1
|
Chen QH, Zhang Y, Gu X, Yang PL, Yuan J, Yu LN, Chen JM. Microvesicles derived from mesenchymal stem cells inhibit acute respiratory distress syndrome-related pulmonary fibrosis in mouse partly through hepatocyte growth factor. World J Stem Cells 2024; 16:811-823. [PMID: 39219725 PMCID: PMC11362855 DOI: 10.4252/wjsc.v16.i8.811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/04/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis is one of the main reasons for the high mortality rate among acute respiratory distress syndrome (ARDS) patients. Mesenchymal stromal cell-derived microvesicles (MSC-MVs) have been shown to exert antifibrotic effects in lung diseases. AIM To investigate the effects and mechanisms of MSC-MVs on pulmonary fibrosis in ARDS mouse models. METHODS MSC-MVs with low hepatocyte growth factor (HGF) expression (siHGF-MSC-MVs) were obtained via lentivirus transfection and used to establish the ARDS pulmonary fibrosis mouse model. Following intubation, respiratory mechanics-related indicators were measured via an experimental small animal lung function tester. Homing of MSC-MVs in lung tissues was investigated by near-infrared live imaging. Immunohistochemical, western blotting, ELISA and other methods were used to detect expression of pulmonary fibrosis-related proteins and to compare effects on pulmonary fibrosis and fibrosis-related indicators. RESULTS The MSC-MVs gradually migrated and homed to damaged lung tissues in the ARDS model mice. Treatment with MSC-MVs significantly reduced lung injury and pulmonary fibrosis scores. However, low expression of HGF (siHGF-MSC-MVs) significantly inhibited the effects of MSC-MVs (P < 0.05). Compared with the ARDS pulmonary fibrosis group, the MSC-MVs group exhibited suppressed expression of type I collagen antigen, type III collagen antigen, and the proteins transforming growth factor-β and α-smooth muscle actin, whereas the siHGF-MVs group exhibited significantly increased expression of these proteins. In addition, pulmonary compliance and the pressure of oxygen/oxygen inhalation ratio were significantly lower in the MSC-MVs group, and the effects of the MSC-MVs were significantly inhibited by low HGF expression (all P < 0.05). CONCLUSION MSC-MVs improved lung ventilation functions and inhibited pulmonary fibrosis in ARDS mice partly via HGF mRNA transfer.
Collapse
Affiliation(s)
- Qi-Hong Chen
- Department of Critical Care Medicine, Jiangdu People's Hospital of Yangzhou, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou 225200, Jiangsu Province, China
| | - Ying Zhang
- Department of Critical Care Medicine, Jiangdu People's Hospital of Yangzhou, Yangzhou 225200, Jiangsu Province, China
| | - Xue Gu
- Department of Critical Care Medicine, Jiangdu People's Hospital of Yangzhou, Yangzhou 225200, Jiangsu Province, China
| | - Peng-Lei Yang
- Department of Critical Care Medicine, Jiangdu People's Hospital of Yangzhou, Yangzhou 225200, Jiangsu Province, China
| | - Jun Yuan
- Department of Critical Care Medicine, Jiangdu People's Hospital of Yangzhou, Yangzhou 225200, Jiangsu Province, China
| | - Li-Na Yu
- Department of Critical Care Medicine, Jiangdu People's Hospital of Yangzhou, Yangzhou 225200, Jiangsu Province, China
| | - Jian-Mei Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, Jiangsu Province, China.
| |
Collapse
|
2
|
Szyposzynska A, Bielawska-Pohl A, Paprocka M, Bar J, Murawski M, Klimczak A. Comparative Analysis of Primary Ovarian Cancer Cells and Established Cell Lines as a New Tool for Studies on Ovarian Cancer Cell Complexity. Int J Mol Sci 2024; 25:5384. [PMID: 38791431 PMCID: PMC11121816 DOI: 10.3390/ijms25105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Primary cancer cells reflect the genetic background and phenotype of a tumor. Immortalized cells with higher proliferation activity have an advantage over primary cells. The aim of the study was to immortalize the primary ovarian cancer (OvCa) cells using the plasmid-carrying human telomerase reverse transcriptase (hTERT) gene and compare their phenotype and biological activity with the primary cells. The primary OvCa3 A and OvCa7 A cells were isolated from the ascitic fluid of two high-grade serous ovarian cancer patients and were characterized using immunocytochemical methods, flow cytometry, real-time RT-PCR, Western blot, metabolic activity, and migratory potential. Both immortalized ovarian cancer cell lines mirrored the phenotype of primary cancer cells, albeit with modifications. The OvCa3 A hTERT cells kept the mesenchymal stem cell phenotype of CD73/CD90/CD105-positivity and were CD133-negative, whereas the cell population of OvCa7 A hTERT lost CD73 expression, but almost 90% of cells expressed the CD133 characteristic for the CSCs phenotype. Immortalized OvCa cells differed in gene expression level with respect to Sox2 and Oct4, which was associated with stemness properties. The OvCa7 A hTERT cells showed higher metabolic and migratory activity and ALDH1 expression than the corresponding primary OvCa cells. Both primary and immortalized cell lines were able to form spheroids. The newly established unique immortalized cell line OvCa7 A hTERT, with the characteristic of a serous ovarian cancer malignancy feature, and with the accumulation of the p53, Pax8, and overexpression of the CD133 and CD44 molecules, may be a useful tool for research on therapeutic approaches, especially those targeting CSCs in ovarian cancer and in preclinical 2D and 3D models.
Collapse
Affiliation(s)
- Agnieszka Szyposzynska
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.S.); (A.B.-P.)
| | - Aleksandra Bielawska-Pohl
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.S.); (A.B.-P.)
| | - Maria Paprocka
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.S.); (A.B.-P.)
| | - Julia Bar
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Marek Murawski
- 1st Department of Gynecology and Obstetrics, Wroclaw Medical University, 50-599 Wroclaw, Poland;
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.S.); (A.B.-P.)
| |
Collapse
|
3
|
Primak A, Kalinina N, Skryabina M, Usachev V, Chechekhin V, Vigovskiy M, Chechekhina E, Voloshin N, Kulebyakin K, Kulebyakina M, Grigorieva O, Tyurin-Kuzmin P, Basalova N, Efimenko A, Dzhauari S, Antropova Y, Plyushchii I, Akopyan Z, Sysoeva V, Tkachuk V, Karagyaur M. Novel Immortalized Human Multipotent Mesenchymal Stromal Cell Line for Studying Hormonal Signaling. Int J Mol Sci 2024; 25:2421. [PMID: 38397098 PMCID: PMC10889231 DOI: 10.3390/ijms25042421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) integrate hormone and neuromediator signaling to coordinate tissue homeostasis, tissue renewal and regeneration. To facilitate the investigation of MSC biology, stable immortalized cell lines are created (e.g., commercially available ASC52telo). However, the ASC52telo cell line has an impaired adipogenic ability and a depressed response to hormones, including 5-HT, GABA, glutamate, noradrenaline, PTH and insulin compared to primary cells. This markedly reduces the potential of the ASC52telo cell line in studying the mechanisms of hormonal control of MSC's physiology. Here, we have established a novel immortalized culture of adipose tissue-derived MSCs via forced telomerase expression after lentiviral transduction. These immortalized cell cultures demonstrate high proliferative potential (up to 40 passages), delayed senescence, as well as preserved primary culture-like functional activity (sensitivity to hormones, ability to hormonal sensitization and differentiation) and immunophenotype up to 17-26 passages. Meanwhile, primary adipose tissue-derived MSCs usually irreversibly lose their properties by 8-10 passages. Observed characteristics of reported immortalized human MSC cultures make them a feasible model for studying molecular mechanisms, which regulate the functional activities of these cells, especially when primary cultures or commercially available cell lines are not appropriate.
Collapse
Affiliation(s)
- Alexandra Primak
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
| | - Natalia Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
| | - Mariya Skryabina
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
| | - Vladimir Usachev
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
| | - Vadim Chechekhin
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
| | - Maksim Vigovskiy
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
| | - Elizaveta Chechekhina
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
| | - Nikita Voloshin
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
| | - Konstantin Kulebyakin
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Maria Kulebyakina
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Olga Grigorieva
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Pyotr Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
| | - Nataliya Basalova
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anastasia Efimenko
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Stalik Dzhauari
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
| | - Yulia Antropova
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
| | - Ivan Plyushchii
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
| | - Zhanna Akopyan
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Veronika Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia (V.C.); (Z.A.)
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
4
|
Zhang Y, Zhao J, Han L, Zhang Z, Wang C, Long W, Meng K, Wang X. Research progress of extracellular vesicles in the treatment of ovarian diseases (Review). Exp Ther Med 2024; 27:15. [PMID: 38125352 PMCID: PMC10728905 DOI: 10.3892/etm.2023.12303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023] Open
Abstract
The ovary is an essential reproductive organ in the female organism and its development seriously affects the physical and mental health of female patients. Ovarian diseases include ovarian cancer, premature ovarian insufficiency (POI) and polycystic ovary syndrome (PCOS). Women should pay attention to the most effective treatments for this condition because it is one of the most prevalent gynecological illnesses at present. Extracellular vesicles (EVs), which are smaller vesicles that mediate the exchange of cellular information, include the three categories of exosomes, microvesicles and apoptotic bodies. They are able to transport proteins, RNA and other substances to adjacent or distal cells, thus allowing cellular and tissue homeostasis to be maintained. Numerous previous studies have revealed that EVs are crucial for the treatment of ovarian diseases. They are known to transport its contents to ovarian cancer cells as well as other ovarian cells such as granulosa cells, affecting the development of ovarian disease processes. Therefore, this extracellular vesicle may be involved as a target in the therapeutic process of ovarian disease and may have great potential in the treatment of ovarian disease. In the present review, the role of EVs in the development of three ovarian diseases, including ovarian cancer, POI and PCOS, was mainly summarizes. It is expected that this will provide some theoretical support for the treatment of ovarian disease.
Collapse
Affiliation(s)
- Yixin Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, P.R. China
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Jingyu Zhao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, P.R. China
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Linqi Han
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, P.R. China
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Zihan Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, P.R. China
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Caiqin Wang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, P.R. China
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Wei Long
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, P.R. China
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, P.R. China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
5
|
Jantalika T, Manochantr S, Kheolamai P, Tantikanlayaporn D, Thongsepee N, Warnnissorn N, Saijuntha W, Pinlaor S, Tantrawatpan C. The Human Placental Amniotic Membrane Mesenchymal-Stromal-Cell-Derived Conditioned Medium Inhibits Growth and Promotes Apoptosis of Human Cholangiocarcinoma Cells In Vitro and In Vivo by Suppressing IL-6/JAK2/STAT3 Signaling. Cells 2023; 12:2788. [PMID: 38132108 PMCID: PMC10742162 DOI: 10.3390/cells12242788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have recently been shown to play an important role in the growth and progression of many solid tumors, including cholangiocarcinoma (CCA). The human placental amniotic membrane (hPAM) is one of the most favorable sources of MSCs due to its availability and non-invasive harvesting procedure. However, the role of human placental amniotic membrane mesenchymal stromal cells (hPAMSCs) in the growth and progression of human CCA has not yet been determined. This study investigates the effects of conditioned medium derived from hPAMSCs (PA-CM) on the properties of three human CCA cell lines and explores possible mechanisms of action. Varying concentrations of PA-CM were used to treat CCA cells to determine their effects on the proliferation and apoptosis of CCA cells. The results showed that PA-CM inhibited the proliferation and colony-forming capacity of KKU100, KKU213A, and KKU213B cells. PA-CM also promoted the apoptosis of these CCA cells by causing the loss of mitochondrial membrane potential. Western Blotting confirmed that PA-CM induced CCA cell apoptosis by increasing the levels of the Bax/Bcl-2 ratio, cleaved caspase 3, and cleaved PARP, possibly by inhibiting the IL-6/JAK2/STAT3 signaling pathway. Moreover, our in vivo study also confirmed the suppressive effect of hPAMSCs on CCA cells by showing that PA-CM reduced tumor volume in nude mice transplanted with human CCA cells. Taken together, our results demonstrate that PA-CM has potent tumor-suppressive effects on human CCA cells and could potentially be used in combination with chemotherapy to develop a more effective treatment for CCA patients.
Collapse
Affiliation(s)
- Tanachapa Jantalika
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (T.J.); (S.M.); (P.K.); (D.T.)
- Center of Excellence in Stem Cell Research and Innovations, Thammasat University, Pathum Thani 12120, Thailand
| | - Sirikul Manochantr
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (T.J.); (S.M.); (P.K.); (D.T.)
- Center of Excellence in Stem Cell Research and Innovations, Thammasat University, Pathum Thani 12120, Thailand
| | - Pakpoom Kheolamai
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (T.J.); (S.M.); (P.K.); (D.T.)
- Center of Excellence in Stem Cell Research and Innovations, Thammasat University, Pathum Thani 12120, Thailand
| | - Duangrat Tantikanlayaporn
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (T.J.); (S.M.); (P.K.); (D.T.)
- Center of Excellence in Stem Cell Research and Innovations, Thammasat University, Pathum Thani 12120, Thailand
| | - Nattaya Thongsepee
- Division of Physiology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand;
- Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani 12120, Thailand
| | - Naree Warnnissorn
- Department of Pathology, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand;
| | - Weerachai Saijuntha
- Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand;
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Chairat Tantrawatpan
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (T.J.); (S.M.); (P.K.); (D.T.)
- Center of Excellence in Stem Cell Research and Innovations, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
6
|
Szyposzynska A, Bielawska-Pohl A, Murawski M, Sozanski R, Chodaczek G, Klimczak A. Mesenchymal Stem Cell Microvesicles from Adipose Tissue: Unraveling Their Impact on Primary Ovarian Cancer Cells and Their Therapeutic Opportunities. Int J Mol Sci 2023; 24:15862. [PMID: 37958844 PMCID: PMC10647545 DOI: 10.3390/ijms242115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) and their derivatives can be promising tools in oncology including ovarian cancer treatment. This study aimed to determine the effect of HATMSC2-MVs (microvesicles derived from human immortalized mesenchymal stem cells of adipose tissue origin) on the fate and behavior of primary ovarian cancer cells. Human primary ovarian cancer (OvCa) cells were isolated from two sources: post-operative tissue of ovarian cancer and ascitic fluid. The phenotype of cells was characterized using flow cytometry, real-time RT-PCR, and immunofluorescence staining. The effect of HATMSC2-MVs on the biological activity of primary cells was analyzed in 2D (proliferation, migration, and cell survival) and 3D (cell survival) models. We demonstrated that HATMSC2-MVs internalized into primary ovarian cancer cells decrease the metabolic activity and induce the cancer cell death and are leading to decreased migratory activity of tumor cells. The results suggests that the anti-cancer effect of HATMSC2-MVs, with high probability, is contributed by the delivery of molecules that induce cell cycle arrest and apoptosis (p21, tumor suppressor p53, executor caspase 3) and proapoptotic regulators (bad, BIM, Fas, FasL, p27, TRAIL-R1, TRAIL-R2), and their presence has been confirmed by apoptotic protein antibody array. In this study, we demonstrate the ability to inhibit primary OvCa cells growth and apoptosis induction after exposure of OvCa cells on HATMSC2-MVs treatment; however, further studies are needed to clarify their anticancer activities.
Collapse
Affiliation(s)
- Agnieszka Szyposzynska
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.S.); (A.B.-P.)
| | - Aleksandra Bielawska-Pohl
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.S.); (A.B.-P.)
| | - Marek Murawski
- 1st Department of Gynecology and Obstetrics, Wroclaw Medical University, 50-599 Wroclaw, Poland; (M.M.); (R.S.)
| | - Rafal Sozanski
- 1st Department of Gynecology and Obstetrics, Wroclaw Medical University, 50-599 Wroclaw, Poland; (M.M.); (R.S.)
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Łukasiewicz Research Network-PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland;
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.S.); (A.B.-P.)
| |
Collapse
|
7
|
Jahani S, Zare N, Mirzaei Y, Arefnezhad R, Zarei H, Goleij P, Bagheri N. Mesenchymal stem cells and ovarian cancer: Is there promising news? J Cell Biochem 2023; 124:1437-1448. [PMID: 37682985 DOI: 10.1002/jcb.30471] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Ovarian cancer (OC) is described as a heterogeneous complex condition with high mortality, weak prognosis, and late-stage presentation. OC has several subgroups based on different indices, like the origin and histopathology. The current treatments against OC include surgery followed by chemotherapy and radiotherapy; however, these methods have represented diverse side effects without enough effectiveness on OC. Recently, mesenchymal stem cell (MSC)-based therapy has acquired particular attention for treating diverse problems, such as cancer. These multipotent stem cells can be obtained from different sources, such as the umbilical cord, adipose tissues, bone marrow, and placenta, and their efficacy has been investigated against OC. Hence, in this narrative review, we aimed to review and discuss the present studies about the effects of various sources of MSCs on OC with a special focus on involved mechanisms.
Collapse
Affiliation(s)
| | - Nabi Zare
- Coenzyme R Research Institute, Tehran, Iran
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | | | - Hooman Zarei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran
- International Network of Stem Cell (INSC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
8
|
Khani-Eshratabadi M, Mousavi SH, Zarrabi M, Motallebzadeh Khanmiri J, Zeinali Bardar Z. Human Umbilical Cord Mesenchymal Stem Cell-Derived Microvesicles Could Induce Apoptosis and Autophagy in Acute Myeloid Leukemia. IRANIAN BIOMEDICAL JOURNAL 2023; 27:247-56. [PMID: 37873637 PMCID: PMC10707811 DOI: 10.61186/ibj.27.5.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 12/17/2023]
Abstract
Background Microvesicles (MV) have been identified as candidate biomarkers for treating acute myeloid leukemia (AML). This study investigated the effects of human umbilical cord-derived mesenchymal stem cell (hUCMSC)-derived MVs on apoptosis and autophagy in the KG-1 leukemic cell line. Methods The hUCMSCs were cultured and characterized by flow cytometry. MVs were isolated by ultracentrifugation, and the concentration was determined using the Bradford method. The characteristics of MVs were confirmed using transmission electron microscopy, flow cytometry, and dynamic light scattering methods. KG-1 cells were treated with the desired concentrations of MVs for 24 h. The apoptosis induction and reactive oxygen species production were evaluated using flow cytometry. RT-PCR was performed to evaluate apoptosis- and autophagy-related genes expression. Results Following tretment of KG-1 cells with 25, 50, and 100 μg/ml concentrations of MVs, the apoptosis rates were 47.85%, 47.15%, and 51.35% (p < 0.0001), and the autophagy-induced ROS levels were 73.9% (p < 0.0002), 84.8% (p < 0.0001), and 85.4% (p < 0.0001), respectively. BAX and ATG7 gene expression increased significantly at all concentrations compared to the control, and this level was higher at 50 μg/ml than that of the other concentrations. In addition, LC3 and Beclin 1 expression increased significantly in a concentration-dependen manner. Conversely, BCL2 expression decreased compared to the control. Conclusion Our findings indicate that hUCMSC-MVs could induce cell death pathways of autophagy and apoptosis in the KG-1 cell lines and exert potent antiproliferative and proapoptotic effects on KG-1 cells in vitro. Therefore, hUCMSC-MVs may be a potential approach for cancer therapy as a novel cell-to-cell communication strategy.
Collapse
Affiliation(s)
- Mohammad Khani-Eshratabadi
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Jamal Motallebzadeh Khanmiri
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zeinali Bardar
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Fridman ES, Ginini L, Gil Z. The Role of Extracellular Vesicles in Metabolic Reprogramming of the Tumor Microenvironment. Cells 2022; 11:cells11091433. [PMID: 35563739 PMCID: PMC9104192 DOI: 10.3390/cells11091433] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment (TME) includes a network of cancerous and non-cancerous cells, together with associated blood vessels, the extracellular matrix, and signaling molecules. The TME contributes to cancer progression during various phases of tumorigenesis, and interactions that take place within the TME have become targets of focus in cancer therapy development. Extracellular vesicles (EVs) are known to be conveyors of genetic material, proteins, and lipids within the TME. One of the hallmarks of cancer is its ability to reprogram metabolism to sustain cell growth and proliferation in a stringent environment. In this review, we provide an overview of TME EV involvement in the metabolic reprogramming of cancer and stromal cells, which favors cancer progression by enhancing angiogenesis, proliferation, metastasis, treatment resistance, and immunoevasion. Targeting the communication mechanisms and systems utilized by TME-EVs is opening a new frontier in cancer therapy.
Collapse
Affiliation(s)
- Eran S. Fridman
- Rappaport Family Institute for Research in the Medical Sciences, Technion—Israel Institute of Technology, Haifa 31096, Israel; (E.S.F.); (L.G.)
| | - Lana Ginini
- Rappaport Family Institute for Research in the Medical Sciences, Technion—Israel Institute of Technology, Haifa 31096, Israel; (E.S.F.); (L.G.)
| | - Ziv Gil
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel
- Correspondence: ; Tel.: +972-4-854-2480
| |
Collapse
|
10
|
Paprocka M, Kraskiewicz H, Bielawska-Pohl A, Krawczenko A, Masłowski L, Czyżewska-Buczyńska A, Witkiewicz W, Dus D, Czarnecka A. From Primary MSC Culture of Adipose Tissue to Immortalized Cell Line Producing Cytokines for Potential Use in Regenerative Medicine Therapy or Immunotherapy. Int J Mol Sci 2021; 22:ijms222111439. [PMID: 34768869 PMCID: PMC8584013 DOI: 10.3390/ijms222111439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022] Open
Abstract
For twenty-five years, attempts have been made to use MSCs in the treatment of various diseases due to their regenerative and immunomodulatory properties. However, the results are not satisfactory. Assuming that MSCs can be replaced in some therapies by the active factors they produce, the immortalized MSCs line was established from human adipose tissue (HATMSC1) to produce conditioned media and test its regenerative potential in vitro in terms of possible clinical application. The production of biologically active factors by primary MSCs was lower compared to the HATMSC1 cell line and several factors were produced only by the cell line. It has been shown that an HATMSC1-conditioned medium increases the proliferation of various cell types, augments the adhesion of cells and improves endothelial cell function. It was found that hypoxia during culture resulted in an augmentation in the pro-angiogenic factors production, such as VEGF, IL-8, Angiogenin and MCP-1. The immunomodulatory factors caused an increase in the production of GM-CSF, IL-5, IL-6, MCP-1, RANTES and IL-8. These data suggest that these factors, produced under different culture conditions, could be used for different medical conditions, such as in regenerative medicine, when an increased concentration of pro-angiogenic factors may be beneficial, or in inflammatory diseases with conditioned media with a high concentration of immunomodulatory factors.
Collapse
Affiliation(s)
- Maria Paprocka
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (H.K.); (A.B.-P.); (A.K.); (D.D.)
| | - Honorata Kraskiewicz
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (H.K.); (A.B.-P.); (A.K.); (D.D.)
| | - Aleksandra Bielawska-Pohl
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (H.K.); (A.B.-P.); (A.K.); (D.D.)
| | - Agnieszka Krawczenko
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (H.K.); (A.B.-P.); (A.K.); (D.D.)
| | - Leszek Masłowski
- Regional Specialist Hospital, Research and Development Centre, 51-154 Wroclaw, Poland; (L.M.); (A.C.-B.); (W.W.)
| | | | - Wojciech Witkiewicz
- Regional Specialist Hospital, Research and Development Centre, 51-154 Wroclaw, Poland; (L.M.); (A.C.-B.); (W.W.)
| | - Danuta Dus
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (H.K.); (A.B.-P.); (A.K.); (D.D.)
| | - Anna Czarnecka
- Regional Specialist Hospital, Research and Development Centre, 51-154 Wroclaw, Poland; (L.M.); (A.C.-B.); (W.W.)
- Faculty of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
11
|
Extracellular Vesicles: Biology and Potentials in Cancer Therapeutics. Int J Mol Sci 2021; 22:ijms22179586. [PMID: 34502493 PMCID: PMC8430677 DOI: 10.3390/ijms22179586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 01/01/2023] Open
Abstract
Background [...].
Collapse
|
12
|
Storti G, Scioli MG, Kim BS, Terriaca S, Fiorelli E, Orlandi A, Cervelli V. Mesenchymal Stem Cells in Adipose Tissue and Extracellular Vesicles in Ovarian Cancer Patients: A Bridge toward Metastatic Diffusion or a New Therapeutic Opportunity? Cells 2021; 10:cells10082117. [PMID: 34440886 PMCID: PMC8392703 DOI: 10.3390/cells10082117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is one of the deadliest malignancies among women. Approximately 75% of the patients with ovarian cancer are diagnosed with advanced disease that already has metastasis, particularly to the omentum. The omentum constitutes the ideal soil for ovarian cancer metastasis due to a complex intraperitoneal milieu that favors and supports the whole metastatic process. Adipose-derived stem/stromal cells (ADSCs) are part of this microenvironment and foster tumor progression via sustained paracrine secretion, including extracellular vesicles (EVs). Nonetheless, the preferential relationship between ADSCs, ADSC-derived EVs, and ovarian cancer cells could be exploited to use ADSCs and EVs as a vehicle for anti-cancer therapies. This review will analyze the strict relations between tumor progression, metastatic disease, and adipose tissue with its staminal components. In addition, we will describe the crosstalk and biologic relationship between ADSCs and tumor cells, the role of EVs in intercellular communication, the establishment of drug resistance, metastatic capacity, and ovarian cancer progression. We will analyze the new therapeutic opportunities in treating ovarian cancer offered by ADSCs and EVs as a vehicle for therapeutic molecules to target precisely tumor cells and limit the systemic adverse effects. Finally, we will discuss the limitations of these therapeutic approaches.
Collapse
Affiliation(s)
- Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy;
- Correspondence: ; Tel.: +39-06-23188514; Fax: +39-06-23188466
| | - Maria Giovanna Scioli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Sonia Terriaca
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Elena Fiorelli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy;
| |
Collapse
|