1
|
Kshirsagar S, Islam MA, Reddy AP, Reddy PH. Resolving the current controversy of use and reuse of housekeeping proteins in ageing research: Focus on saving people's tax dollars. Ageing Res Rev 2024; 100:102437. [PMID: 39067773 PMCID: PMC11384260 DOI: 10.1016/j.arr.2024.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
The use of housekeeping genes and proteins to normalize mRNA and protein levels in biomedical research has faced growing scrutiny. Researchers encounter challenges in determining the optimal frequency for running housekeeping proteins such as β-actin, Tubulin, and GAPDH for nuclear-encoded proteins, and Porin, HSP60, and TOM20 for mitochondrial proteins alongside experimental proteins. The regulation of these proteins varies with age, gender, disease progression, epitope nature, gel running conditions, and their reported sizes can differ among antibody suppliers. Additionally, anonymous readers have raised concerns about peer-reviewed and published articles, creating confusion and concern within the research and academic institutions. To clarify these matters, this minireview discusses the role of reference housekeeping proteins in Western blot analysis and outlines key considerations for their use as normalization controls. Instead of Western blotting of housekeeping proteins, staining of total proteins, using Amido Black and Coomassie Blue can be visualized the total protein content on a membrane. The reducing repeated Western blotting analysis of housekeeping proteins, will save resources, time and efforts and in turn increase the number of competitive grants from NIH and funding agencies. We also discussed the use of dot blots over traditional Western blots, when protein levels are low in rare tissues/specimens and cell lines. We sincerely hope that the facts, figures, and discussions presented in this article will clarify the current controversy regarding housekeeping protein(s) use, reuse, and functional aspects of housekeeping proteins. The contents presented in our article will be useful to students, scholars and researchers of all levels in cell biology, protein chemistry and mitochondrial research.
Collapse
Affiliation(s)
- Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Celik A, Beyer I, Fiedler D. An Uncommon Phosphorylation Mode Regulates the Activity and Protein Interactions of N-Acetylglucosamine Kinase. J Am Chem Soc 2024; 146:14807-14815. [PMID: 38733353 PMCID: PMC11140747 DOI: 10.1021/jacs.4c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
While the function of protein phosphorylation in eukaryotic cell signaling is well established, the role of a closely related modification, protein pyrophosphorylation, is just starting to surface. A recent study has identified several targets of endogenous protein pyrophosphorylation in mammalian cell lines, including N-acetylglucosamine kinase (NAGK). Here, a detailed functional analysis of NAGK phosphorylation and pyrophosphorylation on serine 76 (S76) has been conducted. This analysis was enabled by using amber codon suppression to obtain phosphorylated pS76-NAGK, which was subsequently converted to site-specifically pyrophosphorylated NAGK (ppS76-NAGK) with a phosphorimidazolide reagent. A significant reduction in GlcNAc kinase activity was observed upon phosphorylation and near-complete inactivation upon pyrophosphorylation. The formation of ppS76-NAGK proceeded via an ATP-dependent autocatalytic process, and once formed, ppS76-NAGK displayed notable stability toward dephosphorylation in mammalian cell lysates. Proteomic examination unveiled a distinct set of protein-protein interactions for ppS76-NAGK, suggesting an alternative function, independent of its kinase activity. Overall, a significant regulatory role of pyrophosphorylation on NAGK activity was uncovered, providing a strong incentive to investigate the influence of this unusual phosphorylation mode on other kinases.
Collapse
Affiliation(s)
- Arif Celik
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut
für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Ida Beyer
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut
für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
3
|
Garner MA, Hubbard MG, Boitet ER, Hubbard ST, Gade A, Ying G, Jones BW, Baehr W, Gross AK. NUDC is critical for rod photoreceptor function, maintenance, and survival. FASEB J 2024; 38:e23518. [PMID: 38441532 PMCID: PMC10917122 DOI: 10.1096/fj.202301641rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
NUDC (nuclear distribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown. Here, we examined the role of NUDC in postmitotic rod photoreceptors by studying the consequences of a conditional NUDC knockout in mouse rods (rNudC-/- ). Loss of NUDC in rods led to complete photoreceptor cell death at 6 weeks of age. By 3 weeks of age, rNudC-/- function was diminished, and rhodopsin and mitochondria were mislocalized, consistent with dynein inhibition. Levels of outer segment proteins were reduced, but LIS1 (lissencephaly protein 1), a well-characterized dynein cofactor, was unaffected. Transmission electron microscopy revealed ultrastructural defects within the rods of rNudC-/- by 3 weeks of age. We investigated whether NUDC interacts with the actin modulator cofilin 1 (CFL1) and found that in rods, CFL1 is localized in close proximity to NUDC. In addition to its potential role in dynein trafficking within rods, loss of NUDC also resulted in increased levels of phosphorylated CFL1 (pCFL1), which would purportedly prevent depolymerization of actin. The absence of NUDC also induced an inflammatory response in Müller glia and microglia across the neural retina by 3 weeks of age. Taken together, our data illustrate the critical role of NUDC in actin cytoskeletal maintenance and dynein-mediated protein trafficking in a postmitotic rod photoreceptor.
Collapse
Affiliation(s)
- Mary Anne Garner
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Meredith G. Hubbard
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Evan R. Boitet
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Seth T. Hubbard
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Anushree Gade
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, 84132 USA
| | - Bryan W. Jones
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, 84132 USA
| | - Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, 84132 USA
| | - Alecia K. Gross
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| |
Collapse
|
4
|
Garner MA, Hubbard MG, Boitet ER, Hubbard ST, Gade A, Ying G, Jones BW, Baehr W, Gross AK. NUDC is critical for rod photoreceptor function, maintenance, and survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568878. [PMID: 38076848 PMCID: PMC10705250 DOI: 10.1101/2023.11.28.568878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
NUDC ( nu clear d istribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown. Here, we examined the role of NUDC in postmitotic rod photoreceptors by studying the consequences of a conditional NUDC knockout in mouse rods (r NudC -/- ). Loss of NUDC in rods led to complete photoreceptor cell death at six weeks of age. By 3 weeks of age, r NudC -/- function was diminished, and rhodopsin and mitochondria were mislocalized, consistent with dynein inhibition. Levels of outer segment proteins were reduced, but LIS1 (lissencephaly protein 1), a well-characterized dynein cofactor, was unaffected. Transmission electron microscopy revealed ultrastructural defects within the rods of r NudC -/- by 3 weeks of age. We investigated whether NUDC interacts with the actin modulator cofilin 1 (CFL1) and found that in rods, CFL1 is localized in close proximity to NUDC. In addition to its potential role in dynein trafficking within rods, loss of NUDC also resulted in increased levels of phosphorylated CFL1 (pCFL1), which would purportedly prevent depolymerization of actin. Absence of NUDC also induced an inflammatory response in Müller glia and microglia across the neural retina by 3 weeks of age. Taken together, our data illustrate the critical role of NUDC in actin cytoskeletal maintenance and dynein-mediated protein trafficking in a postmitotic rod photoreceptor. Significance Statement Nuclear distribution protein C (NUDC) has been studied extensively as an essential protein for mitotic cell division. In this study, we discovered its expression and role in the postmitotic rod photoreceptor cell. In the absence of NUDC in mouse rods, we detected functional loss, protein mislocalization, and rapid retinal degeneration consistent with dynein inactivation. In the early phase of retinal degeneration, we observed ultrastructural defects and an upregulation of inflammatory markers suggesting additional, dynein-independent functions of NUDC.
Collapse
|
5
|
Greene MA, Worley GA, Udoka ANS, Powell RR, Bruce T, Klotz JL, Bridges WC, Duckett SK. Use of AgomiR and AntagomiR technologies to alter satellite cell proliferation in vitro, miRNA expression, and muscle fiber hypertrophy in intrauterine growth-restricted lambs. Front Mol Biosci 2023; 10:1286890. [PMID: 38028550 PMCID: PMC10656622 DOI: 10.3389/fmolb.2023.1286890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: microRNAs (miRNAs) are small non-coding RNAs that work at the posttranscriptional level to repress gene expression. Several miRNAs are preferentially expressed in skeletal muscle and participate in myogenesis. This research was conducted to alter endogenous miRNA expression in skeletal muscle to promote muscle hypertrophy. Methods: Two experiments were conducted using mimic/agomiR or antagomir technologies to alter miRNA expression and examine changes in myoblast proliferation in vitro (experiment 1) and muscle hypertrophy in vivo (experiment 2). In vitro experiments found that antagomiR-22-3p and mimic-127 increased myoblast proliferation compared to other miRNA treatments or controls. These miRNA treatments, antagomiR-22-3p (ANT22) and agomiR-127 (AGO127), were then used for intramuscular injections in longissimus muscle. Results and discussion: The use of antagomiR or mimic/agomiR treatments down-regulated or up-regulated, respectively, miRNA expression for that miRNA of interest. Expression of predicted target KIF3B mRNA for miR-127 was up-regulated and ACVR2a mRNA was up-regulated for miR-22-3p. ANT22 injection also up-regulated the major regulator of protein synthesis (mTOR). Proteomic analyses identified 11 proteins for AGO127 and 9 proteins for ANT22 that were differentially expressed. Muscle fiber type and cross-sectional area were altered for ANT22 treatments to transition fibers to a more oxidative state. The use of agomiR and antagomir technologies allows us to alter miRNA expression in vitro and in vivo to enhance myoblast proliferation and alter muscle fiber hypertrophy in IUGR lambs during early postnatal growth.
Collapse
Affiliation(s)
- M. A. Greene
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States
| | - G. A. Worley
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States
| | - A. N. S. Udoka
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States
| | - R. R. Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, United States
| | - T. Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - J. L. Klotz
- U. S. Department of Agriculture-Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY, United States
| | - W. C. Bridges
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, United States
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, United States
| | - S. K. Duckett
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
6
|
Das J, Kumar R, Shah V, Raghavendra KP, Sharma AK. Identification and functional characterisation of N-acetylglucosamine kinase from Helicoverpa armigera divulge its potential role in growth and development via UDP-GlcNAc salvage pathway. Int J Biol Macromol 2023; 242:124674. [PMID: 37137348 DOI: 10.1016/j.ijbiomac.2023.124674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
N-acetylglucosamine kinase (NAGK), a major enzyme of sugar-kinase/Hsp70/actin superfamily, catalyses the conversion of N-acetylglucosamine to GlcNAc-6-phosphate, the first step leading to the salvage synthesis of uridine diphosphate N-acetylglucosamine. Here, we present the first report on identification, cloning, recombinant expression and functional characterisation of NAGK from Helicoverpa armigera (HaNAGK). The purified soluble HaNAGK exhibited a molecular mass of ~39 kDa with monomeric conformation. It catalysed the sequential transformation of GlcNAc into UDP-GlcNAc, indicating its role as the initiator of UDP-GlcNAc salvage pathway. HaNAGK exhibited ubiquitous expressions across all the developmental stages and major tissues of H. armigera. The gene was significantly upregulated (80 %; p < 0.01) by the moulting hormone 20-hydroxyecdysone and significantly downregulated (89 %; p < 0.001) by the chitin synthesis inhibitor novaluron, indicating its involvement in ecdysis and chitin metabolism. Furthermore, RNAi of HaNAGK caused poor weight gain, deformed insect bodies, aberrant metamorphosis and pronounced wing abnormalities in >55 % of surviving adults, while recording 7.79 ± 1.52 % and 24.25 ± 7.21 % mortality during larval and pupal stages, respectively. Altogether, the present findings suggest that HaNAGK plays a crucial role in the growth and development of H. armigera and thus, could be considered as a compelling gene of interest while formulating novel pest management strategies.
Collapse
Affiliation(s)
- Joy Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - Vivek Shah
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - K P Raghavendra
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
7
|
Ali MC, Khatun MS, Jahan SI, Das R, Munni YA, Rahman MM, Dash R. In silico design of epitope-based peptide vaccine against non-typhoidal Salmonella through immunoinformatic approaches. J Biomol Struct Dyn 2022; 40:10696-10714. [PMID: 36529187 DOI: 10.1080/07391102.2021.1947381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Non-typhoidal Salmonella (NTS) is one of the leading bacterial causes of many invasive human infections with a high antibiotic resistance profile. With this concern, the current study aimed to design an effective epitope-based peptide vaccine against NTS species as a successive and substitutive protective measure of invasive NTS disease. To design rationally, the current study considered a comprehensive in silico workflow combination of both immunoinformatics and molecular modeling approaches, including molecular docking and molecular dynamics (MD) simulation. We identified the two most promising T cell epitopes KVLYGIFAI and YGIFAITAL, and three B cell epitopes AAPVQVGEAAGS, TGGGDGSNT, and TGGGDGSNTGTTTT, in the outer membrane of NTS. Using these epitopes, a multiepitope vaccine was subsequently constructed along with appropriate adjuvant and linkers, which showed a good binding affinity and stability with toll-like receptor 2 (TLR2) in both molecular docking and MD simulation. Furthermore, in silico immune simulation described a strong immune response with a high number of antibodies, interferon-γ, and activated B and T cells. This study collectively suggests that predicted vaccine constructs could be considered potential vaccine candidates against common NTS species.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Chayan Ali
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Mst Shanzeda Khatun
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Sultana Israt Jahan
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Raju Das
- Department of Physiology, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - Md Mafizur Rahman
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| |
Collapse
|
8
|
Dash R, Munni YA, Mitra S, Choi HJ, Jahan SI, Chowdhury A, Jang TJ, Moon IS. Dynamic insights into the effects of nonsynonymous polymorphisms (nsSNPs) on loss of TREM2 function. Sci Rep 2022; 12:9378. [PMID: 35672339 PMCID: PMC9174165 DOI: 10.1038/s41598-022-13120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
Single nucleotide variations in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) are associated with many neurodegenerative diseases, including Nasu-Hakola disease (NHD), frontotemporal dementia (FTD), and late-onset Alzheimer's disease because they disrupt ligand binding to the extracellular domain of TREM2. However, the effects of nonsynonymous single nucleotide polymorphisms (nsSNPs) in TREM2 on disease progression remain unknown. In this study, we identified several high-risk nsSNPs in the TREM2 gene using various deleterious SNP predicting algorithms and analyzed their destabilizing effects on the ligand recognizing region of the TREM2 immunoglobulin (Ig) domain by molecular dynamics (MD) simulation. Cumulative prediction by all tools employed suggested the three most deleterious nsSNPs involved in loss of TREM2 function are rs549402254 (W50S), rs749358844 (R52C), and rs1409131974 (D104G). MD simulation showed that these three variants cause substantial structural alterations and conformational remodeling of the apical loops of the TREM2 Ig domain, which is responsible for ligand recognition. Detailed analysis revealed that these variants substantially increased distances between apical loops and induced conformation remodeling by changing inter-loop nonbonded contacts. Moreover, all nsSNPs changed the electrostatic potentials near the putative ligand-interacting region (PLIR), which suggested they might reduce specificity or loss of binding affinity for TREM2 ligands. Overall, this study identifies three potential high-risk nsSNPs in the TREM2 gene. We propose further studies on the molecular mechanisms responsible for loss of TREM2 function and the associations between TREM2 nsSNPs and neurodegenerative diseases.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Sultana Israt Jahan
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Apusi Chowdhury
- Department of Pharmaceutical Science, North-South University, Dhaka, 1229, Bangladesh
| | - Tae Jung Jang
- Department of Pathology, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
9
|
Structural Consequence of Non-Synonymous Single-Nucleotide Variants in the N-Terminal Domain of LIS1. Int J Mol Sci 2022; 23:ijms23063109. [PMID: 35328531 PMCID: PMC8955593 DOI: 10.3390/ijms23063109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Disruptive neuronal migration during early brain development causes severe brain malformation. Characterized by mislocalization of cortical neurons, this condition is a result of the loss of function of migration regulating genes. One known neuronal migration disorder is lissencephaly (LIS), which is caused by deletions or mutations of the LIS1 (PAFAH1B1) gene that has been implicated in regulating the microtubule motor protein cytoplasmic dynein. Although this class of diseases has recently received considerable attention, the roles of non-synonymous polymorphisms (nsSNPs) in LIS1 on lissencephaly progression remain elusive. Therefore, the present study employed combined bioinformatics and molecular modeling approach to identify potential damaging nsSNPs in the LIS1 gene and provide atomic insight into their roles in LIS1 loss of function. Using this approach, we identified three high-risk nsSNPs, including rs121434486 (F31S), rs587784254 (W55R), and rs757993270 (W55L) in the LIS1 gene, which are located on the N-terminal domain of LIS1. Molecular dynamics simulation highlighted that all variants decreased helical conformation, increased the intermonomeric distance, and thus disrupted intermonomeric contacts in the LIS1 dimer. Furthermore, the presence of variants also caused a loss of positive electrostatic potential and reduced dimer binding potential. Since self-dimerization is an essential aspect of LIS1 to recruit interacting partners, thus these variants are associated with the loss of LIS1 functions. As a corollary, these findings may further provide critical insights on the roles of LIS1 variants in brain malformation.
Collapse
|
10
|
Dash R, Mitra S, Munni YA, Choi HJ, Ali MC, Barua L, Jang TJ, Moon IS. Computational Insights into the Deleterious Impacts of Missense Variants on N-Acetyl-d-glucosamine Kinase Structure and Function. Int J Mol Sci 2021; 22:8048. [PMID: 34360815 PMCID: PMC8347710 DOI: 10.3390/ijms22158048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
An enzyme of the mammalian amino-sugar metabolism pathway, N-acetylglucosamine kinase (NAGK), that synthesizes N-acetylglucosamine (GlcNAc)-6-phosphate, is reported to promote dynein functions during mitosis, axonal and dendritic growth, cell migration, and selective autophagy, which all are unrelated to its enzyme activity. As non-enzymatic structural functions can be altered by genetic variation, we made an effort in this study aimed at deciphering the pathological effect of nonsynonymous single-nucleotide polymorphisms (nsSNPs) in NAGK gene. An integrated computational approach, including molecular dynamics (MD) simulation and protein-protein docking simulation, was used to identify the damaging nsSNPs and their detailed structural and functional consequences. The analysis revealed the four most damaging variants (G11R, G32R, G120E, and A156D), which are highly conserved and functional, positioned in both small (G11R and G32R) and large (G120E and A156D) domains of NAGK. G11R is located in the ATP binding region, while variants present in the large domain (G120E and A156D) were found to induce substantial alterations in the structural organizations of both domains, including the ATP and substrate binding sites. Furthermore, all variants were found to reduce binding energy between NAGK and dynein subunit DYNLRB1, as revealed by protein-protein docking and MM-GBSA binding energy calculation supporting their deleteriousness on non-canonical function. We hope these findings will direct future studies to gain more insight into the role of these variants in the loss of NAGK function and their role in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| | - Md. Chayan Ali
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh;
| | - Largess Barua
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Tae Jung Jang
- Department of Pathology, Dongguk University College of Medicine, Gyeongju 38066, Korea;
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| |
Collapse
|