1
|
Delucchi F, Ingegnieros L, Pesce P, Baldi D, Canullo L, Bagnasco F, Zunino P, Menini M. Efficacy and safety of erythritol air-polishing in implant dentistry: A systematic review. Int J Dent Hyg 2025; 23:44-62. [PMID: 38825804 DOI: 10.1111/idh.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 06/04/2024]
Abstract
OBJECTIVES Professional oral hygiene is essential to prevent peri-implant disease. Appropriate instruments should be employed for implant-supported restorations: they should effectively remove deposits without damaging dental implant surface. The aim of the present systematic review is to investigate the efficacy and safety of erythritol air-polishing in implant-supported rehabilitations, compared to alternative hygienic techniques. MATERIALS AND METHODS The guidelines reported in the indications of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) were employed for this systematic review. The focused question was: 'what is the effect of erythritol air-polishing on dental implant surfaces regarding its cleansing efficacy and/or safety?' The final online search was conducted on 13 August 2023; MEDLINE-PubMed, Scopus and Cochrane Library were employed. Comparative in vitro or in vivo original studies were included. RESULTS The initial database search yielded 128 entries; the final selection comprised 15 articles. The risk of bias was evaluated using the Newcastle Ottawa scale (NOS), the Cochrane Handbook for Systematic Reviews of Interventions, GRADE method. Ultrasonic scaling with PEEK tips, glycine air-polishing and cold atmospheric plasma were the devices most frequently compared to erythritol powder in the included studies. Erythritol air-polishing appeared to be significantly more effective in reducing biofilm compared to other treatments, without causing any significant damage to the implant surface and peri-implant tissues, promoting a good biological response. CONCLUSION Erythritol air-polishing showed promising results for professional oral hygiene in implant-supported restorations. According to this systematic review, it is effective and safe for removing biofilm from titanium dental implants.
Collapse
Affiliation(s)
- F Delucchi
- Division of Prosthetic Dentistry, Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - L Ingegnieros
- Division of Prosthetic Dentistry, Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - P Pesce
- Division of Prosthetic Dentistry, Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - D Baldi
- Division of Prosthetic Dentistry, Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - L Canullo
- Division of Prosthetic Dentistry, Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - F Bagnasco
- Division of Prosthetic Dentistry, Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - P Zunino
- Division of Prosthetic Dentistry, Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - M Menini
- Division of Prosthetic Dentistry, Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| |
Collapse
|
2
|
Ortiz ADC, Fideles SOM, Reis CHB, Pagani BT, Bueno LMM, Moscatel MBM, Buchaim RL, Buchaim DV. D-Tagatose: A Rare Sugar with Functional Properties and Antimicrobial Potential against Oral Species. Nutrients 2024; 16:1943. [PMID: 38931297 PMCID: PMC11206312 DOI: 10.3390/nu16121943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Carbohydrates have a dietary role, but excessive consumption of high-calorie sugars can contribute to an increased incidence of metabolic diseases and dental caries. Recently, carbohydrates with sweetening properties and low caloric value, such as D-tagatose, have been investigated as alternative sugars. D-tagatose is a rare sugar that has nutritional and functional properties of great interest for health. This literature review presents an approach to the biological effects of D-tagatose, emphasizing its benefits for oral health. Studies report that D-tagatose has antioxidant and prebiotic effects, low digestibility, reduced glycemic and insulinemic responses, and the potential to improve the lipid profile, constituting an alternative for diabetes mellitus and obesity. It can also be observed that D-tagatose has an antioxidant action, favoring the elimination of free radicals and, consequently, causing a reduction in cellular oxidative stress. Furthermore, it also has antibacterial potential against oral species. Regarding oral health, studies have shown that D-tagatose efficiently reversed bacterial coaggregations, including periodontopathogenic species, and impaired the activity and growth of cariogenic bacteria, such as S. mutans. D-tagatose significantly inhibited biofilm formation, pH decrease and insoluble glucan synthesis in S. mutans cultures. Salivary S. mutans counts were also significantly reduced by the consumption of chewing gum containing D-tagatose and xylitol. In addition, there is evidence that tagatose is effective as an air-polishing powder for biofilm decontamination. The literature indicates that D-tagatose can contribute to the prevention of systemic diseases, also constituting a promising agent to improve oral health.
Collapse
Affiliation(s)
- Adriana de Cássia Ortiz
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.); (C.H.B.R.); (B.T.P.); (M.B.M.M.)
| | - Simone Ortiz Moura Fideles
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.); (C.H.B.R.); (B.T.P.); (M.B.M.M.)
| | - Carlos Henrique Bertoni Reis
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.); (C.H.B.R.); (B.T.P.); (M.B.M.M.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
| | - Bruna Trazzi Pagani
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.); (C.H.B.R.); (B.T.P.); (M.B.M.M.)
- Dentistry School, University of Marilia (UNIMAR), Marília 17525-902, Brazil
| | | | - Matheus Bento Medeiros Moscatel
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.); (C.H.B.R.); (B.T.P.); (M.B.M.M.)
- Dentistry School, University of Marilia (UNIMAR), Marília 17525-902, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.); (C.H.B.R.); (B.T.P.); (M.B.M.M.)
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science (FMVZ), University of Sao Paulo (USP), Sao Paulo 05508-270, Brazil
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science (FMVZ), University of Sao Paulo (USP), Sao Paulo 05508-270, Brazil
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| |
Collapse
|
3
|
Zanini G, Bertani G, Di Tinco R, Pisciotta A, Bertoni L, Selleri V, Generali L, Marconi A, Mattioli AV, Pinti M, Carnevale G, Nasi M. Dental Pulp Stem Cells Modulate Inflammasome Pathway and Collagen Deposition of Dermal Fibroblasts. Cells 2024; 13:836. [PMID: 38786058 PMCID: PMC11120068 DOI: 10.3390/cells13100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Fibrosis is a pathological condition consisting of a delayed deposition and remodeling of the extracellular matrix (ECM) by fibroblasts. This deregulation is mostly triggered by a chronic stimulus mediated by pro-inflammatory cytokines, such as TNF-α and IL-1, which activate fibroblasts. Due to their anti-inflammatory and immunosuppressive potential, dental pulp stem cells (DPSCs) could affect fibrotic processes. This study aims to clarify if DPSCs can affect fibroblast activation and modulate collagen deposition. We set up a transwell co-culture system, where DPSCs were seeded above the monolayer of fibroblasts and stimulated with LPS or a combination of TNF-α and IL-1β and quantified a set of genes involved in inflammasome activation or ECM deposition. Cytokines-stimulated co-cultured fibroblasts, compared to unstimulated ones, showed a significant increase in the expression of IL-1β, IL-6, NAIP, AIM2, CASP1, FN1, and TGF-β genes. At the protein level, IL-1β and IL-6 release as well as FN1 were increased in stimulated, co-cultured fibroblasts. Moreover, we found a significant increase of MMP-9 production, suggesting a role of DPSCs in ECM remodeling. Our data seem to suggest a crosstalk between cultured fibroblasts and DPSCs, which seems to modulate genes involved in inflammasome activation, ECM deposition, wound healing, and fibrosis.
Collapse
Affiliation(s)
- Giada Zanini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.)
| | - Giulia Bertani
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.B.); (R.D.T.); (A.P.); (L.B.); (L.G.); (A.M.); (G.C.); (M.N.)
| | - Rosanna Di Tinco
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.B.); (R.D.T.); (A.P.); (L.B.); (L.G.); (A.M.); (G.C.); (M.N.)
| | - Alessandra Pisciotta
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.B.); (R.D.T.); (A.P.); (L.B.); (L.G.); (A.M.); (G.C.); (M.N.)
| | - Laura Bertoni
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.B.); (R.D.T.); (A.P.); (L.B.); (L.G.); (A.M.); (G.C.); (M.N.)
| | - Valentina Selleri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.)
- National Institute for Cardiovascular Research—INRC, 40126 Bologna, Italy;
| | - Luigi Generali
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.B.); (R.D.T.); (A.P.); (L.B.); (L.G.); (A.M.); (G.C.); (M.N.)
| | - Alessandra Marconi
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.B.); (R.D.T.); (A.P.); (L.B.); (L.G.); (A.M.); (G.C.); (M.N.)
| | - Anna Vittoria Mattioli
- National Institute for Cardiovascular Research—INRC, 40126 Bologna, Italy;
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.)
| | - Gianluca Carnevale
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.B.); (R.D.T.); (A.P.); (L.B.); (L.G.); (A.M.); (G.C.); (M.N.)
| | - Milena Nasi
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.B.); (R.D.T.); (A.P.); (L.B.); (L.G.); (A.M.); (G.C.); (M.N.)
| |
Collapse
|
4
|
Tagliaferri N, Pisciotta A, Orlandi G, Bertani G, Di Tinco R, Bertoni L, Sena P, Lunghi A, Bianchi M, Veneri F, Bellini P, Bertacchini J, Conserva E, Consolo U, Carnevale G. Zirconia Hybrid Dental Implants Influence the Biological Properties of Neural Crest-Derived Mesenchymal Stromal Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:392. [PMID: 38470723 PMCID: PMC10934982 DOI: 10.3390/nano14050392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Dental implants are regularly employed in tooth replacement, the good clinical outcome of which is strictly correlated to the choice of an appropriate implant biomaterial. Titanium-based implants are considered the gold standard for rehabilitation of edentulous spaces. However, the insurgence of allergic reactions, cellular sensitization and low integration with dental and gingival tissues lead to poor osseointegration, affecting the implant stability in the bone and favoring infections and inflammatory processes in the peri-implant space. These failures pave the way to develop and improve new biocompatible implant materials. CERID dental implants are made of a titanium core embedded in a zirconium dioxide ceramic layer, ensuring absence of corrosion, a higher biological compatibility and a better bone deposition compared to titanium ones. We investigated hDPSCs' biological behavior, i.e., cell adhesion, proliferation, morphology and osteogenic potential, when seeded on both CERID and titanium implants, before and after cleansing with two different procedures. SEM and AFM analysis of the surfaces showed that while CERID disks were not significantly affected by the cleansing system, titanium ones exhibited well-visible modifications after brush treatment, altering cell morphology. The proliferation rate of DPSCs was increased for titanium, while it remained unaltered for CERID. Both materials hold an intrinsic potential to promote osteogenic commitment of neuro-ectomesenchymal stromal cells. Interestingly, the CERID surface mitigated the immune response by inducing an upregulation of anti-inflammatory cytokine IL-10 on activated PBMCs when a pro-inflammatory microenvironment was established. Our in vitro results pave the way to further investigations aiming to corroborate the potential of CERID implants as suitable biomaterials for dental implant applications.
Collapse
Affiliation(s)
- Nadia Tagliaferri
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
- PhD Program in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Giulia Orlandi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Giulia Bertani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
- PhD Program in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Paola Sena
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Alice Lunghi
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, 44121 Ferrara, Italy;
- Section of Physiology, University of Ferrara, 44121 Ferrara, Italy
| | - Michele Bianchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Federica Veneri
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Pierantonio Bellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Jessika Bertacchini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Enrico Conserva
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Ugo Consolo
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| |
Collapse
|
5
|
Wei Z, Shen Z, Deng H, Kuang T, Wang J, Gu Z. Metal-polyphenol networks-modified tantalum plate for craniomaxillofacial reconstruction. Sci Rep 2024; 14:1023. [PMID: 38200230 PMCID: PMC10781789 DOI: 10.1038/s41598-024-51640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/08/2024] [Indexed: 01/12/2024] Open
Abstract
Using three-dimensional (3D) printing technology to make the porous tantalum plate and modify its surface. The physicochemical properties, cytocompatibility, antioxidant capacity, and histocompatibility of the modified materials were evaluated to prepare for the repair of craniomaxillofacial bone defects. The porous tantalum plates were 3D printed by selective laser melting technology. Tantalum plates were surface modified with a metal polyphenol network. The surface-modified plates were analyzed for cytocompatibility using thiazolyl blue tetrazolium bromide and live/dead cell staining. The antioxidant capacity of the surface-modified plates was assessed by measuring the levels of intracellular reactive oxygen species, reduced glutathione, superoxide dismutase, and malondialdehyde. The histocompatibility of the plates was evaluated by animal experiments. The results obtained that the tantalum plates with uniform small pores exhibited a high mechanical strength. The surface-modified plates had much better hydrophilicity. In vitro cell experiments showed that the surface-modified plates had higher cytocompatibility and antioxidant capacity than blank tantalum plates. Through subcutaneous implantation in rabbits, the surface-modified plates demonstrated good histocompatibility. Hence, surface-modified tantalum plates had the potential to be used as an implant material for the treatment of craniomaxillofacial bone defects.
Collapse
Affiliation(s)
- Zhengyu Wei
- Department of Otorhinolaryngology Head and Neck Surgery, the Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, 315040, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, the Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, 315040, Zhejiang, China.
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China.
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, the Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, 315040, Zhejiang, China
| | - Tairong Kuang
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jinggang Wang
- Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Christie B, Musri N, Djustiana N, Takarini V, Tuygunov N, Zakaria M, Cahyanto A. Advances and challenges in regenerative dentistry: A systematic review of calcium phosphate and silicate-based materials on human dental pulp stem cells. Mater Today Bio 2023; 23:100815. [PMID: 37779917 PMCID: PMC10539671 DOI: 10.1016/j.mtbio.2023.100815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
Conventional dentistry faces limitations in preserving tooth health due to the finite lifespan of restorative materials. Regenerative dentistry, utilizing stem cells and bioactive materials, offers a promising approach for regenerating dental tissues. Human dental pulp stem cells (hDPSCs) and bioactive materials like calcium phosphate (CaP) and silicate-based materials have shown potential for dental tissue regeneration. This systematic review aims to investigate the effects of CaP and silicate-based materials on hDPSCs through in vitro studies published since 2015. Following the PRISMA guidelines, a comprehensive search strategy was implemented in PubMed MedLine, Cochrane, and ScienceDirect databases. Eligibility criteria were established using the PICOS scheme. Data extraction and risk of bias (RoB) assessment were conducted, with the included studies assessed for bias using the Office of Health and Translation (OHAT) RoB tool. The research has been registered at OSF Registries. Ten in vitro studies met the eligibility criteria out of 1088 initial studies. Methodological heterogeneity and the use of self-synthesized biomaterials with limited generalizability were observed in the included study. The findings highlight the positive effect of CaP and silicate-based materials on hDPSCs viability, adhesion, migration, proliferation, and differentiation. While the overall RoB assessment indicated satisfactory credibility of the reviewed studies, the limited number of studies and methodological heterogeneity pose challenges for quantitative research. In conclusion, this systematic review provides valuable insights into the effects of CaP and silicate-based materials on hDPSCs. Further research is awaited to enhance our understanding and optimize regenerative dental treatments using bioactive materials and hDPSCs, which promise to improve patient outcomes.
Collapse
Affiliation(s)
- B. Christie
- Faculty of Dentistry, Universitas Padjadjaran, Jalan Sekeloa Selatan 1, Bandung, 40134, Indonesia
| | - N. Musri
- Faculty of Dentistry, Universitas Padjadjaran, Jalan Sekeloa Selatan 1, Bandung, 40134, Indonesia
| | - N. Djustiana
- Department of Dental Materials Science and Technology, Faculty of Dentistry, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
- Oral Biomaterials Study Center, Faculty of Dentistry, Universitas Padjadjaran, Jalan Sekeloa Selatan 1, Bandung, 40134, Indonesia
| | - V. Takarini
- Department of Dental Materials Science and Technology, Faculty of Dentistry, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
- Oral Biomaterials Study Center, Faculty of Dentistry, Universitas Padjadjaran, Jalan Sekeloa Selatan 1, Bandung, 40134, Indonesia
| | - N. Tuygunov
- Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - M.N. Zakaria
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - A. Cahyanto
- Department of Dental Materials Science and Technology, Faculty of Dentistry, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
- Oral Biomaterials Study Center, Faculty of Dentistry, Universitas Padjadjaran, Jalan Sekeloa Selatan 1, Bandung, 40134, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km 21, Jatinangor, 45363, Indonesia
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
7
|
Gheorghe DN, Bennardo F, Silaghi M, Popescu DM, Maftei GA, Bătăiosu M, Surlin P. Subgingival Use of Air-Polishing Powders: Status of Knowledge: A Systematic Review. J Clin Med 2023; 12:6936. [PMID: 37959401 PMCID: PMC10647465 DOI: 10.3390/jcm12216936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Effective subgingival biofilm removal is crucial for achieving positive and stable outcomes in periodontal therapy, forming an indispensable part of any periodontal treatment approach. The development of air-polishing tools has emerged as a promising alternative to hand and ultrasonic scalers for dental biofilm removal. The objective of this systematic review was to assess existing literature regarding the subgingival use of various types of air-polishing powders, as an effective method of subgingival biofilm control. For this, 55 articles on this subjected were sourced from searched databases and subjected to an evaluation process of their contained information, which was subsequently structured and compiled into this manuscript. The existing literature acknowledges that good subgingival biofilm control is essential for the success of periodontal therapy, including through subgingival air-polishing, as an adjunctive procedure. This approach has the potential to enhance patient comfort during and after subgingival mechanical plaque removal, thereby mitigating damage to periodontal structures. Consequently, it may lead to improved healing capabilities within the periodontal tissues and the formation of a more stable reparative gingival junctional epithelium.
Collapse
Affiliation(s)
- Dorin Nicolae Gheorghe
- Department of Periodontology, Research Center of Periodontal-Systemic Interactions, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.-M.P.); (P.S.)
| | - Francesco Bennardo
- Department of Health Sciences, School of Dentistry, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Margarita Silaghi
- Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Dora-Maria Popescu
- Department of Periodontology, Research Center of Periodontal-Systemic Interactions, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.-M.P.); (P.S.)
| | - George-Alexandru Maftei
- Department of Dento-Alveolar Surgery and Oral Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Marilena Bătăiosu
- Department of Pedodontics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Petra Surlin
- Department of Periodontology, Research Center of Periodontal-Systemic Interactions, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.-M.P.); (P.S.)
| |
Collapse
|
8
|
Weusmann J, Deschner J, Keppler C, Imber JC, Cores Ziskoven P, Schumann S. The working angle in low-abrasive air polishing has an influence on gingival damage-an ex vivo porcine model. Clin Oral Investig 2023; 27:6199-6207. [PMID: 37644232 PMCID: PMC10560150 DOI: 10.1007/s00784-023-05236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVES To investigate the influence of instrumentation angle during low-abrasive air polishing (LAA) on the oral gingiva using an ex vivo porcine model. MATERIAL AND METHODS Six tissue samples from each of 14 porcine mandibles were randomly selected and instrumented. Two different LAA powders (glycine 25 μm, tagatose 15 μm) were investigated. An application angle of either 30-60° or 90° was selected. Gingival specimens from different mandibles served as untreated references. Gingival biopsies were examined by scanning electron microscopy and paraffin histology for tissue destruction using a five-level scale. RESULTS LAA caused significantly less tissue damage at a 90° angle than at a 30-60° angle. This effect was seen in both the glycine-based powder arms (p = 0.002, p = 0.046) and the tagatose-based powder arms (p = 0.003, p = 0.011). However, at identical working angles, the two powders did not show significant differences in terms of gingival erosion (p = 0.79 and p = 0.57; p = 0.91 and p = 0.78, respectively). CONCLUSIONS LAA may cause less tissue damage at an application angle of 90°. Consequently, it seems advisable to air-polish the soft tissue as perpendicularly as possible. Additionally, glycine and tagatose LAA powders do not seem to differ in concern of soft tissue damage. CLINICAL RELEVANCE Within the limitations of this ex vivo animal model, this study argues for an application that is as close as possible to the 90° angle intending to minimize soft tissue damage. Manufacturer specifications, however, mainly request applications deviating from the right angle. In order to work in interdental areas using LAA safely, the use of subgingival nozzles might be considered.
Collapse
Affiliation(s)
- Jens Weusmann
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg-University Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg-University Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Christopher Keppler
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg-University Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Jean-Claude Imber
- Department of Periodontology, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Pablo Cores Ziskoven
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg-University Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Sven Schumann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
9
|
Sun Y, Hu S, Xie Z, Zhou Y. Relevant factors of posterior mandible lingual plate perforation during immediate implant placement: a virtual implant placement study using CBCT. BMC Oral Health 2023; 23:76. [PMID: 36747164 PMCID: PMC9903431 DOI: 10.1186/s12903-022-02696-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/26/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND To explore the influence of cross-sectional type and morphological parameters at the mandibular molar sites on lingual plate perforation (LPP) during the immediate implant placement (IIP). METHODS 181 implants were virtually placed in the mandibular molar sites on the cone beam computed tomography (CBCT). Each cross-section of the implantation site was divided into the Undercut (U)/Parallel (P)/Convex (C) types. Morphologically relevant parameters were measured on the cross-sections, including width of the upper end (Wb), width of the lower end (Wc), vertical height (V), angle between the natural crown axis and the alveolar bone axis (∠β), LC depth (LCD), LC height, and angle between the horizontal line and the line connecting the most prominent point and the most concave point of lingual plate (∠α). Besides, the distance from the end of the virtual implant and the lingual bone plate of the cross-section (DIL) was calculated. Relationships between all the morphologically relevant parameters and the DIL were further analyzed. RESULTS A total of 77 (42.5%) cross-sections were classified as U-type, which was the most common one, accounting for 63% of the second molar regions. All LPP cases and most of the nearly LPP (87.9%) cases occurred at the U-type cross-sections, and the relationship between the DIL and the morphological parameters can be expressed by a multivariate linear equation. CONCLUSIONS The occurrence rate of U-type cross-sections in the second molar region was very high, and the risk of LPP should be considered during IIP. Except for the U-type, significant large LCD, small Wc, and large ∠β were the important relevant factors. CBCT and multivariate linear equations could help to assess the LPP risk and provide a reference for implant placement design pre-surgery.
Collapse
Affiliation(s)
- Yingjia Sun
- grid.13402.340000 0004 1759 700XStomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000 People’s Republic of China
| | - Sai Hu
- grid.13402.340000 0004 1759 700XThe Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu, 322000 Zhejiang People’s Republic of China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Yiqun Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
10
|
Zhang Y, Fan Z, Xing Y, Jia S, Mo Z, Gong H. Effect of microtopography on osseointegration of implantable biomaterials and its modification strategies. Front Bioeng Biotechnol 2022; 10:981062. [PMID: 36225600 PMCID: PMC9548570 DOI: 10.3389/fbioe.2022.981062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Orthopedic implants are widely used for the treatment of bone defects caused by injury, infection, tumor and congenital diseases. However, poor osseointegration and implant failures still occur frequently due to the lack of direct contact between the implant and the bone. In order to improve the biointegration of implants with the host bone, surface modification is of particular interest and requirement in the development of implant materials. Implant surfaces that mimic the inherent surface roughness and hydrophilicity of native bone have been shown to provide osteogenic cells with topographic cues to promote tissue regeneration and new bone formation. A growing number of studies have shown that cell attachment, proliferation and differentiation are sensitive to these implant surface microtopography. This review is to provide a summary of the latest science of surface modified bone implants, focusing on how surface microtopography modulates osteoblast differentiation in vitro and osseointegration in vivo, signaling pathways in the process and types of surface modifications. The aim is to systematically provide comprehensive reference information for better fabrication of orthopedic implants.
Collapse
Affiliation(s)
- Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Zhenmin Fan
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, China
| | - Yanghui Xing
- Department of Biomedical Engineering, Shantou University, Shantou, China
| | - Shaowei Jia
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhongjun Mo
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, China
- *Correspondence: Zhongjun Mo, ; He Gong,
| | - He Gong
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- *Correspondence: Zhongjun Mo, ; He Gong,
| |
Collapse
|
11
|
Pisciotta A, Lunghi A, Bertani G, Di Tinco R, Bertoni L, Orlandi G, Biscarini F, Bianchi M, Carnevale G. PEDOT: PSS promotes neurogenic commitment of neural crest-derived stem cells. Front Physiol 2022; 13:930804. [PMID: 36060701 PMCID: PMC9428488 DOI: 10.3389/fphys.2022.930804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
Poly (3,4-ethylendioxythiophene) polystyrene sulphonate (PEDOT:PSS) is the workhorse of organic bioelectronics and is steadily gaining interest also in tissue engineering due to the opportunity to endow traditional biomaterials for scaffolds with conductive properties. Biomaterials capable of promoting neural stem cell differentiation by application of suitable electrical stimulation protocols are highly desirable in neural tissue engineering. In this study, we evaluated the adhesion, proliferation, maintenance of neural crest stemness markers and neurogenic commitment of neural crest-derived human dental pulp stem cells (hDPSCs) cultured on PEDOT:PSS nanostructured thin films deposited either by spin coating (SC-PEDOT) or by electropolymerization (ED-PEDOT). In addition, we evaluated the immunomodulatory properties of hDPSCs on PEDOT:PSS by investigating the expression and maintenance of the Fas ligand (FasL). We found that both SC-PEDOT and ED-PEDOT thin films supported hDPSCs adhesion and proliferation; however, the number of cells on the ED-PEDOT after 1 week of culture was significantly higher than that on SC-PEDOT. To be noted, both PEDOT:PSS films did not affect the stemness phenotype of hDPSCs, as indicated by the maintenance of the neural crest markers Nestin and SOX10. Interestingly, neurogenic induction was clearly promoted on ED-PEDOT, as indicated by the strong expression of MAP-2 and β—Tubulin-III as well as evident cytoskeletal reorganisation and appreciable morphology shift towards a neuronal-like shape. In addition, strong FasL expression was detected on both undifferentiated or undergoing neurogenic commitment hDPSCs, suggesting that ED-PEDOT supports the expression and maintenance of FasL under both expansion and differentiation conditions.
Collapse
Affiliation(s)
- Alessandra Pisciotta
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alice Lunghi
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
- Sezione di Fisiologia, Università di Ferrara, Ferrara, Italy
| | - Giulia Bertani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Orlandi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Biscarini
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Life Sciences, Università di Modena e Reggio Emilia, Modena, Italy
| | - Michele Bianchi
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
- *Correspondence: Michele Bianchi,
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
12
|
Fageeh HN. Preliminary Evaluation of Proliferation, Wound Healing Properties, Osteogenic and Chondrogenic Potential of Dental Pulp Stem Cells Obtained from Healthy and Periodontitis Affected Teeth. Cells 2021; 10:cells10082118. [PMID: 34440887 PMCID: PMC8393753 DOI: 10.3390/cells10082118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Dental pulp tissue within the central cavity of the tooth is composed of dental pulp stem cells (DPSC). These mesenchymal stem cells have good proliferative as well as differentiation potential. DPSC has been isolated even from teeth with inflamed pulps and is found to retain their proliferative and differentiation potential. Little research is available about the viability and differentiation potential of DPSC obtained from teeth with periodontitis. In the present study, the aim was to compare the morphological features, stem cell marker (MSC) expression, proliferation rate, migratory and wound healing properties, osteogenic and chondrogenic differentiation potential of DPSCs obtained from periodontally healthy teeth (hDPSCs) and periodontitis affected teeth (pDPSCs). Methods: Dental pulp tissue was obtained from periodontally healthy volunteers (n = 3) and patients with periodontitis undergoing extraction of mobile teeth (n = 3). DPSC were isolated using the explant technique and cultured. All the experiments were performed at early passage (Passage 2), late passage (Passage 6) and after cryopreservation. Morphological features of the hDPSCs and pDPSCs were ascertained using microscopy. The expression of cell surface stem cell markers was assessed by the flow cytometry method. The proliferation and growth rate of the cells were assayed by plotting a growth curve from 0–13 days of culture. The migratory characteristics were assessed by wound scratch assay. Osteogenic and chondrogenic differentiation of the cells was assessed using standard protocols with and without induction. Results: DPSCs were successfully obtained from periodontally healthy teeth (hDPSC) and periodontitis-affected teeth (pDPSCs). The data suggests that there were no morphological differences observed in early passage cells between the two cohorts. Cryopreservation did change the morphology of pDSPCs. There was no significant difference in the positive expression of mesenchymal markers CD73, CD90 and CD105 in early passage cells. However, serial passaging and cryopreservation affected the marker expression in pDPSCs. A faint expression of hematopoietic stem cell markers CD34, CD45 and MHC class II antigen HLA-DR was observed in both the cell types. The expression of HLA-DR is upregulated in pDPSCs compared to hDPSC. A significantly slower growth rate and slower wound healing properties was observed in pDPSCs compared to hDPSC. In late passage and after cryopreservation, the migratory ability of pDPSCs was found to be increased drastically. There was no significant difference in osteogenic potential between the two cell types. However, the chondrogenic potential of pDPSCs was significantly lower compared to hDPSc. Yet, pDPSCs showed enhanced osteogenesis and chondrogenesis at late passage as well as after cryopreservation. Conclusion: The results of this novel study shed light on the isolation of viable DPSC from periodontitis-affected teeth. These cells exhibit a slower growth rate and migratory characteristics compared to their healthy counterparts. There was no difference in osteogenic potential but a reduction in chondrogenic potential was seen in pDPSCs compared to hDPSC. The findings reveal that DPSC from periodontitis-affected teeth presents an easy and viable option for regenerative medicine application. Some additional nutritive factors and protocols may be required to attain better regenerative benefits while using pDPSCs.
Collapse
Affiliation(s)
- Hytham N Fageeh
- Department of Preventive Dental Science, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|