value of genomics in improving key conservation actions, understanding unique biological traits and developing tools for Indigenous rangers to monitor remote wild populations.
Collapse
Affiliation(s)
- Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia.
| | - Richard J Edwards
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Katherine A Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Parice Brandies
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Merly Escalona
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Frederick R Jaya
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Rujiporn Thavornkanlapachai
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Kimberley Batley
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Tessa M Bradford
- Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - J King Chang
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | | | - Nandan Deshpande
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Ramaciotti Centre for Genomics and School of Biotechnology and Biomolecular Science, UNSW, Sydney, New South Wales, Australia
| | - Martin Dziminski
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Kyle M Ewart
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Oliver W Griffith
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Laia Marin Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Katherine L Moon
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Kenny J Travouillon
- Collections and Research, Western Australian Museum, Welshpool, Western Australia, Australia
| | - Paul Waters
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Camilla M Whittington
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Ramaciotti Centre for Genomics and School of Biotechnology and Biomolecular Science, UNSW, Sydney, New South Wales, Australia
| | - Kristofer M Helgen
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Aurora Ruiz Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Rachel Paltridge
- Indigenous Desert Alliance, Alice Springs, Northern Territory, Australia
| | | | - Marilyn Renfree
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Kym Ottewell
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Zhang Y, Liu G, Huang L, He X, Su Y, Nie X, Mao Z, Xing X. SUN5 interacts with nuclear membrane LaminB1 and cytoskeletal GTPase Septin12 mediating the sperm head-and-tail junction. Mol Hum Reprod 2024; 30:gaae022. [PMID: 38870534 DOI: 10.1093/molehr/gaae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Acephalic spermatozoa syndrome (ASS) is a severe teratospermia with decaudated, decapitated, and malformed sperm, resulting in male infertility. Nuclear envelope protein SUN5 localizes to the junction between the sperm head and tail. Mutations in the SUN5 gene have been identified most frequently (33-47%) in ASS cases, and its molecular mechanism of action is yet to be explored. In the present study, we generated Sun5 knockout mice, which presented the phenotype of ASS. Nuclear membrane protein LaminB1 and cytoskeletal GTPases Septin12 and Septin2 were identified as potential partners for interacting with SUN5 by immunoprecipitation-mass spectrometry in mouse testis. Further studies demonstrated that SUN5 connected the nucleus by interacting with LaminB1 and connected the proximal centriole by interacting with Septin12. The binding between SUN5 and Septin12 promoted their aggregation together in the sperm neck. The disruption of the LaminB1/SUN5/Septin12 complex by Sun5 deficiency caused separation of the Septin12-proximal centriole from the nucleus, leading to the breakage of the head-to-tail junction. Collectively, these data provide new insights into the pathogenesis of ASS caused by SUN5 deficiency.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gang Liu
- Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - Lihua Huang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiyi He
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuyan Su
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zenghui Mao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Xiaowei Xing
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Sanovec O, Frolikova M, Kraus V, Vondrakova J, Qasemi M, Spevakova D, Simonik O, Moritz L, Caswell DL, Liska F, Ded L, Cerny J, Avidor-Reiss T, Hammoud SS, Schorle H, Postlerova P, Steger K, Komrskova K. Protamine 2 Deficiency Results In Septin 12 Abnormalities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596175. [PMID: 38854089 PMCID: PMC11160614 DOI: 10.1101/2024.05.28.596175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
There is a well-established link between abnormal sperm chromatin states and poor motility, however, how these two processes are interdependent is unknown. Here, we identified a possible mechanistic insight by showing that Protamine 2, a nuclear DNA packaging protein in sperm, directly interacts with cytoskeletal protein Septin 12, which is associated with sperm motility. Septin 12 has several isoforms, and we show, that in the Prm2 -/- sperm, the short one (Mw 36 kDa) is mislocalized, while two long isoforms (Mw 40 and 41 kDa) are unexpectedly lost in Prm2 -/- sperm chromatin-bound protein fractions. Septin 12 co-immunoprecipitated with Protamine 2 in the testicular cell lysate of WT mice and with Lamin B1/B2/B3 in co-transfected HEK cells despite we did not observe changes in Lamin B2/B3 protein or SUN4 expression in Prm2 -/- testes. Furthermore, the Prm2 -/- sperm have on average a smaller sperm nucleus and aberrant acrosome biogenesis. In humans, patients with low sperm motility (asthenozoospermia) have imbalanced histone- protamine 1/2 ratio and modified levels of cytoskeletal proteins. We detected retained Septin 12 isoforms (Mw 40 and 41 kDa) in the sperm membrane, chromatin-bound and tubulin/mitochondria protein fractions, which was not true for healthy normozoospermic men. In conclusion, our findings expand the current knowledge regarding the connection between Protamine 2 and Septin 12 expression and localization, resulting in low sperm motility and morphological abnormalities.
Collapse
|
4
|
Zhang CL, Zhang J, Tuersuntuoheti M, Zhou W, Han Z, Li X, Yang R, Zhang L, Zheng L, Liu S. Landscape genomics reveals adaptive divergence of indigenous sheep in different ecological environments of Xinjiang, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166698. [PMID: 37683864 DOI: 10.1016/j.scitotenv.2023.166698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Sheep are important livestock animals that have evolved under various ecological pressures. Xinjiang is a region with diverse and harsh environments that have shaped many local sheep breeds with unique characteristics and environmental adaptability. However, these breeds are losing ecological flexibility due to the promotion of intensive farming practices. Here we sequenced 14 local sheep breeds from Xinjiang and analyzed their genetic structure and gene flow with other sheep breeds from neighboring regions. The Tibetan Plateau was the geographic origin of Xinjiang native sheep evolution. We performed genome-environment association analysis and identified Bio9: Mean Temperature of Driest Quarter and Bio15: Precipitation Seasonality as the key environmental factors affecting Xinjiang local sheep and the key genes involved in their survival and adaptation. We classified Xinjiang native sheep breeds into six groups based on their differential genes by pairwise selective sweep analysis and Community Network Analysis. We analyzed transcriptome expression data of 832 sheep tissues and detected tissue-specific enrichment of six group-specific genes in different biological systems. Our results revealed the genetic basis of year-round estrus, drought tolerance, hypoxia resistance, and cold tolerance traits of Xinjiang sheep breeds. Moreover, we proposed conservation strategies for Xinjiang local sheep breeds and provided theoretical guidance for breeding new sheep breeds under global extreme environments.
Collapse
Affiliation(s)
- Cheng-Long Zhang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Jihu Zhang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Mirenisa Tuersuntuoheti
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Zhipeng Han
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Ruizhi Yang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Lulu Zhang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Langman Zheng
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China.
| |
Collapse
|
5
|
Potgieter S, Eddy C, Badrinath A, Chukrallah L, Lo T, Mohanty G, Visconti PE, Snyder EM. ADAD1 is required for normal translation of nuclear pore and transport protein transcripts in spermatids of Mus musculus†. Biol Reprod 2023; 109:340-355. [PMID: 37399121 PMCID: PMC10502568 DOI: 10.1093/biolre/ioad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/23/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023] Open
Abstract
ADAD1 is a testis-specific RNA-binding protein expressed in post-meiotic spermatids whose loss leads to defective sperm and male infertility. However, the drivers of the Adad1 phenotype remain unclear. Morphological and functional analysis of Adad1 mutant sperm showed defective DNA compaction, abnormal head shaping, and reduced motility. Mutant testes demonstrated minimal transcriptome changes; however, ribosome association of many transcripts was reduced, suggesting ADAD1 may be required for their translational activation. Further, immunofluorescence of proteins encoded by select transcripts showed delayed protein accumulation. Additional analyses demonstrated impaired subcellular localization of multiple proteins, suggesting protein transport is also abnormal in Adad1 mutants. To clarify the mechanism giving rise to this, the manchette, a protein transport microtubule network, and the LINC (linker of nucleoskeleton and cytoskeleton) complex, which connects the manchette to the nuclear lamin, were assessed across spermatid development. Proteins of both displayed delayed translation and/or localization in mutant spermatids implicating ADAD1 in their regulation, even in the absence of altered ribosome association. Finally, ADAD1's impact on the NPC (nuclear pore complex), a regulator of both the manchette and the LINC complex, was examined. Reduced ribosome association of NPC encoding transcripts and reduced NPC protein abundance along with abnormal localization in Adad1 mutants confirmed ADAD1's impact on translation is required for a NPC in post-meiotic germ cells. Together, these studies lead to a model whereby ADAD1's influence on nuclear transport leads to deregulation of the LINC complex and the manchette, ultimately generating the range of physiological defects observed in the Adad1 phenotype.
Collapse
Affiliation(s)
- Sarah Potgieter
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Christopher Eddy
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Aditi Badrinath
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Lauren Chukrallah
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Toby Lo
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Gayatri Mohanty
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Elizabeth M Snyder
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
6
|
Meng Q, Shao B, Zhao D, Fu X, Wang J, Li H, Zhou Q, Gao T. Loss of SUN1 function in spermatocytes disrupts the attachment of telomeres to the nuclear envelope and contributes to non-obstructive azoospermia in humans. Hum Genet 2023; 142:531-541. [PMID: 36933034 DOI: 10.1007/s00439-022-02515-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/13/2022] [Indexed: 03/19/2023]
Abstract
One of the most severe forms of infertility in humans, caused by gametogenic failure, is non-obstructive azoospermia (NOA). Approximately, 20-30% of men with NOA may have single-gene mutations or other genetic variables that cause this disease. While a range of single-gene mutations associated with infertility has been identified in prior whole-exome sequencing (WES) studies, current insight into the precise genetic etiology of impaired human gametogenesis remains limited. In this paper, we described a proband with NOA who experienced hereditary infertility. WES analyses identified a homozygous variant in the SUN1 (Sad1 and UNC84 domain containing 1) gene [c. 663C > A: p.Tyr221X] that segregated with infertility. SUN1 encodes a LINC complex component essential for telomeric attachment and chromosomal movement. Spermatocytes with the observed mutations were incapable of repairing double-strand DNA breaks or undergoing meiosis. This loss of SUN1 functionality contributes to significant reductions in KASH5 levels within impaired chromosomal telomere attachment to the inner nuclear membrane. Overall, our results identify a potential genetic driver of NOA pathogenesis and provide fresh insight into the role of the SUN1 protein as a regulator of prophase I progression in the context of human meiosis.
Collapse
Affiliation(s)
- Qingxia Meng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, 215002, China
| | - Binbin Shao
- Department of Reproduction, The Affiliated Obstetrics and Gynecology Hospital With, Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Dan Zhao
- Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xu Fu
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, 215002, China
| | - Jiaxiong Wang
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, 215002, China
| | - Hong Li
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, 215002, China.
| | - Qiao Zhou
- Department of Reproduction, The Affiliated Obstetrics and Gynecology Hospital With, Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.
| | - Tingting Gao
- Changzhou Medical Center, Changzhou Maternal and Child Health Care Hospital, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
7
|
Teves ME, Roldan ERS. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 2022; 102:7-60. [PMID: 33880962 PMCID: PMC8812575 DOI: 10.1152/physrev.00009.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function, there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ∼30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition of and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels: first, by analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success and second, by examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.
Collapse
Affiliation(s)
- Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
8
|
Xie C, Wang W, Tu C, Meng L, Lu G, Lin G, Lu LY, Tan YQ. OUP accepted manuscript. Hum Reprod Update 2022; 28:763-797. [PMID: 35613017 DOI: 10.1093/humupd/dmac024] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chunbo Xie
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Weili Wang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaofeng Tu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lanlan Meng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
9
|
Liu L, Liu M, Xie D, Liu X, Yan H. Role of the extracellular matrix and YAP/TAZ in cell reprogramming. Differentiation 2021; 122:1-6. [PMID: 34768156 DOI: 10.1016/j.diff.2021.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023]
Abstract
Stem cells are crucial in the fields of regenerative medicine and cell therapy. Mechanical signals from the cellular microenvironment play an important role in inducing the reprogramming of somatic cells into stem cells in vitro, but the mechanisms of this process have yet to be fully explored. Mechanical signals may activate a physical pathway involving the focal adhesions-cytoskeleton-LINC complex axis, and a chemical pathway involving YAP/TAZ. ENH protein likely plays an important role in connecting and regulating these two pathways. Such mechanisms illustrate one way in which mechanical signals from the cellular microenvironment can induce reprogramming of somatic cells to stem cells, and lays the foundation for a new strategy for inducing and regulating such reprogramming in vitro by means of physical processes related to local mechanical forces.
Collapse
Affiliation(s)
- Lan Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Mengchang Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Defu Xie
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Xingke Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Hong Yan
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
10
|
Manfrevola F, Martinez G, Coutton C, Rocco D, Reynaud K, Le Vern Y, Froment P, Beauclair L, Aubert D, Pierantoni R, Chianese R, Guillou F. Ankrd31 in Sperm and Epididymal Integrity. Front Cell Dev Biol 2021; 9:741975. [PMID: 34820371 PMCID: PMC8607815 DOI: 10.3389/fcell.2021.741975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Ankyrin proteins (ANKRD) are key mediators linking membrane and sub-membranous cytoskeletal proteins. Recent findings have highlighted a new role of ANKRD31 during spermatogenesis, elucidating its involvement in meiotic recombination and male germ cell progression. Following testicular differentiation, spermatozoa (SPZ) enter into the epididymis, where they undergo several biochemical and enzymatic changes. The epididymal epithelium is characterized by cell-to-cell junctions that are able to form the blood-epididymal barrier (BEB). This intricate epithelial structure provides the optimal microenvironment needed for epididymal sperm maturation. To date, no notions have been reported regarding a putative role of ANKRD31 in correct BEB formation. In our work, we generated an Ankrd31 knockout male mouse model (Ankrd31-/- ) and characterized its reproductive phenotype. Ankrd31-/- mice were infertile and exhibited oligo-astheno-teratozoospermia (a low number of immotile SPZ with abnormal morphological features). In addition, a complete deregulation of BEB was found in Ankrd31-/- , due to cell-to-cell junction anomalies. In order to suggest that BEB deregulation may depend on Ankrd31 gene deletion, we showed the physical interaction among ANKRD31 and some epithelial junction proteins in wild-type (WT) epididymides. In conclusion, the current work shows a key role of ANKRD31 in the control of germ cell progression as well as sperm and epididymal integrity.
Collapse
Affiliation(s)
- Francesco Manfrevola
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Guillaume Martinez
- Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, UM de Génétique Chromosomique, Grenoble, France
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences INSERM U1209, CNRS UMR 5309, Grenoble, France
| | - Charles Coutton
- Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, UM de Génétique Chromosomique, Grenoble, France
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences INSERM U1209, CNRS UMR 5309, Grenoble, France
| | - Domenico Rocco
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Karine Reynaud
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Yves Le Vern
- INRAE, Université de Tours, ISP, Nouzilly, France
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Linda Beauclair
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Denise Aubert
- Univ Lyon, ENS de Lyon, INRAE, CNRS, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Rosanna Chianese
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Florian Guillou
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
11
|
Tapia Contreras C, Hoyer-Fender S. The Transformation of the Centrosome into the Basal Body: Similarities and Dissimilarities between Somatic and Male Germ Cells and Their Relevance for Male Fertility. Cells 2021; 10:2266. [PMID: 34571916 PMCID: PMC8471410 DOI: 10.3390/cells10092266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
The sperm flagellum is essential for the transport of the genetic material toward the oocyte and thus the transmission of the genetic information to the next generation. During the haploid phase of spermatogenesis, i.e., spermiogenesis, a morphological and molecular restructuring of the male germ cell, the round spermatid, takes place that includes the silencing and compaction of the nucleus, the formation of the acrosomal vesicle from the Golgi apparatus, the formation of the sperm tail, and, finally, the shedding of excessive cytoplasm. Sperm tail formation starts in the round spermatid stage when the pair of centrioles moves toward the posterior pole of the nucleus. The sperm tail, eventually, becomes located opposed to the acrosomal vesicle, which develops at the anterior pole of the nucleus. The centriole pair tightly attaches to the nucleus, forming a nuclear membrane indentation. An articular structure is formed around the centriole pair known as the connecting piece, situated in the neck region and linking the sperm head to the tail, also named the head-to-tail coupling apparatus or, in short, HTCA. Finally, the sperm tail grows out from the distal centriole that is now transformed into the basal body of the flagellum. However, a centriole pair is found in nearly all cells of the body. In somatic cells, it accumulates a large mass of proteins, the pericentriolar material (PCM), that together constitute the centrosome, which is the main microtubule-organizing center of the cell, essential not only for the structuring of the cytoskeleton and the overall cellular organization but also for mitotic spindle formation and chromosome segregation. However, in post-mitotic (G1 or G0) cells, the centrosome is transformed into the basal body. In this case, one of the centrioles, which is always the oldest or mother centriole, grows the axoneme of a cilium. Most cells of the body carry a single cilium known as the primary cilium that serves as an antenna sensing the cell's environment. Besides, specialized cells develop multiple motile cilia differing in substructure from the immotile primary cilia that are essential in moving fluids or cargos over the cellular surface. Impairment of cilia formation causes numerous severe syndromes that are collectively subsumed as ciliopathies. This comparative overview serves to illustrate the molecular mechanisms of basal body formation, their similarities, and dissimilarities, in somatic versus male germ cells, by discussing the involved proteins/genes and their expression, localization, and function. The review, thus, aimed to provide a deeper knowledge of the molecular players that is essential for the expansion of clinical diagnostics and treatment of male fertility disorders.
Collapse
Affiliation(s)
| | - Sigrid Hoyer-Fender
- Göttingen Center of Molecular Biosciences, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology-Developmental Biology, Faculty of Biology and Psychology, Georg-August University of Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
12
|
Zhang Y, Yang L, Huang L, Liu G, Nie X, Zhang X, Xing X. SUN5 Interacting With Nesprin3 Plays an Essential Role in Sperm Head-to-Tail Linkage: Research on Sun5 Gene Knockout Mice. Front Cell Dev Biol 2021; 9:684826. [PMID: 34268309 PMCID: PMC8276135 DOI: 10.3389/fcell.2021.684826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Acephalic spermatozoa syndrome is a rare genetic and reproductive disease. Recent studies have shown that approximately 33–47% of patients with acephalic spermatozoa syndrome have SUN5 mutations, but the molecular mechanism underlying this phenomenon has not been elucidated. In this study, we generated Sun5 knockout mice and found that the head-to-tail linkage was broken in Sun5–/– mice, which was similar to human acephalic spermatozoa syndrome. Furthermore, ultrastructural imaging revealed that the head-tail coupling apparatus (HTCA) and the centrosome were distant from the nucleus at steps 9–10 during spermatid elongation. With the manchette disappearing at steps 13–14, the head and the tail segregated. To explore the molecular mechanism underlying this process, bioinformatic analysis was performed and showed that Sun5 may interact with Nesprin3. Further coimmunoprecipitation (Co-IP) and immunofluorescence assays confirmed that Sun5 and Nesprin3 were indeed bona fide interaction partners that formed the linker of the nucleoskeleton and cytoskeleton (LINC) complex participating in the connection of the head and tail of spermatozoa. Nesprin3 was located posterior and anterior to the nucleus during spermiogenesis in wild-type mice, whereas it lost its localization at the implantation fossa of the posterior region in Sun5–/– mice. Without correct localization of Nesprin3 at the nuclear membrane, the centrosome, which is the originator of the flagellum, was distant from the nucleus, which led to the separation of the head and tail. In addition, isobaric tag for relative and absolute quantitation results showed that 47 proteins were upregulated, and 56 proteins were downregulated, in the testis in Sun5–/– mice, and the downregulation of spermatogenesis-related proteins (Odf1 and Odf2) may also contribute to the damage to the spermatozoa head-to-tail linkage. Our findings suggested that Sun5 is essential for the localization of Nesprin3 at the posterior nuclear membrane, which plays an essential role in the sperm head-tail connection.
Collapse
Affiliation(s)
- Yunfei Zhang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Linfei Yang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Huang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gang Liu
- The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinxing Zhang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaowei Xing
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Xiong W, Shen C, Wang Z. The molecular mechanisms underlying acrosome biogenesis elucidated by gene-manipulated mice. Biol Reprod 2021; 105:789-807. [PMID: 34131698 DOI: 10.1093/biolre/ioab117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
Sexual reproduction requires the fusion of two gametes in a multistep and multifactorial process termed fertilization. One of the main steps that ensures successful fertilization is acrosome reaction. The acrosome, a special kind of organelle with a cap-like structure that covers the anterior portion of sperm head, plays a key role in the process. Acrosome biogenesis begins with the initial stage of spermatid development, and it is typically divided into four successive phases: the Golgi phase, cap phase, acrosome phase, and maturation phase. The run smoothly of above processes needs an active and specific coordination between the all kinds of organelles (endoplasmic reticulum, trans-golgi network and nucleus) and cytoplasmic structures (acroplaxome and manchette). During the past two decades, an increasingly genes have been discovered to be involved in modulating acrosome formation. Most of these proteins interact with each other and show a complicated molecular regulatory mechanism to facilitate the occurrence of this event. This Review focuses on the progresses of studying acrosome biogenesis using gene-manipulated mice and highlights an emerging molecular basis of mammalian acrosome formation.
Collapse
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Manfrevola F, Guillou F, Fasano S, Pierantoni R, Chianese R. LINCking the Nuclear Envelope to Sperm Architecture. Genes (Basel) 2021; 12:genes12050658. [PMID: 33925685 PMCID: PMC8145172 DOI: 10.3390/genes12050658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/13/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear architecture undergoes an extensive remodeling during spermatogenesis, especially at levels of spermatocytes (SPC) and spermatids (SPT). Interestingly, typical events of spermiogenesis, such as nuclear elongation, acrosome biogenesis, and flagellum formation, need a functional cooperation between proteins of the nuclear envelope and acroplaxome/manchette structures. In addition, nuclear envelope plays a key role in chromosome distribution. In this scenario, special attention has been focused on the LINC (linker of nucleoskeleton and cytoskeleton) complex, a nuclear envelope-bridge structure involved in the connection of the nucleoskeleton to the cytoskeleton, governing mechanotransduction. It includes two integral proteins: KASH- and SUN-domain proteins, on the outer (ONM) and inner (INM) nuclear membrane, respectively. The LINC complex is involved in several functions fundamental to the correct development of sperm cells such as head formation and head to tail connection, and, therefore, it seems to be important in determining male fertility. This review provides a global overview of the main LINC complex components, with a special attention to their subcellular localization in sperm cells, their roles in the regulation of sperm morphological maturation, and, lastly, LINC complex alterations associated to male infertility.
Collapse
Affiliation(s)
- Francesco Manfrevola
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
| | - Florian Guillou
- PRC, CNRS, IFCE, INRAE, University of Tours, 37380 Nouzilly, France;
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
| | - Rosanna Chianese
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
- Correspondence:
| |
Collapse
|