1
|
Fernández-Ramos D, Lopitz-Otsoa F, Lu SC, Mato JM. S-Adenosylmethionine: A Multifaceted Regulator in Cancer Pathogenesis and Therapy. Cancers (Basel) 2025; 17:535. [PMID: 39941901 PMCID: PMC11816870 DOI: 10.3390/cancers17030535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
S-adenosylmethionine (SAMe) is a key methyl donor that plays a critical role in a variety of cellular processes, such as DNA, RNA and protein methylation, essential for maintaining genomic stability, regulating gene expression and maintaining cellular homeostasis. The involvement of SAMe in cancer pathogenesis is multifaceted, as through its multiple cellular functions, it can influence tumor initiation, progression and therapeutic resistance. In addition, the connection of SAMe with polyamine synthesis and oxidative stress management further underscores its importance in cancer biology. Recent studies have highlighted the potential of SAMe as a biomarker for cancer diagnosis and prognosis. Furthermore, the therapeutic implications of SAMe are promising, with evidence suggesting that SAMe supplementation or modulation could improve the efficacy of existing cancer treatments by restoring proper methylation patterns and mitigating oxidative damage and protect against damage induced by chemotherapeutic drugs. Moreover, targeting methionine cycle enzymes to both regulate SAMe availability and SAMe-independent regulatory effects, particularly in methionine-dependent cancers such as colorectal and lung cancer, presents a promising therapeutic approach. Additionally, exploring epitranscriptomic regulations, such as m6A modifications, and their interaction with non-coding RNAs could enhance our understanding of tumor progression and resistance mechanisms. Precision medicine approaches integrating patient subtyping and combination therapies with chemotherapeutics, such as decitabine or doxorubicin, together with SAMe, can enhance chemosensitivity and modulate epigenomics, showing promising results that may improve treatment outcomes. This review comprehensively examines the various roles of SAMe in cancer pathogenesis, its potential as a diagnostic and prognostic marker, and its emerging therapeutic applications. While SAMe modulation holds significant promise, challenges such as bioavailability, patient stratification and context-dependent effects must be addressed before clinical implementation. In addition, better validation of the obtained results into specific cancer animal models would also help to bridge the gap between research and clinical practice.
Collapse
Affiliation(s)
- David Fernández-Ramos
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - José M. Mato
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
| |
Collapse
|
2
|
Kim J, Gunathilake M, Yeo HY, Oh JH, Kim BC, Han N, Kim B, Pyun H, Lim MY, Nam YD, Chang HJ. Fecal Microbial Dysbiosis Is Associated with Colorectal Cancer Risk in a Korean Population. Cancer Res Treat 2025; 57:198-211. [PMID: 39054623 PMCID: PMC11729318 DOI: 10.4143/crt.2024.382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024] Open
Abstract
PURPOSE The association between the fecal microbiota and colorectal cancer (CRC) risk has been suggested in epidemiologic studies. However, data from large-scale population-based studies are lacking. MATERIALS AND METHODS In this case-control study, we recruited 283 CRC patients from the Center for Colorectal Cancer, National Cancer Center Hospital, Korea to perform 16S rRNA gene sequencing of fecal samples. A total of 283 age- and sex-matched healthy participants were selected from 890 cohort of healthy Koreans that are publicly available (PRJEB33905). The microbial dysbiosis index (MDI) was calculated based on the differentially abundant species. The association between MDI and CRC risk was observed using conditional logistic regression. Sparse Canonical Correlation Analysis was performed to integrate species data with microbial pathways obtained by PICRUSt2. RESULTS There is a significant divergence of the microbial composition between CRC patients and controls (permutational multivariate analysis of variance p=0.001). Those who were in third tertile of the MDI showed a significantly increased risk of CRC in the total population (odds ratio [OR], 6.93; 95% confidence interval [CI], 3.98 to 12.06; p-trend < 0.001) compared to those in the lowest tertile. Similar results were found for men (OR, 6.28; 95% CI, 3.04 to 12.98; p-trend < 0.001) and women (OR, 7.39; 95% CI, 3.10 to 17.63; p-trend < 0.001). Bacteroides coprocola and Bacteroides plebeius species and 12 metabolic pathways were interrelated in healthy controls that explain 91% covariation across samples. CONCLUSION Dysbiosis in the fecal microbiota may be associated with an increased risk of CRC. Due to the potentially modifiable nature of the gut microbiota, our findings may have implications for CRC prevention among Koreans.
Collapse
Affiliation(s)
- Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Madhawa Gunathilake
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hyun Yang Yeo
- Department of Cancer Diagnostics, Research Institute, National Cancer Center, Goyang, Korea
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang, Korea
| | - Byung Chang Kim
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang, Korea
| | - Nayoung Han
- Department of Pathology, National Cancer Center Hospital, National Cancer Center, Goyang, Korea
| | - Bun Kim
- Department of Cancer Diagnostics, Research Institute, National Cancer Center, Goyang, Korea
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang, Korea
| | - Hyojin Pyun
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Mi Young Lim
- Personalized Diet Research Group, Food Functionality Research Division, Korea Food Research Institute, Wanju, Korea
| | - Young-Do Nam
- Personalized Diet Research Group, Food Functionality Research Division, Korea Food Research Institute, Wanju, Korea
| | - Hee Jin Chang
- Department of Cancer Diagnostics, Research Institute, National Cancer Center, Goyang, Korea
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang, Korea
- Department of Pathology, National Cancer Center Hospital, National Cancer Center, Goyang, Korea
| |
Collapse
|
3
|
Merlino F, Pecoraro A, Longobardi G, Donati G, Di Leva FS, Brignola C, Piccarducci R, Daniele S, Martini C, Marinelli L, Russo G, Quaglia F, Conte C, Russo A, La Pietra V. Development and Nanoparticle-Mediated Delivery of Novel MDM2/MDM4 Heterodimer Peptide Inhibitors to Enhance 5-Fluorouracil Nucleolar Stress in Colorectal Cancer Cells. J Med Chem 2024; 67:1812-1824. [PMID: 38285632 DOI: 10.1021/acs.jmedchem.3c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Colorectal cancer (CRC) often involves wild-type p53 inactivation by MDM2 and MDM4 overexpression, promoting tumor progression and resistance to 5-fluoruracil (5-FU). Disrupting the MDM2/4 heterodimer can proficiently reactivate p53, sensitizing cancer cells to 5-FU. Herein, we developed 16 peptides based on Pep3 (1), the only known peptide acting through this mechanism. The new peptides, notably 3 and 9, showed lower IC50 values than 1. When incorporated into tumor-targeted biodegradable nanoparticles, these exhibited cytotoxicity against three different CRC cell lines. Notably, NPs/9 caused a significant increase in p53 levels associated with a strong increment of its main downstream target p21 inducing apoptosis. Also, the combined treatment of 9 with 5-FU caused the activation of nucleolar stress and a synergic apoptotic effect. Hence, the co-delivery of MDM2/4 heterodimer disruptors with 5-FU through nanoparticles might be a promising strategy to overcome drug resistance in CRC.
Collapse
Affiliation(s)
- Francesco Merlino
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Annalisa Pecoraro
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Giuseppe Longobardi
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Greta Donati
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | | | - Chiara Brignola
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Rebecca Piccarducci
- Department of Pharmacy, University of Pisa, via Bonanno, 6, 56126 Pisa, PI, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, via Bonanno, 6, 56126 Pisa, PI, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, via Bonanno, 6, 56126 Pisa, PI, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Claudia Conte
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Annapina Russo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Valeria La Pietra
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| |
Collapse
|
4
|
Zitkute V, Jasinevicius A, Vaitiekaite G, Kukcinaviciute E, Aleksandraviciute B, Eidenaite E, Sudeikis L, Jonusiene V, Sasnauskiene A. The role of p62 in cell death and survival of 5-fluorouracil and oxaliplatin-resistant colorectal cancer cells. J Cell Biochem 2023; 124:1779-1791. [PMID: 37842885 DOI: 10.1002/jcb.30488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
The protein sequestosome 1 (p62/SQSTM1) is primarily known as a selective autophagy cargo receptor, but due to its multidomain structure, it also has roles in the ubiquitin-proteasome system, metabolism, cell death and survival signalling. The increase in p62 levels is detected in some types of cancers, including colorectal cancer (CRC). Chemoresistance is the main cause of high mortality rates of CRC patients. Since p62 can regulate both cell survival and death, it is a potential modulator of chemoresistance. The impact of p62 on molecular causes of chemoresistance in CRC cells is insufficiently analysed. Therefore, we aimed to determine the impact of p62 on apoptosis, RIPK1-pRIPK3 axis, and IL-8 levels in chemoresistant CRC cells. Our data revealed that p62 levels are higher in the 5-fluorouracil (5-FU)-resistant HCT116/FU subline compared to the parental cell line. 5-FU and oxaliplatin (OxaPt) treatment decreased p62 protein levels and it correlated with chemoresistance of HCT116 and DLD1 cell lines. The silencing of p62 increased CRC cell sensitivity to 5-FU and OxaPt, hence p62 is one of the factors supporting chemoresistance. The downregulation of p62 reduced the activation of caspase-3 and the levels of RIPK1 and pRIPK3. Furthermore, p62 silencing decreased the BAX/BCL2 ratio in the HCT116/FU subline and did not change the levels of apoptosis. Instead, p62 silencing reduced the amount of IL-8 protein. Our results show that p62 impacts chemoresistance by stimulating prosurvival signalling.
Collapse
Affiliation(s)
- Vilmante Zitkute
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Andrius Jasinevicius
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Guoda Vaitiekaite
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Egle Kukcinaviciute
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Bernadeta Aleksandraviciute
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Eigile Eidenaite
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lukas Sudeikis
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Violeta Jonusiene
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ausra Sasnauskiene
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
5
|
Pecoraro A, Russo G, Russo A. Novel Molecular Mechanisms Underlying Tumorigenesis and Innovative Therapeutic Approaches for Cancer-Fighting. Int J Mol Sci 2023; 24:10956. [PMID: 37446132 DOI: 10.3390/ijms241310956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Remarkable advances have been made in cancer therapy; however, the high degree of cellular heterogeneity observed during cancer progression is the major driver in the development of resistant phenotypes upon treatment administration [...].
Collapse
Affiliation(s)
- Annalisa Pecoraro
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Annapina Russo
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
6
|
Seydi H, Nouri K, Rezaei N, Tamimi A, Hassan M, Mirzaei H, Vosough M. Autophagy orchestrates resistance in hepatocellular carcinoma cells. Biomed Pharmacother 2023; 161:114487. [PMID: 36963361 DOI: 10.1016/j.biopha.2023.114487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/26/2023] Open
Abstract
Treatment resistance is one of the major barriers for therapeutic strategies in hepatocellular carcinoma (HCC). Many studies have indicated that chemotherapy and radiotherapy induce autophagy machinery (cell protective autophagy) in HCC cells. In addition, many experiments report a remarkable crosstalk between treatment resistance and autophagy pathways. Thus, autophagy could be one of the key factors enabling tumor cells to hinder induced cell death after medical interventions. Therefore, extensive research on the molecular pathways involved in resistance induction and autophagy have been conducted to achieve the desired therapeutic response. The key molecular pathways related to the therapy resistance are TGF-β, MAPK, NRF2, NF-κB, and non-coding RNAs. In addition, EMT, drug transports, apoptosis evasion, DNA repair, cancer stem cells, and hypoxia could have considerable impact on the hepatoma cell's response to therapies. These mechanisms protect tumor cells against various treatments and many studies have shown that each of them is connected to the molecular pathways of autophagy induction in HCC. Hence, autophagy inhibition may be an effective strategy to improve therapeutic outcome in HCC patients. In this review, we further highlight how autophagy leads to poor response during treatment through a complex molecular network and how it enhances resistance in primary liver cancer. We propose that combinational regimens of approved HCC therapeutic protocols plus autophagy inhibitors may overcome drug resistance in HCC therapy.
Collapse
Affiliation(s)
- Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Kosar Nouri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Islamic Republic of Iran
| | - Atena Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
7
|
Zhao L, Zhao D, Xiao S, Zhang A, Deng Y, Dai X, Zhou Z, Ji Z, Cao Q. Comparative Metabolomic and Transcriptomic Analyses of Phytochemicals in Two Elite Sweet Potato Cultivars for Table Use. Molecules 2022; 27:molecules27248939. [PMID: 36558068 PMCID: PMC9782294 DOI: 10.3390/molecules27248939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
To elucidate nutritional components in sweet potato cultivars for table use and to compare the phytochemicals of cultivars from different countries, 'Kokei No. 14' and 'Xinxiang' were selected. The physiological parameters and metabolites were determined using the colorimetric method and widely targeted metabolomics, respectively. Transcriptomic analysis was performed to explain the mechanism that resulted in phytochemical differences. 'Xinxiang' showed higher flavonoid and carotenoid contents. Metabolomics showed five upregulated flavonoids. Two essential amino acids (EAAs) and one conditionally essential amino acid (CEAA) were upregulated, whereas four EAAs and two CEAAs were downregulated. Unlike lipids, in which only one of thirty-nine was upregulated, nine of twenty-seven differentially accumulated phenolic acids were upregulated. Three of the eleven different alkaloids were upregulated. Similarly, eight organic acids were downregulated, with two upregulated. In addition, three of the seventeen different saccharides and alcohols were upregulated. In 'other metabolites,' unlike vitamin C, 6'-O-Glucosylaucubin and pantetheine were downregulated. The differentially accumulated metabolites were enriched to pathways of the biosynthesis of secondary metabolites, ABC transporters, and tyrosine metabolism, whereas the differentially expressed genes were mainly concentrated in the metabolic pathway, secondary metabolite biosynthesis, and transmembrane transport functions. These results will optimize the sweet potato market structure and enable a healthier diet for East Asian residents.
Collapse
Affiliation(s)
- Lingxiao Zhao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - Donglan Zhao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - Shizhuo Xiao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - An Zhang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - Yitong Deng
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xibin Dai
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhilin Zhou
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - Zhixian Ji
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qinghe Cao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
- Correspondence:
| |
Collapse
|
8
|
S-Adenosylmethionine Inhibits Colorectal Cancer Cell Migration through Mirna-Mediated Targeting of Notch Signaling Pathway. Int J Mol Sci 2022; 23:ijms23147673. [PMID: 35887021 PMCID: PMC9320859 DOI: 10.3390/ijms23147673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Metastasis is a leading cause of mortality and poor prognosis in colorectal cancer (CRC). Thus, the identification of new compounds targeting cell migration represents a major clinical challenge. Recent findings evidenced a central role for dysregulated Notch in CRC and a correlation between Notch overexpression and tumor metastasis. MicroRNAs (miRNAs) have been reported to cross-talk with Notch for its regulation. Therefore, restoring underexpressed miRNAs targeting Notch could represent an encouraging therapeutic approach against CRC. In this context, S-adenosyl-L-methionine (AdoMet), the universal biological methyl donor, being able to modulate the expression of oncogenic miRNAs could act as a potential antimetastatic agent. Here, we showed that AdoMet upregulated the onco-suppressor miRNAs-34a/-34c/-449a and inhibited HCT-116 and Caco-2 CRC cell migration. This effect was associated with reduced expression of migration-/EMT-related protein markers. We also found that, in colorectal and triple-negative breast cancer cells, AdoMet inhibited the expression of Notch gene, which, by luciferase assay, resulted the direct target of miRNAs-34a/-34c/-449a. Gain- and loss-of-function experiments with miRNAs mimics and inhibitors demonstrated that AdoMet exerted its inhibitory effects by upregulating miRNAs-34a/-34c/-449a. Overall, these data highlighted AdoMet as a novel Notch inhibitor and suggested that the antimetastatic effects of AdoMet involve the miRNA-mediated targeting of Notch signaling pathway.
Collapse
|
9
|
Zaarour RF, Sharda M, Azakir B, Hassan Venkatesh G, Abou Khouzam R, Rifath A, Nizami ZN, Abdullah F, Mohammad F, Karaali H, Nawafleh H, Elsayed Y, Chouaib S. Genomic Analysis of Waterpipe Smoke-Induced Lung Tumor Autophagy and Plasticity. Int J Mol Sci 2022; 23:ijms23126848. [PMID: 35743294 PMCID: PMC9225041 DOI: 10.3390/ijms23126848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
The role of autophagy in lung cancer cells exposed to waterpipe smoke (WPS) is not known. Because of the important role of autophagy in tumor resistance and progression, we investigated its relationship with WP smoking. We first showed that WPS activated autophagy, as reflected by LC3 processing, in lung cancer cell lines. The autophagy response in smokers with lung adenocarcinoma, as compared to non-smokers with lung adenocarcinoma, was investigated further using the TCGA lung adenocarcinoma bulk RNA-seq dataset with the available patient metadata on smoking status. The results, based on a machine learning classification model using Random Forest, indicate that smokers have an increase in autophagy-activating genes. Comparative analysis of lung adenocarcinoma molecular signatures in affected patients with a long-term active exposure to smoke compared to non-smoker patients indicates a higher tumor mutational burden, a higher CD8+ T-cell level and a lower dysfunction level in smokers. While the expression of the checkpoint genes tested-PD-1, PD-L1, PD-L2 and CTLA-4-remains unchanged between smokers and non-smokers, B7-1, B7-2, IDO1 and CD200R1 were found to be higher in non-smokers than smokers. Because multiple factors in the tumor microenvironment dictate the success of immunotherapy, in addition to the expression of immune checkpoint genes, our analysis explains why patients who are smokers with lung adenocarcinoma respond better to immunotherapy, even though there are no relative differences in immune checkpoint genes in the two groups. Therefore, targeting autophagy in lung adenocarcinoma patients, in combination with checkpoint inhibitor-targeted therapies or chemotherapy, should be considered in smoker patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Mohak Sharda
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India;
- School of Life Science, The University of Trans-Disciplinary Health Sciences & Technology (TDU), Bangalore 560064, India
| | - Bilal Azakir
- Molecular and Translational Medicine Laboratory, Faculty of Medicine, Beirut Arab University, Beirut 11072809, Lebanon; (B.A.); (H.K.)
| | - Goutham Hassan Venkatesh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Ayesha Rifath
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Zohra Nausheen Nizami
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Fatima Abdullah
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Fatin Mohammad
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Hajar Karaali
- Molecular and Translational Medicine Laboratory, Faculty of Medicine, Beirut Arab University, Beirut 11072809, Lebanon; (B.A.); (H.K.)
| | - Husam Nawafleh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Yehya Elsayed
- Department of Biology, Chemistry and Environmental Sciences (BCE), American University of Sharjah, Sharjah 26666, United Arab Emirates;
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
- Inserm Umr 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France
- Correspondence:
| |
Collapse
|
10
|
Stabilization of CDK6 by ribosomal protein uS7, a target protein of the natural product fucoxanthinol. Commun Biol 2022; 5:564. [PMID: 35681048 PMCID: PMC9184650 DOI: 10.1038/s42003-022-03522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Cyclins and cyclin-dependent kinases (CDKs) regulate the cell cycle, which is important for cell proliferation and development. Cyclins bind to and activate CDKs, which then drive the cell cycle. The expression of cyclins periodically changes throughout the cell cycle, while that of CDKs remains constant. To elucidate the mechanisms underlying the constant expression of CDKs, we search for compounds that alter their expression and discover that the natural product fucoxanthinol downregulates CDK2, 4, and 6 expression. We then develop a method to immobilize a compound with a hydroxyl group onto FG beads® and identify human ribosomal protein uS7 (also known as ribosomal protein S5) as the major fucoxanthinol-binding protein using the beads and mass spectrometry. The knockdown of uS7 induces G1 cell cycle arrest with the downregulation of CDK6 in colon cancer cells. CDK6, but not CDK2 or CDK4, is degraded by the depletion of uS7, and we furthermore find that uS7 directly binds to CDK6. Fucoxanthinol decreases uS7 at the protein level in colon cancer cells. By identifying the binding proteins of a natural product, the present study reveals that ribosomal protein uS7 may contribute to the constant expression of CDK6 via a direct interaction. The natural product fucoxanthinol causes G1 arrest through decreasing the levels of ribosomal protein uS7, which directly binds and stabilises cyclin-dependent kinase 6.
Collapse
|
11
|
Virgilio A, Pecoraro A, Benigno D, Russo A, Russo G, Esposito V, Galeone A. Antiproliferative Effects of the Aptamer d(GGGT) 4 and Its Analogues with an Abasic-Site Mimic Loop on Different Cancer Cells. Int J Mol Sci 2022; 23:ijms23115952. [PMID: 35682635 PMCID: PMC9181107 DOI: 10.3390/ijms23115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
In this paper, we study the T30923 antiproliferative potential and the contribution of its loop residues in six different human cancer cell lines by preparing five T30923 variants using the single residue replacement approach of loop thymidine with an abasic site mimic (S). G-rich oligonucleotides (GRO) show interesting anticancer properties because of their capability to adopt G-quadruplex structures (G4s), such as the G4 HIV-1 integrase inhibitor T30923. Considering the multi-targeted effects of G4-aptamers and the limited number of cancer cell lines tested, particularly for T30923, it should be important to find a suitable tumor line, in addition to considering that the effects also strictly depend on G4s. CD, NMR and non-denaturating polyacrylamide gel electrophoresis data clearly show that all modified ODNs closely resemble the dimeric structure of parallel G4s’ parent aptamer, keeping the resistance in biological environments substantially unchanged, as shown by nuclease stability assay. The antiproliferative effects of T30923 and its variants are tried in vitro by MTT assays, showing interesting cytotoxic activity, depending on time and dose, for all G4s, especially in MDA-MB-231 cells with a reduction in cell viability approximately up to 30%. Among all derivatives, QS12 results are the most promising, showing more pronounced cytotoxic effects both in MDA-MB-231 and Hela cells, with a decrease in cell viability from 70% to 60%. In summary, the single loop residue S substitution approach may be useful for designing antiproliferative G4s, considering that most of them, characterized by single residue loops, may be able to bind different targets in several cancer cell pathways. Generally, this approach could be of benefit by revealing some minimal functional structures, stimulating further studies aimed at the development of novel anticancer drugs.
Collapse
|
12
|
S-Adenosylmethionine, a Promising Antitumor Agent in Oral and Laryngeal Cancer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Squamous cell carcinoma of the head and neck (HNSCC), which includes cancers of the oral cavity and larynx, is one of the most common and highly aggressive malignancies worldwide, despite significant efforts committed in recent decades in its detection, prevention, and treatment. The intrinsic or acquired drug resistance during treatment is the main limitation to chemotherapy, increasing mortality and cancer recurrence. Therefore, there is a growing scientific interest in identifying and developing adjuvant chemotherapies able to improve currently available treatments. S-Adenosylmethionine (AdoMet), a safe and nontoxic natural cofactor with pleiotropic effects on multiple cellular processes and the main biological methyl donor in transmethylation reactions, has been considerably studied as a therapeutic compound. Its application, alone or in combination with other drugs, is emerging as a potentially effective strategy for cancer treatment and for chemoprevention. This review summarizes the structural, pharmacological, and clinical aspects of AdoMet and provides an overview of the recent results highlighting its anticancer activity in the treatment of oral and laryngeal cancer, with particular emphasis on its molecular mechanisms and the promising chemoprotective and synergistic effects exerted in combination with cisplatin and specific microRNAs.
Collapse
|
13
|
Kim IH, Eom T, Park JY, Kim HJ, Nam TJ. Dichloromethane fractions of Calystegia soldanella induce S‑phase arrest and apoptosis in HT‑29 human colorectal cancer cells. Mol Med Rep 2021; 25:60. [PMID: 34935054 PMCID: PMC8767546 DOI: 10.3892/mmr.2021.12576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022] Open
Abstract
Calystegia soldanella is a halophyte and a perennial herb that grows on coastal sand dunes worldwide. Extracts from this plant have been previously revealed to have a variety of bioactive properties in humans. However, their effects on colorectal cancer cells remain poorly understood. In the present study, the potential biological activity of C. soldanella extracts in the colorectal cancer cell line HT-29 was examined. First, five solvent fractions [n-hexane, dichloromethane (DCM), ethyl acetate, n-butanol and water] were obtained from the crude extracts of C. soldanella through an organic solvent extraction method. In particular, the DCM fraction was demonstrated to exert marked dose- and time-dependent inhibitory effects according to results from the cell viability assay. Data obtained from the apoptosis assay suggested that the inhibition of HT-29 cell viability induced by DCM treatment was attributed to increased apoptosis. The apoptotic rate was markedly increased in a dose-dependent manner, which was associated with the protein expression levels of apoptosis-related proteins, including increased Fas, Bad and Bax, and decreased pro-caspase-8, Bcl-2, Bcl-xL, pro-caspase-9, pro-caspase-7 and pro-caspase-3. A mitochondrial membrane potential assay demonstrated that more cells became depolarized and the extent of cytochrome c release was markedly increased in a dose-dependent manner in HT-29 cells treated with DCM. In addition, cell cycle analysis confirmed S-phase arrest following DCM fraction treatment, which was associated with decreased protein expression levels of cell cycle-related proteins, such as cyclin A, CDK2, cell division cycle 25 A and cyclin dependent kinase inhibitor 1. Based on these results, the present study suggested that the DCM fraction of the C. soldanella extract can inhibit HT-29 cell viability whilst inducing apoptosis through mitochondrial membrane potential regulation and S-phase arrest. These results also suggested that the DCM fraction has potential anticancer activity in HT-29 colorectal cells. Further research on the composition of the DCM fraction is warranted.
Collapse
Affiliation(s)
- In-Hye Kim
- Future Fisheries Food Research Center, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Taekil Eom
- Future Fisheries Food Research Center, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Joon-Young Park
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyung-Joo Kim
- Future Fisheries Food Research Center, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Taek-Jeong Nam
- Future Fisheries Food Research Center, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| |
Collapse
|
14
|
Xu C, Huang X, Lei X, Jin Z, Wu M, Liu X, Huang Y, Zhao X, Xiong Y, Sun J, Duan X, Wang J. Costunolide-Induced Apoptosis via Promoting the Reactive Oxygen Species and Inhibiting AKT/GSK3β Pathway and Activating Autophagy in Gastric Cancer. Front Cell Dev Biol 2021; 9:722734. [PMID: 34869312 PMCID: PMC8633576 DOI: 10.3389/fcell.2021.722734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: Costunolide (Cos) is a sesquiterpene lactone extracted from chicory. Although it possesses anti-tumor effects, the underlying molecular mechanism against gastric cancer cells remains unclear. This study aimed to explore the effect and potential mechanism of Cos on gastric cancer. Methods: The effect of Cos on HGC-27 and SNU-1 proliferation was detected by CCK-8 and clone formation assay. The changes in cell apoptosis were determined using Hoechst 33258 and tunel staining. The morphology of autophagy was analyzed by autophagosomes with the electron microscope and LC3-immunofluorescence with the confocal microscope. The related protein levels of the cell cycle, apoptosis, autophagy and AKT/GSK3β pathway were determined by Western blot. The anti-tumor activity of Cos was evaluated by subcutaneously xenotransplanting HGC-27 into Balb/c nude mice. The Ki67 and P-AKT levels were examined by immunohistochemistry. Results: Cos significantly inhibited HGC-27 and SNU-1 growth and induced cell cycle arrest in the G2/M phase. Cos activated intrinsic apoptosis and autophagy through promoting cellular reactive oxygen species (ROS) levels and inhibiting the ROS-AKT/GSK3β signaling pathway. Moreover, preincubating gastric carcinoma cells with 3-methyladenine (3-MA), a cell-autophagy inhibitor, significantly alleviated the effects of Cos in inducing cell apoptosis. Conclusion: Cos induced apoptosis of gastric carcinoma cells via promoting ROS and inhibiting AKT/GSK3β pathway and activating pro-death cell autophagy, which may be an effective strategy to treat gastric cancer.
Collapse
Affiliation(s)
- Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoyan Huang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaohua Lei
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhankui Jin
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Wu
- Department of Research, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiao Liu
- Department of Graduate School, Xi'an Medical University, Xi'an, China.,Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yubin Huang
- Department of Graduate School, Xi'an Medical University, Xi'an, China.,Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiangrong Zhao
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yue Xiong
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingying Sun
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xianglong Duan
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jianhua Wang
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
15
|
Apigenin enhances apoptosis induction by 5-fluorouracil through regulation of thymidylate synthase in colorectal cancer cells. Redox Biol 2021; 47:102144. [PMID: 34562873 PMCID: PMC8476449 DOI: 10.1016/j.redox.2021.102144] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/05/2021] [Accepted: 09/19/2021] [Indexed: 12/18/2022] Open
Abstract
Although effective drugs have been developed, including 5-fluorouracil (5-FU), advanced colorectal cancer (CRC) shows low therapeutic sensitivity resulting from the development of 5-FU resistance. Thymidylate synthase (TS) is a target protein of 5-FU, and elevated TS lowers the 5-FU sensitivity of CRC cells. Here, we tested the efficacy of several candidate phytochemicals against human CRC-derived HCT116 cells expressing wild-type tumor suppressor protein P53 and HT29 cells expressing mutant P53. Among them, we found that apigenin enhanced the inhibitory effect of 5-FU on cell viability. In addition, apigenin inhibited the upregulation of TS induced by 5-FU. Apigenin also potentiated 5-FU-induced apoptosis of HCT116 cells and enhanced cell cycle disruption. Furthermore, apigenin increased reactive oxygen species production, intracellular and intramitochondrial Ca2+ concentrations, and mitochondrial membrane potential upon cotreatment with 5-FU. Knockdown of forkhead box protein M, a transcription factor modulating 5-FU sensitivity, enhanced the potentiation of apoptosis by apigenin in HCT116 cells. Moreover, apigenin suppressed TS expression and inhibited the viability of 5-FU-resistant HCT116 cells. Therefore, apigenin may improve the therapeutic efficacy of 5-FU against CRC by suppressing TS, but apoptosis induction is mainly dependent on functional P53. Apigenin inhibits the upregulation of TS induced by 5-FU for apoptosis of CRC. FOXM1 silencing enhances the potentiation of apoptosis by apigenin. Suppressing TS and promoting P53 activity by apigenin reduce acquired 5-FU resistance.
Collapse
|
16
|
Wilder CS, Chen Z, DiGiovanni J. Pharmacologic approaches to amino acid depletion for cancer therapy. Mol Carcinog 2021; 61:127-152. [PMID: 34534385 DOI: 10.1002/mc.23349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022]
Abstract
Cancer cells undergo metabolic reprogramming to support increased demands in bioenergetics and biosynthesis and to maintain reactive oxygen species at optimum levels. As metabolic alterations are broadly observed across many cancer types, metabolic reprogramming is considered a hallmark of cancer. A metabolic alteration commonly seen in cancer cells is an increased demand for certain amino acids. Amino acids are involved in a wide range of cellular functions, including proliferation, redox balance, bioenergetic and biosynthesis support, and homeostatic functions. Thus, targeting amino acid dependency in cancer is an attractive strategy for a number of cancers. In particular, pharmacologically mediated amino acid depletion has been evaluated as a cancer treatment option for several cancers. Amino acids that have been investigated for the feasibility of drug-induced depletion in preclinical and clinical studies for cancer treatment include arginine, asparagine, cysteine, glutamine, lysine, and methionine. In this review, we will summarize the status of current research on pharmacologically mediated amino acid depletion as a strategy for cancer treatment and potential chemotherapeutic combinations that synergize with amino acid depletion to further inhibit tumor growth and progression.
Collapse
Affiliation(s)
- Carly S Wilder
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Zhao Chen
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.,Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
17
|
S-Adenosylmethionine Increases the Sensitivity of Human Colorectal Cancer Cells to 5-Fluorouracil by Inhibiting P-Glycoprotein Expression and NF-κB Activation. Int J Mol Sci 2021; 22:ijms22179286. [PMID: 34502219 PMCID: PMC8431578 DOI: 10.3390/ijms22179286] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is the second deadliest cancer worldwide despite significant advances in both diagnosis and therapy. The high incidence of CRC and its poor prognosis, partially attributed to multi-drug resistance and antiapoptotic activity of cancer cells, arouse strong interest in the identification and development of new treatments. S-Adenosylmethionine (AdoMet), a natural compound and a nutritional supplement, is well known for its antiproliferative and proapoptotic effects as well as for its potential in overcoming drug resistance in many kinds of human tumors. Here, we report that AdoMet enhanced the antitumor activity of 5-Fluorouracil (5-FU) in HCT 116p53+/+ and in LoVo CRC cells through the inhibition of autophagy, induced by 5-FU as a cell defense mechanism to escape the drug cytotoxicity. Multiple drug resistance is mainly due to the overexpression of drug efflux pumps, such as P-glycoprotein (P-gp). We demonstrate here that AdoMet was able to revert the 5-FU-induced upregulation of P-gp expression and to decrease levels of acetylated NF-κB, the activated form of NF-κB, the major antiapoptotic factor involved in P-gp-related chemoresistance. Overall, our data show that AdoMet, was able to overcome 5-FU chemoresistance in CRC cells by targeting multiple pathways such as autophagy, P-gp expression, and NF-κB signaling activation and provided important implications for the development of new adjuvant therapies to improve CRC treatment and patient outcomes.
Collapse
|
18
|
Virgilio A, Benigno D, Pecoraro A, Russo A, Russo G, Esposito V, Galeone A. Exploring New Potential Anticancer Activities of the G-Quadruplexes Formed by [(GTG 2T(G 3T) 3] and Its Derivatives with an Abasic Site Replacing Single Thymidine. Int J Mol Sci 2021; 22:ijms22137040. [PMID: 34208896 PMCID: PMC8268168 DOI: 10.3390/ijms22137040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
In this paper, we report our investigations on five T30175 analogues, prepared by replacing sequence thymidines with abasic sites (S) one at a time, in comparison to their natural counterpart in order to evaluate their antiproliferative potential and the involvement of the residues not belonging to the central core of stacked guanosines in biological activity. The collected NMR (Nuclear Magnetic Resonance), CD (Circular Dichroism), and PAGE (Polyacrylamide Gel Electrophoresis) data strongly suggest that all of them adopt G-quadruplex (G4) structures strictly similar to that of the parent aptamer with the ability to fold into a dimeric structure composed of two identical G-quadruplexes, each characterized by parallel strands, three all-anti-G-tetrads and four one-thymidine loops (one bulge and three propeller loops). Furthermore, their antiproliferative (MTT assay) and anti-motility (wound healing assay) properties against lung and colorectal cancer cells were tested. Although all of the oligodeoxynucleotides (ODNs) investigated here exhibited anti-proliferative activity, the unmodified T30175 aptamer showed the greatest effect on cell growth, suggesting that both its characteristic folding in dimeric form and its presence in the sequence of all thymidines are crucial elements for antiproliferative activity. This straightforward approach is suitable for understanding the critical requirements of the G-quadruplex structures that affect antiproliferative potential and suggests its application as a starting point to facilitate the reasonable development of G-quadruplexes with improved anticancer properties.
Collapse
|
19
|
Mutual Correlation between Non-Coding RNA and S-Adenosylmethionine in Human Cancer: Roles and Therapeutic Opportunities. Cancers (Basel) 2021; 13:cancers13133264. [PMID: 34209866 PMCID: PMC8268931 DOI: 10.3390/cancers13133264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Non-coding RNAs and S-adenosylmethionine, the methyl donor required in all epigenetic methylation reactions, have emerged in recent years as crucial players in the modulation of gene expression in different types of human cancers. This review summarizes the most recent findings on reciprocal regulation between AdoMet and non-coding RNAs. AdoMet was found to exert anticancer activity through epigenetic regulation of non-coding RNAs, including microRNAs, long non-coding RNAs and circular RNAs. On the other hand, several microRNAs and long non-coding RNAs have been reported to display regulatory effects on the expression of genes involved in AdoMet synthesis and metabolism. Increasing knowledge on the relationship between AdoMet and non-coding RNAs will provide insights for further development of diagnostic and therapeutic strategies for cancer treatments. Abstract Epigenetics includes modifications in DNA methylation, histone and chromatin structure, and expression of non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Knowledge of the relationships between S-adenosylmethionine (AdoMet or SAM), the universal methyl donor for all epigenetic methylation reactions and miRNAs or lncRNAs in human cancer may provide helpful insights for the development of new end more effective anticancer therapeutic approaches. In recent literature, a complex network of mutual interconnections between AdoMet and miRNAs or lncRNAs has been reported and discussed. Indeed, ncRNAs expression may be regulated by epigenetic mechanisms such as DNA and RNA methylation and histone modifications. On the other hand, miRNAs or lncRNAs may influence the epigenetic apparatus by modulating the expression of its enzymatic components at the post-transcriptional level. Understanding epigenetic mechanisms, such as dysregulation of miRNAs/lncRNAs and DNA methylation, has become of central importance in modern research. This review summarizes the recent findings on the mechanisms by which AdoMet and miRNA/lncRNA exert their bioactivity, providing new insights to develop innovative and more efficient anticancer strategies based on the interactions between these epigenetic modulators.
Collapse
|
20
|
Laka K, Mapheto K, Mbita Z. Selective in vitro cytotoxicity effect of Drimia calcarata bulb extracts against p53 mutant HT-29 and p53 wild-type Caco-2 colorectal cancer cells through STAT5B regulation. Toxicol Rep 2021; 8:1265-1279. [PMID: 34195018 PMCID: PMC8233163 DOI: 10.1016/j.toxrep.2021.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer is the fourth leading cause of oncological-related deaths and the third most diagnosed malignancy, worldwide. The emergence of chemoresistance is a fundamental drawback of colorectal cancer therapies and there is an urgent need for novel plant-derived therapeutics. In this regard, other compounds are needed to improve the efficacy of treatment against colorectal cancer. Medicinal plants have been effectively used by traditional doctors for decades to treat various ailments with little to no side effects. Drimia calcarata (D. calcarata) is one of the plants used by Pedi people in South Africa to treat a plethora of ailments. However, the anticancer therapeutic use of D. calcarata is less understood. Thus, this study was aimed at evaluating the potential anticancer activities of D. calcarata extracts against human colorectal cancer cells. The phytochemical analysis and antioxidant activity were analysed using LC-MS, DPPH, and FRAP. The inhibitory effects and IC50 values of D. calcarata extracts were determined using the MTT assay. Induction of cellular apoptosis was assessed using fluorescence microscopy, the Muse® Cell Analyser, and gene expression analysis by Polymerase Chain Reaction (PCR). Water extract (WE) demonstrated high phenolic, tannin, and flavonoid contents than the methanol extract (ME). LC-MS data demonstrated strong differences between the ME and WE. Moreover, WE showed the best antioxidant activity than ME. The MTT data showed that both ME and WE had no significant activity against human embryonic kidney Hek 293 cell line that served as non-cancer control cells. Caco-2 cells demonstrated high sensitivity to the ME and demonstrated resistance toward the WE, while HT-29 cells exhibited sensitivity to both D. calcarata extracts. The expression of apoptosis regulatory genes assessed by PCR revealed an upregulation of p53 by ME, accompanied by downregulation of Bcl-2 and high expression of Bax after treatment with curcumin. The Bax gene was undetected in HT-29 cells. The methanol extract induced mitochondrial-mediated apoptosis in colorectal Caco-2 and HT-29 cells and WE induced the extrinsic apoptotic pathway in HT-29 cells. ME downregulated STAT1, 3, and 5B in HT-29 cells. The D. calcarata bulb extracts, therefore, contain potential anticancer agents that can be further targeted for cancer therapeutics.
Collapse
Affiliation(s)
- K. Laka
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa
| | - K.B.F. Mapheto
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa
| | - Z. Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa
| |
Collapse
|
21
|
Ribosome Biogenesis and Cancer: Overview on Ribosomal Proteins. Int J Mol Sci 2021; 22:ijms22115496. [PMID: 34071057 PMCID: PMC8197113 DOI: 10.3390/ijms22115496] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cytosolic ribosomes (cytoribosomes) are macromolecular ribonucleoprotein complexes that are assembled from ribosomal RNA and ribosomal proteins, which are essential for protein biosynthesis. Mitochondrial ribosomes (mitoribosomes) perform translation of the proteins essential for the oxidative phosphorylation system. The biogenesis of cytoribosomes and mitoribosomes includes ribosomal RNA processing, modification and binding to ribosomal proteins and is assisted by numerous biogenesis factors. This is a major energy-consuming process in the cell and, therefore, is highly coordinated and sensitive to several cellular stressors. In mitochondria, the regulation of mitoribosome biogenesis is essential for cellular respiration, a process linked to cell growth and proliferation. This review briefly overviews the key stages of cytosolic and mitochondrial ribosome biogenesis; summarizes the main steps of ribosome biogenesis alterations occurring during tumorigenesis, highlighting the changes in the expression level of cytosolic ribosomal proteins (CRPs) and mitochondrial ribosomal proteins (MRPs) in different types of tumors; focuses on the currently available information regarding the extra-ribosomal functions of CRPs and MRPs correlated to cancer; and discusses the role of CRPs and MRPs as biomarkers and/or molecular targets in cancer treatment.
Collapse
|