1
|
Ding C, Wu Y, Zhan C, Naseem A, Chen L, Li H, Yang B, Liu Y. Research progress on the role and inhibitors of Keap1 signaling pathway in inflammation. Int Immunopharmacol 2024; 141:112853. [PMID: 39159555 DOI: 10.1016/j.intimp.2024.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Inflammation is a protective mechanism against endogenous and exogenous pathogens. It is a typical feature of numerous chronic diseases and their complications. Keap1 is an essential target in oxidative stress and inflammatory diseases. Among them, the Keap1-Nrf2-ARE pathway (including Keap1-Nrf2-HO-1) is the most significant pathway of Keap1 targets, which participates in the control of inflammation in multiple organs (including renal inflammation, lung inflammation, liver inflammation, neuroinflammation, etc.). Identifying new Keap1 inhibitors is crucial for new drug discovery. However, most drugs have specificity issues as they covalently bind to cysteine residues of Keap1, causing off-target effects. Therefore, direct inhibition of Keap1-Nrf2 PPIs is a new research idea. Through non-electrophilic and non-covalent binding, its inhibitors have better specificity and ability to activate Nrf2, and targeting therapy against Keap1-Nrf2 PPIs has become a new method for drug development in chronic diseases. This review summarizes the members and downstream genes of the Keap1-related pathway and their roles in inflammatory disease models. In addition, we summarize all the research progress of anti-inflammatory drugs targeting Keap1 from 2010 to 2024, mainly describing their biological functions, molecular mechanisms of action, and therapeutic roles in inflammatory diseases.
Collapse
Affiliation(s)
- Chao Ding
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Ying Wu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Chaochao Zhan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
2
|
Pang X, Liu X. Immune Dysregulation in Chronic Obstructive Pulmonary Disease. Immunol Invest 2024; 53:652-694. [PMID: 38573590 DOI: 10.1080/08820139.2024.2334296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease whose incidence increase with age and is characterised by chronic inflammation and significant immune dysregulation. Inhalation of toxic substances cause oxidative stress in the lung tissue as well as airway inflammation, under the recruitment of chemokines, immune cells gathered and are activated to play a defensive role. However, persistent inflammation damages the immune system and leads to immune dysregulation, which is mainly manifested in the reduction of the body's immune response to antigens, and immune cells function are impaired, further destroy the respiratory defensive system, leading to recurrent lower respiratory infections and progressive exacerbation of the disease, thus immune dysregulation play an important role in the pathogenesis of COPD. This review summarizes the changes of innate and adaptive immune-related cells during the pathogenesis of COPD, aiming to control COPD airway inflammation and improve lung tissue remodelling by regulating immune dysregulation, for further reducing the risk of COPD progression and opening new avenues of therapeutic intervention in COPD.
Collapse
Affiliation(s)
- Xichen Pang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoju Liu
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Singh N, Nagar E, Gautam A, Kapoor H, Arora N. Resveratrol mitigates miR-212-3p mediated progression of diesel exhaust-induced pulmonary fibrosis by regulating SIRT1/FoxO3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166063. [PMID: 37544448 DOI: 10.1016/j.scitotenv.2023.166063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Diesel exhaust (DE) exposure contributes to the progression of chronic respiratory diseases and is associated with dysregulation of microRNA expression. The present study aims to investigate the involvement of miRNAs and target genes in DE-induced lung fibrosis. METHODS C57BL/6 mice were divided into three groups. Group 1 mice were exposed to filtered air (Control). Group 2 mice were exposed to DE for 30 min per day, 5 days per week, for 8 weeks (DE). Group 3 mice received DE exposure along with resveratrol on alternate days for the last 2 weeks (DE + RES). Mice were sacrificed to isolate RNA from lung tissue for miRNA microarray profiling. Bronchoalveolar lavage fluid and lung tissues were collected for cell count and biochemical analysis. RESULTS DE exposure resulted in differential expression of 28 miRNAs with fold change >2 (p < 0.05). The upregulated miR-212-3p was selected for further analysis. Consensus analysis revealed enrichment of SIRT1 in the FoxO pathway, along with a co-annotation of reduced body weight (p < 0.05). A549 cells transfected with a miR-212-3p inhibitor showed a dose-dependent increase in SIRT1 expression, indicating SIRT1 as a direct target. Treatment with resveratrol restored SIRT1 and miR-212-3p expression and led to a reduction in inflammatory cytokines (p < 0.05). The modulation of SIRT1 correlated negatively with macrophage infiltration, confirming its role in regulating cellular infiltration and lung inflammation. Fibronectin, alpha-SMA, and collagen levels were significantly decreased in DE + RES compared to DE group suggesting modulation of cellular functions and resolution of lung fibrosis. Furthermore, a significant decrease in FoxO3a and TGF-β gene expressions was observed upon resveratrol administration thereby downregulating pro-fibrotic pathway. CONCLUSIONS The present study demonstrates resveratrol treatment stabilizes SIRT1 gene expression by attenuating miR-212-3p in DE-exposed mice, leading to downregulation of TGF-β and FoxO3a expressions. The study highlights the therapeutic role of resveratrol in the treatment of DE-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Naresh Singh
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ekta Nagar
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anshu Gautam
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himanshi Kapoor
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Naveen Arora
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Bresciani G, Manai F, Davinelli S, Tucci P, Saso L, Amadio M. Novel potential pharmacological applications of dimethyl fumarate-an overview and update. Front Pharmacol 2023; 14:1264842. [PMID: 37745068 PMCID: PMC10512734 DOI: 10.3389/fphar.2023.1264842] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Dimethyl fumarate (DMF) is an FDA-approved drug for the treatment of psoriasis and multiple sclerosis. DMF is known to stabilize the transcription factor Nrf2, which in turn induces the expression of antioxidant response element genes. It has also been shown that DMF influences autophagy and participates in the transcriptional control of inflammatory factors by inhibiting NF-κB and its downstream targets. DMF is receiving increasing attention for its potential to be repurposed for several diseases. This versatile molecule is indeed able to exert beneficial effects on different medical conditions through a pleiotropic mechanism, in virtue of its antioxidant, immunomodulatory, neuroprotective, anti-inflammatory, and anti-proliferative effects. A growing number of preclinical and clinical studies show that DMF may have important therapeutic implications for chronic diseases, such as cardiovascular and respiratory pathologies, cancer, eye disorders, neurodegenerative conditions, and systemic or organ specific inflammatory and immune-mediated diseases. This comprehensive review summarizes and highlights the plethora of DMF's beneficial effects and underlines its repurposing opportunities in a variety of clinical conditions.
Collapse
Affiliation(s)
- Giorgia Bresciani
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Federico Manai
- Department of Biology and Biotechnology L. Spallanzani, University of Pavia, Pavia, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University, Rome, Italy
| | - Marialaura Amadio
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Rajasegaran T, How CW, Saud A, Ali A, Lim JCW. Targeting Inflammation in Non-Small Cell Lung Cancer through Drug Repurposing. Pharmaceuticals (Basel) 2023; 16:ph16030451. [PMID: 36986550 PMCID: PMC10051080 DOI: 10.3390/ph16030451] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths. Lung cancers can be classified as small-cell (SCLC) or non-small cell (NSCLC). About 84% of all lung cancers are NSCLC and about 16% are SCLC. For the past few years, there have been a lot of new advances in the management of NSCLC in terms of screening, diagnosis and treatment. Unfortunately, most of the NSCLCs are resistant to current treatments and eventually progress to advanced stages. In this perspective, we discuss some of the drugs that can be repurposed to specifically target the inflammatory pathway of NSCLC utilizing its well-defined inflammatory tumor microenvironment. Continuous inflammatory conditions are responsible to induce DNA damage and enhance cell division rate in lung tissues. There are existing anti-inflammatory drugs which were found suitable for repurposing in non-small cell lung carcinoma (NSCLC) treatment and drug modification for delivery via inhalation. Repurposing anti-inflammatory drugs and their delivery through the airway is a promising strategy to treat NSCLC. In this review, suitable drug candidates that can be repurposed to treat inflammation-mediated NSCLC will be comprehensively discussed together with their administration via inhalation from physico-chemical and nanocarrier perspectives.
Collapse
Affiliation(s)
- Thiviyadarshini Rajasegaran
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Anoosha Saud
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Azhar Ali
- Cancer Science Institute Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Jonathan Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
6
|
Albano GD, Gagliardo RP, Montalbano AM, Profita M. Overview of the Mechanisms of Oxidative Stress: Impact in Inflammation of the Airway Diseases. Antioxidants (Basel) 2022; 11:2237. [PMID: 36421423 PMCID: PMC9687037 DOI: 10.3390/antiox11112237] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/01/2023] Open
Abstract
Inflammation of the human lung is mediated in response to different stimuli (e.g., physical, radioactive, infective, pro-allergenic or toxic) such as cigarette smoke and environmental pollutants. They often promote an increase in inflammatory activities in the airways that manifest themselves as chronic diseases (e.g., allergic airway diseases, asthma, chronic bronchitis/chronic obstructive pulmonary disease (COPD) or even lung cancer). Increased levels of oxidative stress (OS) reduce the antioxidant defenses, affect the autophagy/mitophagy processes, and the regulatory mechanisms of cell survival, promoting inflammation in the lung. In fact, OS potentiate the inflammatory activities in the lung, favoring the progression of chronic airway diseases. OS increases the production of reactive oxygen species (ROS), including superoxide anions (O2-), hydroxyl radicals (OH) and hydrogen peroxide (H2O2), by the transformation of oxygen through enzymatic and non-enzymatic reactions. In this manner, OS reduces endogenous antioxidant defenses in both nucleated and non-nucleated cells. The production of ROS in the lung can derive from both exogenous insults (cigarette smoke or environmental pollution) and endogenous sources such as cell injury and/or activated inflammatory and structural cells. In this review, we describe the most relevant knowledge concerning the functional interrelation between the mechanisms of OS and inflammation in airway diseases.
Collapse
|
7
|
Wu X, Ciminieri C, Bos IST, Woest ME, D'Ambrosi A, Wardenaar R, Spierings DCJ, Königshoff M, Schmidt M, Kistemaker LEM, Gosens R. Diesel exhaust particles distort lung epithelial progenitors and their fibroblast niche. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119292. [PMID: 35439594 PMCID: PMC11251497 DOI: 10.1016/j.envpol.2022.119292] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by inflammation and impaired tissue regeneration, and is reported as the fourth leading cause of death worldwide by the Centers for Disease Control and Prevention (CDC). Environmental pollution and specifically motor vehicle emissions are known to play a role in the pathogenesis of COPD, but little is still known about the molecular mechanisms that are altered following diesel exhaust particles (DEP) exposure. Here we used lung organoids derived from co-culture of alveolar epithelial progenitors and fibroblasts to investigate the effect of DEP on the epithelial-mesenchymal signaling niche in the distal lung, which is essential for tissue repair. We found that DEP treatment impaired the number as well as the average diameter of both airway and alveolar type of lung organoids. Bulk RNA-sequencing of re-sorted epithelial cells and fibroblasts following organoid co-culture shows that the Nrf2 pathway, which regulates antioxidants' activity, was upregulated in both cell populations in response to DEP; and WNT/β-catenin signaling, which is essential to promote epithelial repair, was downregulated in DEP-exposed epithelial cells. We show that pharmacological treatment with anti-oxidant agents such as N-acetyl cysteine (NAC) or Mitoquinone mesylate (MitoQ) reversed the effect of DEP on organoids growth. Additionally, a WNT/β-catenin activator (CHIR99021) successfully restored WNT signaling and promoted organoid growth upon DEP exposure. We propose that targeting oxidative stress and specific signaling pathways affected by DEP in the distal lung may represent a strategy to restore tissue repair in COPD.
Collapse
Affiliation(s)
- Xinhui Wu
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chiara Ciminieri
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - I Sophie T Bos
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Manon E Woest
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Aquilo BV, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands
| | - Angela D'Ambrosi
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - René Wardenaar
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713AV, Groningen, the Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713AV, Groningen, the Netherlands
| | - Melanie Königshoff
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Martina Schmidt
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Aquilo BV, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Aquilo BV, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands.
| |
Collapse
|
8
|
Particulate matter in COPD pathogenesis: an overview. Inflamm Res 2022; 71:797-815. [PMID: 35710643 DOI: 10.1007/s00011-022-01594-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disorder with substantial patient burden and leading cause of death globally. Cigarette smoke remains to be the most recognised causative factor behind COPD pathogenesis. Given the alarming increase in prevalence of COPD amongst non-smokers in recent past, a potential role of air pollution particularly particulate matter (PM) in COPD development has gained much attention of the scientists. Indeed, several epidemiological studies indicate strong correlation between airborne PM and COPD incidence/exacerbations. PM-induced oxidative stress seems to be the major player in orchestrating COPD inflammatory cycle but the exact molecular mechanism(s) behind such a process are still poorly understood. This may be due to the complexity of multiple molecular pathways involved. Oxidative stress-linked mitochondrial dysfunction and autophagy have also gained importance and have been the focus of recent studies regarding COPD pathogenesis. Accordingly, the present review is aimed at understanding the key molecular players behind PM-mediated COPD pathogenesis through analysis of various experimental studies supported by epidemiological data to identify relevant preventive/therapeutic targets in the area.
Collapse
|
9
|
Hu X, Li C, Wang Q, Wei Z, Chen T, Wang Y, Li Y. Dimethyl Fumarate Ameliorates Doxorubicin-Induced Cardiotoxicity By Activating the Nrf2 Pathway. Front Pharmacol 2022; 13:872057. [PMID: 35559248 PMCID: PMC9089305 DOI: 10.3389/fphar.2022.872057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/21/2022] [Indexed: 01/01/2023] Open
Abstract
Doxorubicin (DOX) is limited in clinical application because of its cardiotoxicity. Oxidative stress and apoptosis are crucial in DOX-induced cardiac injury. Dimethyl fumarate (DMF) is an FDA-approved oral drug with powerful effects to reduce oxidative stress and apoptosis through the Nrf2 pathway. This study was aimed to determine whether DMF can protect against DOX-induced cardiac injury. We used both neonatal rat cardiomyocytes (NRCMs) in vitro and DOX-induced cardiac toxicity in vivo to explore the effects of DMF. The results showed that DMF significantly improved cell viability and morphology in NRCMs. In addition, DMF alleviated DOX-induced cardiac injury in rats, as evidenced by decreased CK-MB, LDH levels, improved survival rates, cardiac function, and pathological changes. Moreover, DMF significantly inhibited cardiac oxidative stress by reducing MDA levels and increasing GSH, SOD, and GSH-px levels. And DMF also inhibited DOX-induced cardiac apoptosis by modulating Bax, Bcl-2 and cleaved caspase-3 expression. Moreover, DMF exerted its protective effects against DOX by promoting Nrf2 nuclear translocation, which activated its downstream antioxidant gene Hmox1. Silencing of Nrf2 attenuated the protective effects of DMF in NRCMs as manifested by increased intracellular oxidative stress, elevated apoptosis levels, and decreased cell viability. In addition, DMF showed no protective effects on the viability of DOX-treated tumor cells, which suggested that DMF does not interfere with the antitumor effect of DOX in vitro. In conclusion, our data confirmed that DMF alleviated DOX-induced cardiotoxicity by regulating oxidative stress and apoptosis through the Nrf2 pathway. DMF may serve as a new candidate to alleviate DOX-related cardiotoxicity in the future.
Collapse
Affiliation(s)
- Xiaoliang Hu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixing Wei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taizhong Chen
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuepeng Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yigang Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
OUP accepted manuscript. Toxicol Res (Camb) 2022; 11:437-450. [PMID: 35782648 PMCID: PMC9244226 DOI: 10.1093/toxres/tfac020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/12/2022] Open
Abstract
Background Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are clinically severe respiratory disorders, and there are currently no Food and Drug Administration-approved drug therapies. It is of great interest to us that dimethyl fumarate (DMF) has been shown to have anti-inflammatory effects. The aim of this study was to investigate whether DMF could alleviate lipopolysaccharide(LPS)-induced ALI, and to explore its mechanism of action. Materials and methods We established a mice model of ALI with intratracheal instillation of LPS and intraperitoneal injection of DMF to treat ALI. The pathological damage and inflammatory response of lung tissues were observed by hematoxylin and eosin (H&E) staining, ELISA assay and western blot. ATP plus LPS was used for the establishment of ALI in vitro model, the therapeutic effects of DMF was explored by ELISA assay, RT-qPCR, western blot, and flow cytometry, and the therapeutic mechanisms of DMF was explored by administration of Brusatol (BT), a nuclear factor erythroid-2-related factor 2 (Nrf2) inhibitor. Results We found that intraperitoneal injection of DMF significantly reduced LPS-induced the pulmonary injury, pulmonary edema, and infiltration of inflammatory mediators. In LPS-induced ALI, NLRP3 inflammasome-mediated pyroptosis was markedly activated, followed by cleavage of caspase-1 and GSDMD. DMF inhibited the activation of the NLRP3 inflammasome and pyroptosis in both lung of ALI mice and ATP plus LPS-induced BEAS-2B cells. Mechanistically, DMF enhanced expressions of Nrf2, leading to inactivation of NLRP3 inflammasome and reduced pyroptosis in vivo and in vitro. Conversely, BT reduced the inhibitory effects of DMF on NLRP3 inflammasome and pyroptosis, and consequently blocked the improvement roles of DMF on ALI. Conclusions DMF could improve LPS-induced ALI via inhibiting NLRP3 inflammasome and pyroptosis, and that these effects were mediated by triggering Nrf2 expression, suggesting a therapeutic potential of DMF as an anti-inflammatory agent for ALI/ARDS treatment.
Collapse
|
11
|
Wang X, Wang Y, Pan H, Yan C. Dimethyl fumarate prevents acute lung injury related cognitive impairment potentially via reducing inflammation. J Cardiothorac Surg 2021; 16:331. [PMID: 34772431 PMCID: PMC8588675 DOI: 10.1186/s13019-021-01705-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Dimethyl fumarate (DMF) has been reported to exert a protective role against diverse lung diseases and cognitive impairment-related diseases. Thus this study aimed to investigate its role on acute lung injury (ALI) and related cognitive impairment in animal model. METHODS C57BL/6 mice were divided into four groups: control group, DMF group, ALI group, and ALI + DMF group. For ALI group, the ALI mice model was created by airway injection of LPS (50 μL, 1 μg/μL); for ALI + DMF group, DMF (dissolved in 0.08% methylcellulose) was treated twice a day for 2 days, and on the third day, mice were injected with LPS for ALI modeling. Mice pre-administered with methylcellulose or DMF without LPS injection (PBS instead) were used as the control group and DMF group, respectively. Morris water maze test was performed before any treatment (0 h) and 6 h after LPS-induction (54 h) to evaluate the cognitive impairment of mice. Next, the brain edema and blood brain barrier (BBB) permeability of ALI mice were assessed by brain water content, Evans blue extravasation and FITC-Dextran uptake assays. In addition, the effect of DMF on the numbers of total cells and neutrophils, protein content in BALF were quantified; the inflammatory factors in BALF, serum, and brain tissues were examined by ELISA, qRT-PCR, and Western blot assays. The effect of DMF on the cognitive impairment-related factor HIF-1α level in lung and brain tissues was also examined by Western blot. RESULTS DMF reduced the numbers of total cells, neutrophils and protein content in BALF of ALI mice, inhibited the levels of IL-6, TNF-α and IL-1β in BALF, serum and brain tissues of ALI mice. The protein expressions of p-NF-κB/NF-κB and p-IKBα/IKBα was also suppressed by DMF in ALI mice. Morris water maze test showed that DMF alleviated the cognitive impairment in ALI mice by reducing the escape latency and path length. Moreover, DMF lessened the BBB permeability by decreasing cerebral water content, Evans blue extravasation and FITC-Dextran uptake in ALI mice. The HIF-1α levels in lung and brain tissues of ALI mice were also lessened by DMF. CONCLUSION In conclusion, DME had the ability to alleviate the lung injury and cerebral cognitive impairment in ALI model mice. This protective effect partly associated with the suppression of inflammation by DMF.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Respiratory, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou City, 310000, Zhejiang Province, China
| | - Yanbo Wang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou City, 310000, Zhejiang Province, China
| | - Haiyan Pan
- Department of Endocrinology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, 310000, China
| | - Ci Yan
- Departments of Psychiatry, Affiliated Mental Health Center, Zhejiang University School of Medicine, No. 305 Tianmu Shan Road, Hangzhou City, 310000, Zhejiang Province, China.
| |
Collapse
|
12
|
Michaeloudes C, Abubakar-Waziri H, Lakhdar R, Raby K, Dixey P, Adcock IM, Mumby S, Bhavsar PK, Chung KF. Molecular mechanisms of oxidative stress in asthma. Mol Aspects Med 2021; 85:101026. [PMID: 34625291 DOI: 10.1016/j.mam.2021.101026] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
The lungs are exposed to reactive oxygen species oxygen (ROS) produced as a result of inhalation of oxygen, as well as smoke and other air pollutants. Cell metabolism and the NADPH oxidases (Nox) generate low levels of intracellular ROS that act as signal transduction mediators by inducing oxidative modifications of histones, enzymes and transcription factors. Redox signalling is also regulated by localised production and sensing of ROS in mitochondria, the endoplasmic reticulum (ER) and inside the nucleus. Intracellular ROS are maintained at low levels through the action of a battery of enzymatic and non-enzymatic antioxidants. Asthma is a heterogeneous airway inflammatory disease with different immune endotypes; these include atopic or non-atopic Th2 type immune response associated with eosinophilia, or a non-Th2 response associated with neutrophilia. Airway remodelling and hyperresponsiveness accompany the inflammatory response in asthma. Over-production of ROS resulting from infiltrating immune cells, particularly eosinophils and neutrophils, and a concomitant impairment of antioxidant responses lead to development of oxidative stress in asthma. Oxidative stress is augmented in severe asthma and during exacerbations, as well as by air pollution and obesity, and causes oxidative damage of tissues promoting airway inflammation and hyperresponsiveness. Furthermore, deregulated Nox activity, mitochondrial dysfunction, ER stress and/or oxidative DNA damage, resulting from exposure to irritants, inflammatory mediators or obesity, may lead to redox-dependent changes in cell signalling. ROS play a central role in airway epithelium-mediated sensing, development of innate and adaptive immune responses, and airway remodelling and hyperresponsiveness. Nonetheless, antioxidant compounds have proven clinically ineffective as therapeutic agents for asthma, partly due to issues with stability and in vivo metabolism of these compounds. The compartmentalised nature of ROS production and sensing, and the role of ROS in homeostatic responses and in the action of corticosteroids and β2-adrenergic receptor agonists, adds another layer of complexity to antioxidant therapy development. Nox inhibitors and mitochondrial-targeted antioxidants are in clinical development for a number of diseases but they have not yet been investigated in asthma. A better understanding of the complex role of ROS in the pathogenesis of asthma will highlight new opportunities for more targeted and effective redox therapies.
Collapse
Affiliation(s)
- Charalambos Michaeloudes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom.
| | - Hisham Abubakar-Waziri
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Ramzi Lakhdar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Katie Raby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Piers Dixey
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Pankaj K Bhavsar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom; Royal Brompton & Harefield NHS Trust, London, UK
| |
Collapse
|
13
|
Abstract
Since the industrial revolution, air pollution has become a major problem causing several health problems involving the airways as well as the cardiovascular, reproductive, or neurological system. According to the WHO, about 3.6 million deaths every year are related to inhalation of polluted air, specifically due to pulmonary diseases. Polluted air first encounters the airways, which are a major human defense mechanism to reduce the risk of this aggressor. Air pollution consists of a mixture of potentially harmful compounds such as particulate matter, ozone, carbon monoxide, volatile organic compounds, and heavy metals, each having its own effects on the human body. In the last decades, a lot of research investigating the underlying risks and effects of air pollution and/or its specific compounds on the airways, has been performed, involving both in vivo and in vitro experiments. The goal of this review is to give an overview of the recent data on the effects of air pollution on healthy and diseased airways or models of airway disease, such as asthma or chronic obstructive pulmonary disease. Therefore, we focused on studies involving pollution and airway symptoms and/or damage both in mice and humans.
Collapse
|
14
|
Yan N, Xu Z, Qu C, Zhang J. Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway. Int Immunopharmacol 2021; 98:107844. [PMID: 34153667 DOI: 10.1016/j.intimp.2021.107844] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Cerebrovascular disease and its risk factors cause persistent decrease of cerebral blood flow, chronic cerebral hypoperfusion (CCH) is the major foundation of vascular cognitive impairment (VCI). The hippocampus is extremely vulnerable to cerebral ischemia and hypoxia. Oxidative stress and neuroinflammation injury are important pathophysiological mechanisms of this process, which is closely related to hippocampal neurons damage and loss. Dimethyl fumarate (DMF), an FDA-approved therapeutic for multiple sclerosis (MS), plays a protective role in multiple neurological disorders. Studies have shown that DMF exerts anti-inflammatory and antioxidant effects via the NRF2/ARE/NF-κB signaling pathway. Thus, this study aimed to evaluate the neuroprotective effect of DMF in the CCH rat model. Ferroptosis, a novel defined iron-dependent cell death form, were found to be strongly associated with the pathophysiology of CCH. Emerging evidences have shown that inhibition of ferroptosis by targeting NRF2 exerted neuroprotective effect in neurodegeneration diseases. We also investigated whether DMF can alleviate cognitive deficits through inhibition of ferroptosis by the NRF2 signaling pathway in this study. DMF was intragastric for consecutive five weeks (100 mg/kg/day). Then behavior test and histological, molecular, and biochemical analysis were performed. We found that DMF treatment significantly improved cognitive deficits and partially reversed hippocampus neuronal damage and loss caused by CCH. And DMF treatment decreased hippocampus IL-1β, TNF-α, and IL-6 pro-inflammatory cytokines concentration, and mediated the NF-κB signaling pathway. And DMF also alleviated hippocampus oxidative stress through reducing MDA, and increasing GSH and SOD levels, which are also closely associated with ferroptosis. Besides, DMF treatment reduced the expression of PTGS2, and increased the expression of FTH1 and xCT, and the iron content is also reduced, which were the important features related to ferroptosis. Furthermore, DMF activated the NRF2/ARE signaling pathway and upregulated the expression of HO-1, NQO1 and GPX4. These outcomes indicated that DMF can improve cognitive impairment in rats with CCH, possibly through alleviating neuroinflammation, oxidative stress damage and inhibiting ferroptosis of hippocampal neurons. Overall, our results provide new evidence for the neuroprotective role of DMF.
Collapse
Affiliation(s)
- Nao Yan
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Zhipeng Xu
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Changhua Qu
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - JunJian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China.
| |
Collapse
|