1
|
Chamas L, Seugnet I, Tanvé O, Enderlin V, Clerget-Froidevaux MS. The Downregulation of the Liver Lipid Metabolism Induced by Hypothyroidism in Male Mice: Metabolic Flexibility Favors Compensatory Mechanisms in White Adipose Tissue. Int J Mol Sci 2024; 25:10792. [PMID: 39409121 PMCID: PMC11477049 DOI: 10.3390/ijms251910792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
In mammals, the maintenance of energy homeostasis relies on complex mechanisms requiring tight synchronization between peripheral organs and the brain. Thyroid hormones (THs), through their pleiotropic actions, play a central role in these regulations. Hypothyroidism, which is characterized by low circulating TH levels, slows down the metabolism, which leads to a reduction in energy expenditure as well as in lipid and glucose metabolism. The objective of this study was to evaluate whether the metabolic deregulations induced by hypothyroidism could be avoided through regulatory mechanisms involved in metabolic flexibility. To this end, the response to induced hypothyroidism was compared in males from two mouse strains, the wild-derived WSB/EiJ mouse strain characterized by a diet-induced obesity (DIO) resistance due to its high metabolic flexibility phenotype and C57BL/6J mice, which are prone to DIO. The results show that propylthiouracil (PTU)-induced hypothyroidism led to metabolic deregulations, particularly a reduction in hepatic lipid synthesis in both strains. Furthermore, in contrast to the C57BL/6J mice, the WSB/EiJ mice were resistant to the metabolic dysregulations induced by hypothyroidism, mainly through enhanced lipid metabolism in their adipose tissue. Indeed, WSB/EiJ mice compensated for the decrease in hepatic lipid synthesis by mobilizing lipid reserves from white adipose tissue. Gene expression analysis revealed that hypothyroidism stimulated the hypothalamic orexigenic circuit in both strains, but there was unchanged melanocortin 4 receptor (Mc4r) and leptin receptor (LepR) expression in the hypothyroid WSB/EiJ mice strain, which reflects their adaptability to maintain their body weight, in contrast to C57BL/6J mice. Thus, this study showed that WSB/EiJ male mice displayed a resistance to the metabolic dysregulations induced by hypothyroidism through compensatory mechanisms. This highlights the importance of metabolic flexibility in the ability to adapt to disturbed circulating TH levels.
Collapse
Affiliation(s)
- Lamis Chamas
- CNRS/MNHN UMR 7221 “Physiologie Moléculaire et Adaptation” Phyma, Department of “Life Adaptations” Muséum National d’Histoire Naturelle 57, Rue Cuvier CP 32, 75231 Paris, CEDEX 05, France
| | - Isabelle Seugnet
- CNRS/MNHN UMR 7221 “Physiologie Moléculaire et Adaptation” Phyma, Department of “Life Adaptations” Muséum National d’Histoire Naturelle 57, Rue Cuvier CP 32, 75231 Paris, CEDEX 05, France
| | - Odessa Tanvé
- CNRS/MNHN UMR 7221 “Physiologie Moléculaire et Adaptation” Phyma, Department of “Life Adaptations” Muséum National d’Histoire Naturelle 57, Rue Cuvier CP 32, 75231 Paris, CEDEX 05, France
| | - Valérie Enderlin
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), CNRS UMR 9197, Université Paris-Saclay, 91400 Saclay, France;
| | - Marie-Stéphanie Clerget-Froidevaux
- CNRS/MNHN UMR 7221 “Physiologie Moléculaire et Adaptation” Phyma, Department of “Life Adaptations” Muséum National d’Histoire Naturelle 57, Rue Cuvier CP 32, 75231 Paris, CEDEX 05, France
| |
Collapse
|
2
|
Wolosiewicz M, Balatskyi VV, Duda MK, Filip A, Ntambi JM, Navrulin VO, Dobrzyn P. SCD4 deficiency decreases cardiac steatosis and prevents cardiac remodeling in mice fed a high-fat diet. J Lipid Res 2024; 65:100612. [PMID: 39094772 PMCID: PMC11402454 DOI: 10.1016/j.jlr.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Stearoyl-CoA desaturase (SCD) is a lipogenic enzyme that catalyzes formation of the first double bond in the carbon chain of saturated fatty acids. Four isoforms of SCD have been identified in mice, the most poorly characterized of which is SCD4, which is cardiac-specific. In the present study, we investigated the role of SCD4 in systemic and cardiac metabolism. We used WT and global SCD4 KO mice that were fed standard laboratory chow or a high-fat diet (HFD). SCD4 deficiency reduced body adiposity and decreased hyperinsulinemia and hypercholesterolemia in HFD-fed mice. The loss of SCD4 preserved heart morphology in the HFD condition. Lipid accumulation decreased in the myocardium in SCD4-deficient mice and in HL-1 cardiomyocytes with knocked out Scd4 expression. This was associated with an increase in the rate of lipolysis and, more specifically, adipose triglyceride lipase (ATGL) activity. Possible mechanisms of ATGL activation by SCD4 deficiency include lower protein levels of the ATGL inhibitor G0/G1 switch protein 2 and greater activation by protein kinase A under lipid overload conditions. Moreover, we observed higher intracellular Ca2+ levels in HL-1 cells with silenced Scd4 expression. This may explain the activation of protein kinase A in response to higher Ca2+ levels. Additionally, the loss of SCD4 inhibited mitochondrial enlargement, NADH overactivation, and reactive oxygen species overproduction in the heart in HFD-fed mice. In conclusion, SCD4 deficiency activated lipolysis, resulting in a reduction of cardiac steatosis, prevented the induction of left ventricular hypertrophy, and reduced reactive oxygen species levels in the heart in HFD-fed mice.
Collapse
Affiliation(s)
- Marcin Wolosiewicz
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Monika K Duda
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Filip
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Viktor O Navrulin
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
3
|
Yuan Y, Zhuang Y, Cui Y, Liu Y, Zhang Q, Xiao Q, Meng Q, Jiang J, Hao W, Wei X. Effects of 1, 2-bis (2,4, 6-tribromophenoxy) ethane and bis (2-ethylhexyl) tetrabromophthalate on serum metabolic and lipid profiles in male rats. Toxicol Appl Pharmacol 2024; 490:117020. [PMID: 38969211 DOI: 10.1016/j.taap.2024.117020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
This study explored the effects of 1, 2-bis (2,4, 6-tribromophenoxy) ethane (BTBPE) and bis (2-ethylhexyl) tetrabromophthalate (TBPH) on serum metabolites and lipids in male Sprague-Dawley (SD) rats. Rats were orally gavaged 250 mg/kg bw of BTBPE and 500 mg/kg bw of TBPH for 28 consecutive days. Serum samples were collected for metabolomics and lipidomics analysis. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to explore changes in rat metabolic patterns. Least absolute shrinkage and selection operator (LASSO) regression models were established using serum levels of total thyroxine (TT4), free thyroxine (FT4), and rats' grouping information as variables to screen for robust differential substances. SuperPred was the database to obtain potential targets. The metabolomics and lipidomics results showed that BTBPE and TBPH had an impact on rat metabolic patterns, affecting pathways such as vitamin B6 synthesis. For BTBPE treatment, pyridoxal and ceramide (Cer) 24:0;4O were selected as differential substances related to thyroid hormones. For TBPH treatment, dehydroascorbic acid, acylcarnitine (CAR) 19:0, and diglyceride (DG) 38:4 were selected as differential substances related to thyroid hormones. Serotonin 2c receptor and cyclooxygenase-2 were chosen as potential targets of BTBPE and TBPH, respectively. In conclusion, this study found that BTBPE and TBPH impacted the metabolism of rats, and this effect may be related to changes in thyroid function.
Collapse
Affiliation(s)
- Yuese Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yimeng Zhuang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yuan Cui
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yuetong Liu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
4
|
Liu Z, Liu G, Wang Y, Zheng C, Guo Y. Association between skeletal muscle and left ventricular mass in patients with hyperthyroidism. Front Endocrinol (Lausanne) 2024; 15:1301529. [PMID: 38356960 PMCID: PMC10864587 DOI: 10.3389/fendo.2024.1301529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Objective This study aims to investigate the relationship between skeletal muscle and left ventricular mass (LVM) in patients with hyperthyroidism, providing theoretical and data-based foundations for further research on the interaction between secondary muscle atrophy and cardiac remodeling. Methods A retrospective data collection was conducted, including 136 patients with hyperthyroidism (Study group) and 50 healthy participants (control group). The Study group was further divided into Group A (high LVM) and Group B (low LVM) based on LVM size. Multiple linear regression analysis was performed to examine the correlation between skeletal muscle and LVM, with model evaluation. Based on the results, further nonlinear regression analysis was conducted to explore the detailed relationship between skeletal muscle and LVM. Results Compared to the control group, the Study group exhibited significantly lower LVM, skeletal muscle mass index (SMI), and skeletal muscle mass (SMM) (P<0.05). Within the subgroups, Group A had significantly higher SMI, SMM, and hand grip strength compared to Group B (P<0.05). The results of the multiple linear regression showed a certain correlation between SMI (β=0.60, P=0.042, 95% CI=0.02~1.17) and hand grip strength (β=0.34, P=0.045, 95% CI=0.01~0.67) with LVM. However, the residuals of the multiple regression did not follow a normal distribution (K-S=2.50, P<0.01). Further results from a generalized linear model and structural equation modeling regression also demonstrated a correlation between SMI (β=0.60, P=0.040, 95% CI=0.03~1.17) (β=0.60, P=0.042, 95% CI=0.02~1.17) and hand grip strength (β=0.34, P=0.043, 95% CI=0.01~0.67) (β=0.34, P=0.045, 95% CI=0.01~0.67) with LVM. Conclusion Patients with hyperthyroidism may exhibit simultaneous decreases in LVM, SMM, and SMI. The LVM in patients is correlated with SMM and hand grip strength, highlighting the need for further exploration of the causal relationship and underlying mechanisms. These findings provide a basis for the prevention and treatment of secondary sarcopenia and cardiac pathology in patients with hyperthyroidism.
Collapse
Affiliation(s)
- Zhenchao Liu
- Institute of Integrative Medicine, Qingdao University, Qingdao, Shandong, China
| | - Guang Liu
- Shandong Provincial Sports Center, Shandong Administration of Sports, Jinan, Shandong, China
| | - Yanzhi Wang
- Academic Affairs Office, Binzhou Medical University, Yantai, Shandong, China
| | - Chongwen Zheng
- Department of Neurology, The 2nd Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yunliang Guo
- Institute of Integrative Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Olichwier A, Sowka A, Balatskyi VV, Gan AM, Dziewulska A, Dobrzyn P. SCD1-related epigenetic modifications affect hormone-sensitive lipase (Lipe) gene expression in cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119608. [PMID: 37852324 DOI: 10.1016/j.bbamcr.2023.119608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Stearoyl-CoA desaturase 1 (SCD1) is an enzyme that is involved in the regulation of lipolysis in the heart. SCD1 also affects epigenetic mechanisms, such as DNA and histone modifications, in various tissues. Both epigenetic modifications and changes in lipid metabolism are involved in the heart's response to hypoxia. The present study tested the hypothesis that SCD1 and epigenetic modifications interact to control lipolysis in cardiomyocytes under normoxic and hypoxic conditions. We found that the inhibition of SCD1 activity and loss of SCD1 expression reduced global DNA methylation levels, DNA methyltransferase (DNMT) activity, and DNMT1 expression in HL-1 cardiomyocytes and the mouse heart. We also found that the inhibition of adipose triglyceride lipase is involved in the control of global DNA methylation levels in cardiomyocytes in an SCD1-independent manner. Additionally, SCD1 inhibition reduced expression of the hormone-sensitive lipase (Lipe) gene through an increase in methylation of the Lipe gene promoter. Under hypoxic conditions, SCD1 inhibition abolished hypoxia-inducible transcription factor 1α, likely through decreases in histone deacetylase, protein kinase A, and abhydrolase domain containing 5 protein levels, leading to the attenuation of DNA hypomethylation by DNMT1. Hypoxia led to demethylation of the Lipe promoter in cardiomyocytes with SCD1 inhibition, which increased Lipe expression. These results indicate that SCD1 is involved in the control of epigenetic mechanisms in the heart and may affect Lipe expression through changes in methylation in its promoter region. Therefore, SCD1 may be considered a key player in the epigenetic response to normoxia and hypoxia in cardiomyocytes.
Collapse
Affiliation(s)
- Adam Olichwier
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Ana-Maria Gan
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anna Dziewulska
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
6
|
Singha PS, Ghosh S, Ghosh D. Levothyroxine and Non-alcoholic Fatty Liver Disease: A Mini Review. Mini Rev Med Chem 2024; 24:128-138. [PMID: 36918791 DOI: 10.2174/1389557523666230314113543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 03/16/2023]
Abstract
Levothyroxine or l-thyroxine is artificially manufactured thyroxine, which is used as a drug to treat underactive thyroid conditions in humans. The drug, levothyroxine, is consumed daily in a prescribed dose to replace the missing thyroid hormone thyroxine in an individual with an underactive thyroid, and it helps to maintain normal physiological conditions. Though it is a life-maintaining drug, it replaces the missing thyroid hormone and performs the necessary daily metabolic functions in our body. Like all other allopathic drugs, it comes with certain side effects, which include joint pain, cramps in muscle, weight gain/loss, hair loss, etc. The thyroid hormone, thyroxine, is known to mobilize fat in our body, including the ones from the hepatic system. An underactive thyroid may cause an accumulation of fat in the liver, leading to a fatty liver, which is clinically termed Non-Alcoholic Fatty Liver Disease (NAFLD). The correlation between hypothyroidism and NAFLD is now well-studied and recognized. As levothyroxine performs the functions of the missing thyroxine, it is anticipated, based on certain preliminary studies, that the drug helps to mobilize hepatic fat and thus may have a crucial role in mitigating the condition of NAFDL.
Collapse
Affiliation(s)
| | - Suvendu Ghosh
- Department of Physiology, Hooghly Mohsin College, Chinsura, Hooghly, 712 101, West Bengal, India
| | - Debosree Ghosh
- Department of Physiology, Government General Degree College, West Bengal, India
| |
Collapse
|
7
|
Balatskyi VV, Dobrzyn P. Role of Stearoyl-CoA Desaturase 1 in Cardiovascular Physiology. Int J Mol Sci 2023; 24:ijms24065531. [PMID: 36982607 PMCID: PMC10059744 DOI: 10.3390/ijms24065531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
Stearoyl-CoA desaturase is a rate-limiting enzyme in the synthesis of monounsaturated fatty acids. Monounsaturated fatty acids limit the toxicity of exogenous saturated fats. Studies have shown that stearoyl-CoA desaturase 1 is involved in the remodeling of cardiac metabolism. The loss of stearoyl-CoA desaturase 1 reduces fatty acid oxidation and increases glucose oxidation in the heart. Such a change is protective under conditions of a high-fat diet, which reduces reactive oxygen species-generating β-oxidation. In contrast, stearoyl-CoA desaturase 1 deficiency predisposes individuals to atherosclerosis under conditions of hyperlipidemia but protects against apnea-induced atherosclerosis. Stearoyl-CoA desaturase 1 deficiency also impairs angiogenesis after myocardial infarction. Clinical data show a positive correlation between blood stearoyl-CoA Δ-9 desaturation rates and cardiovascular disease and mortality. Moreover, stearoyl-CoA desaturase inhibition is considered an attractive intervention in some obesity-associated pathologies, and the importance of stearoyl-CoA desaturase in the cardiovascular system might be a limitation for developing such therapy. This review discusses the role of stearoyl-CoA desaturase 1 in the regulation of cardiovascular homeostasis and the development of heart disease and presents markers of systemic stearoyl-CoA desaturase activity and their predictive potential in the diagnosis of cardiovascular disorders.
Collapse
|
8
|
Shen L, Ma J, Yang Y, Liao T, Wang J, Chen L, Zhang S, Zhao Y, Niu L, Hao X, Jiang A, Li X, Gan M, Zhu L. Cooked pork-derived exosome nanovesicles mediate metabolic disorder-microRNA could be the culprit. J Nanobiotechnology 2023; 21:83. [PMID: 36894941 PMCID: PMC9999493 DOI: 10.1186/s12951-023-01837-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
In this study, exosomes from cooked meat were extracted by ultra-high-speed centrifugation. Approximately 80% of exosome vesicles were within 20-200 nm. In addition, the surface biomarkers of isolated exosomes were evaluated using flow cytometry. Further studies showed the exosomal microRNA profiles were different among cooked porcine muscle, fat and liver. Cooked pork-derived exosomes were chronically administered to ICR mice by drinking for 80 days. The mice plasma levels of miR-1, miR-133a-3p, miR-206 and miR-99a were increased to varying degrees after drinking exosome enriched water. Furthermore, GTT and ITT results confirmed an abnormal glucose metabolism and insulin resistance in mice. Moreover, the lipid droplets were significantly increased in the mice liver. A transcriptome analysis performed with mice liver samples identified 446 differentially expressed genes (DEGs). Functional enrichment analysis found that DEGs were enriched in metabolic pathways. Overall, the results suggest that microRNAs derived form cooked pork may function as a critical regulator of metabolic disorder in mice.
Collapse
Affiliation(s)
- Linyuan Shen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianfeng Ma
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yiting Yang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tianci Liao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Lei Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lili Niu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoxia Hao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Anan Jiang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuewei Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China. .,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Li Zhu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China. .,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
9
|
Dobrzyn P. CoA in Health and Disease. Int J Mol Sci 2022; 23:ijms23084371. [PMID: 35457189 PMCID: PMC9026968 DOI: 10.3390/ijms23084371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/10/2022] [Indexed: 12/10/2022] Open
Abstract
Coenzyme A (CoA) and its thioester derivatives are crucial components of numerous biosynthetic and degradative pathways of the cellular metabolism (including fatty acid synthesis and oxidation, the Krebs cycle, ketogenesis, cholesterol and acetylcholine biosynthesis, amino acid degradation, and neurotransmitter biosynthesis), post-translational modifications of proteins, and the regulation of gene expression [...].
Collapse
Affiliation(s)
- Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| |
Collapse
|