1
|
Zhou F, Engel P, Ruth P, Lukowski R, Schmidtko A, Lu R. Slack potassium channels in spinal dorsal horn neurons control neuropathic pain and acute itch. Pain 2024:00006396-990000000-00729. [PMID: 39382315 DOI: 10.1097/j.pain.0000000000003427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024]
Abstract
ABSTRACT The sodium-activated potassium channel Slack (KNa1.1, Kcnt1) plays a critical role in tuning neuronal excitability. Previous studies have revealed that Slack is expressed in neurons of the superficial dorsal horn of the spinal cord. However, the precise role of Slack in spinal dorsal horn neurons is unclear. In this study, we used mice in which Slack is conditionally ablated in spinal dorsal horn neurons (Lbx1-Slack-/- mice) and analyzed their behaviors in various models of pain and itch. Lbx1-Slack-/- mice exhibited increased neuropathic pain behavior after peripheral nerve injury but normal responses in a model of inflammatory pain. Unexpectedly, Lbx1-Slack-/- mice demonstrated increased scratching after intradermal injection of chloroquine, LY344864, and histamine. Moreover, neuromedin B receptors are coexpressed with Slack in the dorsal horn, and scratching after intrathecal delivery of neuromedin B was increased in Lbx1-Slack-/- mice. Our study provides in vivo evidence that Slack expressed in spinal dorsal horn neurons inhibits nerve injury-induced allodynia and acute itch induced by various pruritogens.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Patrick Engel
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ruirui Lu
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Balzulat A, Zhu WF, Flauaus C, Hernandez‐Olmos V, Heering J, Sethumadhavan S, Dubiel M, Frank A, Menge A, Hebchen M, Metzner K, Lu R, Lukowski R, Ruth P, Knapp S, Müller S, Steinhilber D, Hänelt I, Stark H, Proschak E, Schmidtko A. Discovery of a Small Molecule Activator of Slack (Kcnt1) Potassium Channels That Significantly Reduces Scratching in Mouse Models of Histamine-Independent and Chronic Itch. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307237. [PMID: 38350720 PMCID: PMC11022729 DOI: 10.1002/advs.202307237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Indexed: 02/15/2024]
Abstract
Various disorders are accompanied by histamine-independent itching, which is often resistant to the currently available therapies. Here, it is reported that the pharmacological activation of Slack (Kcnt1, KNa1.1), a potassium channel highly expressed in itch-sensitive sensory neurons, has therapeutic potential for the treatment of itching. Based on the Slack-activating antipsychotic drug, loxapine, a series of new derivatives with improved pharmacodynamic and pharmacokinetic profiles is designed that enables to validate Slack as a pharmacological target in vivo. One of these new Slack activators, compound 6, exhibits negligible dopamine D2 and D3 receptor binding, unlike loxapine. Notably, compound 6 displays potent on-target antipruritic activity in multiple mouse models of acute histamine-independent and chronic itch without motor side effects. These properties make compound 6 a lead molecule for the development of new antipruritic therapies targeting Slack.
Collapse
Affiliation(s)
- Annika Balzulat
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - W. Felix Zhu
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Cathrin Flauaus
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Victor Hernandez‐Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
| | - Sunesh Sethumadhavan
- Institute of BiochemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Mariam Dubiel
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Amelie Menge
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Structural Genomics Consortium (SGC)Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtMax‐von‐Laue‐Str. 1560438Frankfurt am MainGermany
| | - Maureen Hebchen
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Katharina Metzner
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Ruirui Lu
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Robert Lukowski
- Department of PharmacologyToxicology and Clinical PharmacyInstitute of Pharmacy University of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Peter Ruth
- Department of PharmacologyToxicology and Clinical PharmacyInstitute of Pharmacy University of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Stefan Knapp
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Structural Genomics Consortium (SGC)Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtMax‐von‐Laue‐Str. 1560438Frankfurt am MainGermany
| | - Susanne Müller
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Structural Genomics Consortium (SGC)Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtMax‐von‐Laue‐Str. 1560438Frankfurt am MainGermany
| | - Dieter Steinhilber
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
| | - Inga Hänelt
- Institute of BiochemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Ewgenij Proschak
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| |
Collapse
|
3
|
Frutos-Rincón L, Luna C, Aleixandre-Carrera F, Velasco E, Diaz-Tahoces A, Meseguer V, Gallar J, Acosta MC. The Contribution of TRPA1 to Corneal Thermosensitivity and Blink Regulation in Young and Aged Mice. Int J Mol Sci 2023; 24:12620. [PMID: 37628800 PMCID: PMC10454529 DOI: 10.3390/ijms241612620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The role of TRPA1 in the thermosensitivity of the corneal cold thermoreceptor nerve endings was studied in young and aged mice. The contribution of the TRPA1-dependent activity to basal tearing and thermally-evoked blink was also explored. The corneal cold thermoreceptors' activity was recorded extracellularly in young (5-month-old) and aged (18-month-old) C57BL/6WT (WT) and TRPA1-/- knockout (TRPA1-KO) mice at basal temperature (34 °C) and during cooling (15 °C) and heating (45 °C) ramps. The blink response to cold and heat stimulation of the ocular surface and the basal tearing rate were also measured in young animals using orbicularis oculi muscle electromyography (OOemg) and phenol red threads, respectively. The background activity at 34 °C and the cooling- and heating-evoked responses of the cold thermoreceptors were similar in WT and TRPA1-KO animals, no matter the age. Similar to the aged WT mice, in the young and aged TRPA1-KO mice, most of the cold thermoreceptors presented low frequency background activity, a low cooling threshold, and a sluggish response to heating. The amplitude and duration of the OOemg signals correlated with the magnitude of the induced thermal change in the WT but not in the TRPA1-KO mice. The basal tearing was similar in the TRPA1-KO and WT mice. The electrophysiological data suggest that the TRPA1-dependent nerve activity, which declines with age, contributes to detecting the warming of the ocular surface and also to integrating the thermally-evoked reflex blink.
Collapse
Affiliation(s)
- Laura Frutos-Rincón
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (C.L.); (F.A.-C.); (E.V.); (A.D.-T.); (V.M.); (J.G.)
| | - Carolina Luna
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (C.L.); (F.A.-C.); (E.V.); (A.D.-T.); (V.M.); (J.G.)
| | - Fernando Aleixandre-Carrera
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (C.L.); (F.A.-C.); (E.V.); (A.D.-T.); (V.M.); (J.G.)
| | - Enrique Velasco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (C.L.); (F.A.-C.); (E.V.); (A.D.-T.); (V.M.); (J.G.)
| | - Ariadna Diaz-Tahoces
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (C.L.); (F.A.-C.); (E.V.); (A.D.-T.); (V.M.); (J.G.)
| | - Víctor Meseguer
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (C.L.); (F.A.-C.); (E.V.); (A.D.-T.); (V.M.); (J.G.)
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (C.L.); (F.A.-C.); (E.V.); (A.D.-T.); (V.M.); (J.G.)
- Instituto de Investigación Biomédica y Sanitaria de Alicante, 03010 Alicante, Spain
| | - M. Carmen Acosta
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (C.L.); (F.A.-C.); (E.V.); (A.D.-T.); (V.M.); (J.G.)
| |
Collapse
|
4
|
Dong CR, Zhang WJ, Luo HL. Association between P2X3 receptors and neuropathic pain: As a potential therapeutic target for therapy. Biomed Pharmacother 2022; 150:113029. [PMID: 35489283 DOI: 10.1016/j.biopha.2022.113029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022] Open
Abstract
Neuropathic pain is a common clinical symptom of various diseases, and it seriously affects the physical and mental health of patients. Owing to the complex pathological mechanism of neuropathic pain, clinical treatment of pain is challenging. Therefore, there is growing interest among researchers to explore potential therapeutic strategies for neuropathic pain. A large number of studies have shown that development of neuropathic pain is related to nerve conduction and related signaling molecules. P2X3 receptors (P2X3R) are ATP-dependent ion channels that participate in the transmission of neural information and related signaling pathways, sensitize the central nervous system, and play a key role in the development of neuropathic pain. In this paper, we summarized the structure and biological characteristics of the P2X3R gene and discussed the role of P2X3R in the nervous system. Moreover, we outlined the related pathological mechanisms of pain and described the relationship between P2X3R and chronic pain to provide valuable information for development of novel treatment strategies for pain.
Collapse
Affiliation(s)
- Cai-Rong Dong
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 343000, China
| | - Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 343000, China.
| | - Hong-Liang Luo
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 343000, China
| |
Collapse
|
5
|
Zhou F, Metzner K, Engel P, Balzulat A, Sisignano M, Ruth P, Lukowski R, Schmidtko A, Lu R. Slack Potassium Channels Modulate TRPA1-Mediated Nociception in Sensory Neurons. Cells 2022; 11:cells11101693. [PMID: 35626730 PMCID: PMC9140117 DOI: 10.3390/cells11101693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/13/2022] Open
Abstract
The transient receptor potential (TRP) ankyrin type 1 (TRPA1) channel is highly expressed in a subset of sensory neurons where it acts as an essential detector of painful stimuli. However, the mechanisms that control the activity of sensory neurons upon TRPA1 activation remain poorly understood. Here, using in situ hybridization and immunostaining, we found TRPA1 to be extensively co-localized with the potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) in sensory neurons. Mice lacking Slack globally (Slack−/−) or conditionally in sensory neurons (SNS-Slack−/−) demonstrated increased pain behavior after intraplantar injection of the TRPA1 activator allyl isothiocyanate. By contrast, pain behavior induced by the TRP vanilloid 1 (TRPV1) activator capsaicin was normal in Slack-deficient mice. Patch-clamp recordings in sensory neurons and in a HEK cell line transfected with TRPA1 and Slack revealed that Slack-dependent potassium currents (IKS) are modulated in a TRPA1-dependent manner. Taken together, our findings highlight Slack as a modulator of TRPA1-mediated, but not TRPV1-mediated, activation of sensory neurons.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany; (F.Z.); (K.M.); (P.E.); (A.B.); (A.S.)
| | - Katharina Metzner
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany; (F.Z.); (K.M.); (P.E.); (A.B.); (A.S.)
| | - Patrick Engel
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany; (F.Z.); (K.M.); (P.E.); (A.B.); (A.S.)
| | - Annika Balzulat
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany; (F.Z.); (K.M.); (P.E.); (A.B.); (A.S.)
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, Goethe University, 60590 Frankfurt am Main, Germany;
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, 72076 Tübingen, Germany; (P.R.); (R.L.)
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, 72076 Tübingen, Germany; (P.R.); (R.L.)
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany; (F.Z.); (K.M.); (P.E.); (A.B.); (A.S.)
| | - Ruirui Lu
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany; (F.Z.); (K.M.); (P.E.); (A.B.); (A.S.)
- Correspondence: ; Tel.: +49-69-798-29377
| |
Collapse
|
6
|
Liu Y, Zhang FF, Song Y, Wang R, Zhang Q, Shen ZS, Zhang FF, Zhong DY, Wang XH, Guo Q, Tang QY, Zhang Z. The Slack Channel Deletion Causes Mechanical Pain Hypersensitivity in Mice. Front Mol Neurosci 2022; 15:811441. [PMID: 35359569 PMCID: PMC8963359 DOI: 10.3389/fnmol.2022.811441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
The role of the Slack (also known as Slo2.2, KNa1.1, or KCNT1) channel in pain-sensing is still in debate on which kind of pain it regulates. In the present study, we found that the Slack–/– mice exhibited decreased mechanical pain threshold but normal heat and cold pain sensitivity. Subsequently, X-gal staining, in situ hybridization, and immunofluorescence staining revealed high expression of the Slack channel in Isolectin B4 positive (IB4+) neurons in the dorsal root ganglion (DRG) and somatostatin-positive (SOM+) neurons in the spinal cord. Patch-clamp recordings indicated the firing frequency was increased in both small neurons in DRG and spinal SOM+ neurons in the Slack–/– mice whereas no obvious slow afterhyperpolarization was observed in both WT mice and Slack–/– mice. Furthermore, we found Kcnt1 gene expression in spinal SOM+ neurons in Slack–/– mice partially relieved the mechanical pain hypersensitivity of Slack–/– mice and decreased AP firing rates of the spinal SOM+ neurons. Finally, deletion of the Slack channel in spinal SOM+ neurons is sufficient to result in mechanical pain hypersensitivity in mice. In summary, our results suggest the important role of the Slack channel in the regulation of mechanical pain-sensing both in small neurons in DRG and SOM+ neurons in the spinal dorsal horn.
Collapse
Affiliation(s)
- Ye Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Fang-Fang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Ying Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Ran Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Qi Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Zhong-Shan Shen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Fei-Fei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Dan-Ya Zhong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Qing Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Qiong-Yao Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Qiong-Yao Tang,
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Zhe Zhang,
| |
Collapse
|
7
|
Ehinger R, Kuret A, Matt L, Frank N, Wild K, Kabagema-Bilan C, Bischof H, Malli R, Ruth P, Bausch AE, Lukowski R. Slack K + channels attenuate NMDA-induced excitotoxic brain damage and neuronal cell death. FASEB J 2021; 35:e21568. [PMID: 33817875 DOI: 10.1096/fj.202002308rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
The neuronal Na+ -activated K+ channel Slack (aka Slo2.2, KNa 1.1, or Kcnt1) has been implicated in setting and maintaining the resting membrane potential and defining excitability and firing patterns, as well as in the generation of the slow afterhyperpolarization following bursts of action potentials. Slack activity increases significantly under conditions of high intracellular Na+ levels, suggesting this channel may exert important pathophysiological functions. To address these putative roles, we studied whether Slack K+ channels contribute to pathological changes and excitotoxic cell death caused by glutamatergic overstimulation of Ca2+ - and Na+ -permeable N-methyl-D-aspartic acid receptors (NMDAR). Slack-deficient (Slack KO) and wild-type (WT) mice were subjected to intrastriatal microinjections of the NMDAR agonist NMDA. NMDA-induced brain lesions were significantly increased in Slack KO vs WT mice, suggesting that the lack of Slack renders neurons particularly susceptible to excitotoxicity. Accordingly, excessive neuronal cell death was seen in Slack-deficient primary cerebellar granule cell (CGC) cultures exposed to glutamate and NMDA. Differences in neuronal survival between WT and Slack KO CGCs were largely abolished by the NMDAR antagonist MK-801, but not by NBQX, a potent and highly selective competitive antagonist of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors. Interestingly, NMDAR-evoked Ca2+ signals did not differ with regard to Slack genotype in CGCs. However, real-time monitoring of K+ following NMDAR activation revealed a significant contribution of this channel to the intracellular drop in K+ . Finally, TrkB and TrkC neurotrophin receptor transcript levels were elevated in NMDA-exposed Slack-proficient CGCs, suggesting a mechanism by which this K+ channel contributes to the activation of the extracellular-signal-regulated kinase (Erk) pathway and thereby to neuroprotection. Combined, our findings suggest that Slack-dependent K+ signals oppose the NMDAR-mediated excitotoxic neuronal injury by promoting pro-survival signaling via the BDNF/TrkB and Erk axis.
Collapse
Affiliation(s)
- Rebekka Ehinger
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Nadine Frank
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Katharina Wild
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Clement Kabagema-Bilan
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Helmut Bischof
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Anne E Bausch
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| |
Collapse
|