1
|
Iijima T, Sakai J, Kanamori D, Ando S, Nomura T, Tisi L, Kilgore PE, Percy N, Kohase H, Hayakawa S, Maesaki S, Hoshino T, Seki M. A New Method to Detect Variants of SARS-CoV-2 Using Reverse Transcription Loop-Mediated Isothermal Amplification Combined with a Bioluminescent Assay in Real Time (RT-LAMP-BART). Int J Mol Sci 2023; 24:10698. [PMID: 37445876 DOI: 10.3390/ijms241310698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), of which there are several variants. The three major variants (Alpha, Delta, and Omicron) carry the N501Y, L452R, and Q493R/Q498R mutations, respectively, in the S gene. Control of COVID-19 requires rapid and reliable detection of not only SARS-CoV-2 but also its variants. We previously developed a reverse transcription loop-mediated isothermal amplification assay combined with a bioluminescent assay in real time (RT-LAMP-BART) to detect the L452R mutation in the SARS-CoV-2 spike protein. In this study, we established LAMP primers and peptide nucleic acid probes to detect N501Y and Q493R/Q498R. The LAMP primer sets and PNA probes were designed for the N501Y and Q493R/Q498R mutations on the S gene of SARS-CoV-2. The specificities of RT-LAMP-BART assays were evaluated using five viral and four bacterial reference strains. The sensitivities of RT-LAMP-BART assays were evaluated using synthetic RNAs that included the target sequences, together with RNA-spiked clinical nasopharyngeal and salivary specimens. The results were compared with those of conventional real-time reverse transcription-polymerase chain reaction (RT-PCR) methods. The method correctly identified N501Y and Q493R/Q498R. Within 30 min, the RT-LAMP-BART assays detected up to 100-200 copies of the target genes; conventional real-time RT-PCR required 130 min and detected up to 500-3000 copies. Surprisingly, the real-time RT-PCR for N501Y did not detect the BA.1 and BA.2 variants (Omicron) that exhibited the N501Y mutation. The novel RT-LAMP-BART assay is highly specific and more sensitive than conventional real-time RT-PCR. The new assay is simple, inexpensive, and rapid; thus, it can be useful in efforts to identify SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Takahiro Iijima
- Division of Pediatric Dentistry, Department of Human Development and Fostering, Meikai University School of Dentistry, Sakado 350-0283, Japan
| | - Jun Sakai
- Department of Infectious Disease and Infection Control, Saitama Medical University, Moroyama 350-8550, Japan
| | - Dai Kanamori
- Division of Pediatric Dentistry, Department of Human Development and Fostering, Meikai University School of Dentistry, Sakado 350-0283, Japan
| | - Shinnosuke Ando
- Division of Dental Anesthesiology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado 350-0248, Japan
| | - Tsutomu Nomura
- Division of Otolaryngology, Department of Comprehensive Medical Sciences, Meikai University School of Dentistry, Sakado 350-0248, Japan
| | | | - Paul E Kilgore
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | | | - Hikaru Kohase
- Division of Dental Anesthesiology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado 350-0248, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 113-8602, Japan
| | - Shigefumi Maesaki
- Department of Infectious Disease and Infection Control, Saitama Medical University, Moroyama 350-8550, Japan
| | - Tomonori Hoshino
- Division of Pediatric Dentistry, Department of Human Development and Fostering, Meikai University School of Dentistry, Sakado 350-0283, Japan
| | - Mitsuko Seki
- Division of Pediatric Dentistry, Department of Human Development and Fostering, Meikai University School of Dentistry, Sakado 350-0283, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 113-8602, Japan
| |
Collapse
|
2
|
Wu R, Meng B, Corredig M, Griffiths MW. Rapid Detection of Hepatitis A Virus in Foods Using a Bioluminescent Assay in Real-Time (BART) and Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) Technology. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:144-157. [PMID: 36640204 PMCID: PMC9839959 DOI: 10.1007/s12560-022-09548-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/30/2022] [Indexed: 06/13/2023]
Abstract
Foodborne hepatitis A infections have been considered as a major threat for public health worldwide. Increased incidences of hepatitis A virus (HAV) infection has been associated with growing global trade of food products. Rapid and sensitive detection of HAV in foods is very essential for investigating the outbreaks. Real-time RT-PCR has been most widely used for the detection of HAV by far. However, the technology relies on fluorescence determination of the amplicon and requires sophisticated, high-cost instruments and trained personnel, limiting its use in low resource settings. In this study, a robust, affordable, and simple assay, reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay in combination with a bioluminescence-based determination of amplification in real-time (BART), was developed for the detection of HAV in different food matrices, including green onion, strawberry, mussel, and milk. The efficiencies of a one-step RT-LAMP-BART and a two-step RT-LAMP-BART were investigated for the detection of HAV in different food matrices and was compared with that of real-time RT-PCR. The sensitivity of the RT-LAMP-BART assay was significantly affected by Mg2+ concentration (P < 0.05), in addition to primer quality. The optimal Mg2+ concentration was 2 mM for one-step RT-LAMP-BART and 4 mM for two-step RT-LAMP-BART. Compared with cartridge-purified primers, HPLC-purified primers could greatly improve the sensitivity of the RT-LAMP-BART assay (P < 0.05). For detecting HAV in different food matrices, the performance of two-step RT-LAMP-BART was comparable with that of real-time RT-PCR and was better than that of one-step RT-LAMP-BART. The detection limit of the two-step RT-LAMP-BART for HAV in green onion, strawberry, mussel, and milk was 8.3 × 100 PFU/15 g, 8.3 × 101 PFU/50 g, 8.3 × 100 PFU/5 g, and 8.3 × 100 PFU/40 mL, respectively. The developed RT-LAMP-BART was an effective, simple, sensitive, and robust method for foodborne HAV detection.
Collapse
Affiliation(s)
- Ruiqin Wu
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
- Canadian Research Institute for Food Safety, 43 McGilvray Street, Guelph, ON, N1G 2W1, Canada.
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Milena Corredig
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Mansel W Griffiths
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Canadian Research Institute for Food Safety, 43 McGilvray Street, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
3
|
Fei Z, Gupta N, Li M, Xiao P, Hu X. Toward highly effective loading of DNA in hydrogels for high-density and long-term information storage. SCIENCE ADVANCES 2023; 9:eadg9933. [PMID: 37163589 PMCID: PMC10171811 DOI: 10.1126/sciadv.adg9933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Digital information, when converted into a DNA sequence, provides dense, stable, energy-efficient, and sustainable data storage. The most stable method for encapsulating DNA has been in an inorganic matrix of silica, iron oxide, or both, but are limited by low DNA uptake and complex recovery techniques. This study investigated a rationally designed thermally responsive functionally graded (TRFG) hydrogel as a simple and cost-effective method for storing DNA. The TRFG hydrogel shows high DNA uptake, long-term protection, and reusability due to nondestructive DNA extraction. The high loading capacity was achieved by directly absorbing DNA from the solution, which is then retained because of its interaction with a hyperbranched cationic polymer loaded into a negatively charged hydrogel matrix used as a support and because of its thermoresponsive nature, which allows DNA concentration within the hydrogel through multiple swelling/deswelling cycles. We were able to achieve a high DNA data density of 7.0 × 109 gigabytes per gram using a hydrogel-based system.
Collapse
Affiliation(s)
- Zhongjie Fei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nupur Gupta
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Mengjie Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiao Hu
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| |
Collapse
|
4
|
Fei Z, Liu P, Cheng C, Wei R, Xiao P, Zhang Y. Solvent-Responsive Magnetic Beads for Accurate Detection of SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4924-4934. [PMID: 36648175 DOI: 10.1021/acsami.2c18684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although numerous approaches were proposed for the nucleic acid (NA)-based SARS-CoV-2 detection, the nonideal NA desorption efficiency of conventional magnetic beads (MBs) limits their widespread application. In this study, we developed solvent-responsive MBs (called responsive MBs), which, in the presence of buffers, modulated the absorption and desorption capacities of NA by flipping the surface -COO-. Relative to other commercial MBs, responsive MBs exhibited similar absorption profiles and markedly enhanced desorption profiles. When applied for NA detection of complex samples, responsive MBs exhibited better performance of RNA detection than DNA, with obvious advantages in sensitivity. Specifically, the RNA and DNA desorption rates of commercial MBs were ∼85 and 82.5%, while those of responsive MBs were nearly 94 and 93.5%, respectively. Furthermore, responsive MBs exhibited remarkable extraction ability in a wide range of tissues and better performance of RNA extraction than DNA. When applied for SARS-CoV-2 detection, the responsive MBs along with the simulated digital RT-LAMP (a previously established apparatus) further improved detection efficiency, yielding a precise quantitative detection as low as 25 copies and an ultimate sensibility detection of 5 copies/mL. It was also successfully employed in numerous NA-based technologies such as polymerase chain reaction (PCR), sequencing, and so on.
Collapse
Affiliation(s)
- Zhongjie Fei
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, No. 2, Southeast University Road, Nanjing 211189, Jiangsu, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Xuanwu Road, Nanjing 210096, Jiangsu, China
| | - Ping Liu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, No. 2, Southeast University Road, Nanjing 211189, Jiangsu, China
| | - Chu Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Xuanwu Road, Nanjing 210096, Jiangsu, China
| | - Rongbin Wei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Xuanwu Road, Nanjing 210096, Jiangsu, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Xuanwu Road, Nanjing 210096, Jiangsu, China
| | - Youfa Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, No. 2, Southeast University Road, Nanjing 211189, Jiangsu, China
| |
Collapse
|
6
|
Moore KJM, Cahill J, Aidelberg G, Aronoff R, Bektaş A, Bezdan D, Butler DJ, Chittur SV, Codyre M, Federici F, Tanner NA, Tighe SW, True R, Ware SB, Wyllie AL, Afshin EE, Bendesky A, Chang CB, Dela Rosa R, Elhaik E, Erickson D, Goldsborough AS, Grills G, Hadasch K, Hayden A, Her SY, Karl JA, Kim CH, Kriegel AJ, Kunstman T, Landau Z, Land K, Langhorst BW, Lindner AB, Mayer BE, McLaughlin LA, McLaughlin MT, Molloy J, Mozsary C, Nadler JL, D'Silva M, Ng D, O'Connor DH, Ongerth JE, Osuolale O, Pinharanda A, Plenker D, Ranjan R, Rosbash M, Rotem A, Segarra J, Schürer S, Sherrill-Mix S, Solo-Gabriele H, To S, Vogt MC, Yu AD, Mason CE. Loop-Mediated Isothermal Amplification Detection of SARS-CoV-2 and Myriad Other Applications. J Biomol Tech 2021; 32:228-275. [PMID: 35136384 PMCID: PMC8802757 DOI: 10.7171/jbt.21-3203-017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As the second year of the COVID-19 pandemic begins, it remains clear that a massive increase in the ability to test for SARS-CoV-2 infections in a myriad of settings is critical to controlling the pandemic and to preparing for future outbreaks. The current gold standard for molecular diagnostics is the polymerase chain reaction (PCR), but the extraordinary and unmet demand for testing in a variety of environments means that both complementary and supplementary testing solutions are still needed. This review highlights the role that loop-mediated isothermal amplification (LAMP) has had in filling this global testing need, providing a faster and easier means of testing, and what it can do for future applications, pathogens, and the preparation for future outbreaks. This review describes the current state of the art for research of LAMP-based SARS-CoV-2 testing, as well as its implications for other pathogens and testing. The authors represent the global LAMP (gLAMP) Consortium, an international research collective, which has regularly met to share their experiences on LAMP deployment and best practices; sections are devoted to all aspects of LAMP testing, including preanalytic sample processing, target amplification, and amplicon detection, then the hardware and software required for deployment are discussed, and finally, a summary of the current regulatory landscape is provided. Included as well are a series of first-person accounts of LAMP method development and deployment. The final discussion section provides the reader with a distillation of the most validated testing methods and their paths to implementation. This review also aims to provide practical information and insight for a range of audiences: for a research audience, to help accelerate research through sharing of best practices; for an implementation audience, to help get testing up and running quickly; and for a public health, clinical, and policy audience, to help convey the breadth of the effect that LAMP methods have to offer.
Collapse
Affiliation(s)
- Keith J M Moore
- School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines
| | | | - Guy Aidelberg
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
- Just One Giant Lab, Centre de Recherches Interdisciplinaires (CRI), 75004 Paris, France
| | - Rachel Aronoff
- Just One Giant Lab, Centre de Recherches Interdisciplinaires (CRI), 75004 Paris, France
- Action for Genomic Integrity Through Research! (AGiR!), Lausanne, Switzerland
- Association Hackuarium, Lausanne, Switzerland
| | - Ali Bektaş
- Oakland Genomics Center, Oakland, CA 94609, USA
| | - Daniela Bezdan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, 72076 Tübingen, Germany
- Poppy Health, Inc, San Francisco, CA 94158, USA
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital, 72076 Tübingen, Germany
| | - Daniel J Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sridar V Chittur
- Center for Functional Genomics, Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, 12222, USA
| | - Martin Codyre
- GiantLeap Biotechnology Ltd, Wicklow A63 Kv91, Ireland
| | - Fernan Federici
- ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | | | | | - Randy True
- FloodLAMP Biotechnologies, San Carlos, CA 94070, USA
| | - Sarah B Ware
- Just One Giant Lab, Centre de Recherches Interdisciplinaires (CRI), 75004 Paris, France
- BioBlaze Community Bio Lab, 1800 W Hawthorne Ln, Ste J-1, West Chicago, IL 60185, USA
- Blossom Bio Lab, 1800 W Hawthorne Ln, Ste K-2, West Chicago, IL 60185, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andres Bendesky
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Connie B Chang
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, 59717, USA
| | - Richard Dela Rosa
- School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines
| | - Eran Elhaik
- Department of Biology, Lund University, Sölvegatan 35, Lund, Sweden
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA
| | | | - George Grills
- Department of Microbiology, University of Pennsylvania, Philadelphia, 19104, USA
| | - Kathrin Hadasch
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
- Department of Biology, Membrane Biophysics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- Lab3 eV, Labspace Darmstadt, 64295 Darmstadt, Germany
- IANUS Verein für Friedensorientierte Technikgestaltung eV, 64289 Darmstadt, Germany
| | - Andrew Hayden
- Center for Functional Genomics, Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, 12222, USA
| | | | - Julie A Karl
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Madison 53705, USA
| | | | | | | | - Zeph Landau
- Department of Computer Science, University of California, Berkeley, Berkeley, 94720, USA
| | - Kevin Land
- Mologic, Centre for Advanced Rapid Diagnostics, (CARD), Bedford Technology Park, Thurleigh MK44 2YA, England
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, 0028 Pretoria, South Africa
| | | | - Ariel B Lindner
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Benjamin E Mayer
- Department of Biology, Membrane Biophysics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- Lab3 eV, Labspace Darmstadt, 64295 Darmstadt, Germany
| | | | - Matthew T McLaughlin
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Madison 53705, USA
| | - Jenny Molloy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, England
| | - Christopher Mozsary
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jerry L Nadler
- Department of Pharmacology, New York Medical College, Valhalla, 10595, USA
| | - Melinee D'Silva
- Department of Pharmacology, New York Medical College, Valhalla, 10595, USA
| | - David Ng
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Madison 53705, USA
| | - Jerry E Ongerth
- University of Wollongong, Environmental Engineering, Wollongong NSW 2522, Australia
| | - Olayinka Osuolale
- Applied Environmental Metagenomics and Infectious Diseases Research (AEMIDR), Department of Biological Sciences, Elizade University, Ilara Mokin, Nigeria
| | - Ana Pinharanda
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Dennis Plenker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ravi Ranjan
- Genomics Resource Laboratory, Institute for Applied Life Sciences, University of Massachusetts, Amherst, 01003, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | | | | | | | - Scott Sherrill-Mix
- Department of Microbiology, University of Pennsylvania, Philadelphia, 19104, USA
| | | | - Shaina To
- School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines
| | - Merly C Vogt
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Albert D Yu
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|