1
|
Pradhan D, Biswasroy P, Ramchandani M, Pradhan DK, Bhola RK, Goyal A, Ghosh G, Rath G. Development, characterization, and evaluation of withaferin-A and artesunate-loaded pH-responsive acetal-dextran polymeric nanoparticles for the management of malaria. Int J Biol Macromol 2024; 273:133220. [PMID: 38897506 DOI: 10.1016/j.ijbiomac.2024.133220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Artemisinin and its derivatives have been commonly used to treat malaria. However, the emergence of resistance against artemisinin derivatives has posed a critical challenge in malaria management. In the present study, we have proposed a combinatorial approach, utilizing pH-responsive acetal-dextran nanoparticles (Ac-Dex NPs) as carriers for the delivery of withaferin-A (WS-3) and artesunate (Art) to improve treatment efficacy of malaria. The optimized WS-3 and Art Ac-Dex NPs demonstrated enhanced pH-responsive release profiles under parasitophorous mimetic conditions (pH 5.5). Computational molecular modeling reveals that Ac-Dex's polymeric backbone strongly interacts with merozoite surface protein-1 (MSP-1), preventing erythrocyte invasion. In-vitro antimalarial activity of drug-loaded Ac-Dex NPs reveals a 1-1.5-fold reduction in IC50 values compared to pure drug against the 3D7 strain of Plasmodium falciparum. Treatment with WS-3 Ac-Dex NPs (100 mg/kg) and Art Ac-Dex NPs (30 mg/kg) to Plasmodium berghei-infected mice resulted in 78.11 % and 100 % inhibition of parasitemia. Notably, the combination therapy comprised of Art and WS-3 Ac-Dex NPs achieved complete inhibition of parasitemia even at a half dose of Art, indicating the synergistic potential of the combinations. However, further investigations are necessary to confirm the safety and effectiveness of WS-3 and Art Ac-Dex NPs for their successful clinical implications.
Collapse
Affiliation(s)
- Deepak Pradhan
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Prativa Biswasroy
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Manish Ramchandani
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Rajasthan, India
| | - Dilip Kumar Pradhan
- Department of Medicine, Pandit Raghunath Murmu Medical College and Hospital, Baripada, Odisha, India
| | - Rajesh Kumar Bhola
- Department of Hematology, Institute of Medical Sciences and Sum Hospital, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Amit Goyal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Rajasthan, India
| | - Goutam Ghosh
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.
| | - Goutam Rath
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.
| |
Collapse
|
2
|
Yang S, Lin HS, Zhang L, Chi-Lui Ho P. Formulating 10-hydroxycamptothecin into nanoemulsion with functional excipient tributyrin: An innovative strategy for targeted hepatic cancer chemotherapy. Int J Pharm 2024; 654:123945. [PMID: 38403088 DOI: 10.1016/j.ijpharm.2024.123945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/10/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
This study aimed to develop an innovative dosage form for 10-hydroxycamptothecin (HCPT), a chemotherapeutic agent with limited aqueous solubility and stability, to enhance its parenteral delivery and targeting to hepatic cancer. We formulated HCPT into a nanoemulsion using tributyrin, a dietary component with histone deacetylase inhibitor activity. The resulting HCPT-loaded tributyrin nanoemulsion (Tri-HCPT-E) underwent extensive evaluations. Tri-HCPT-E significantly improved the aqueous solubility, stability, and anti-cancer activities in HepG2 cells. Pharmacokinetic studies confirmed the increased stability and hepatic targeting, with Tri-HCPT-E leading to a 120-fold increase in plasma exposure of intact HCPT and a 10-fold increase in hepatic exposure compared to the commercial free solution. Co-administration of 17α-ethynylestradiol, an up-regulator of low-density lipoprotein (LDL) receptor, further enhanced the distribution and metabolism of HCPT, demonstrating an association between the LDL receptor pathway and hepatic targeting. Most importantly, Tri-HCPT-E exhibited superior in vivo anti-cancer efficacy in a mouse xenograft model compared to the commercial formulation, without causing escalated hepatic or renal toxicity. In conclusion, formulating HCPT into a nanoemulsion with tributyrin has proven to be an innovative and effective strategy for targeted hepatic cancer chemotherapy while tributyrin, a pharmacologically active dietary component, has emerged as a promising functional excipient for drug delivery.
Collapse
Affiliation(s)
- Shili Yang
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Hai-Shu Lin
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Li Zhang
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Paul Chi-Lui Ho
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore; School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Malaysia.
| |
Collapse
|
3
|
El Saftawy E, Farag MF, Gebreil HH, Abdelfatah M, Aboulhoda BE, Alghamdi M, Albadawi EA, Abd Elkhalek MA. Malaria: biochemical, physiological, diagnostic, and therapeutic updates. PeerJ 2024; 12:e17084. [PMID: 38529311 PMCID: PMC10962339 DOI: 10.7717/peerj.17084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/19/2024] [Indexed: 03/27/2024] Open
Abstract
Background Malaria has been appraised as a significant vector-borne parasitic disease with grave morbidity and high-rate mortality. Several challenges have been confronting the efficient diagnosis and treatment of malaria. Method Google Scholar, PubMed, Web of Science, and the Egyptian Knowledge Bank (EKB) were all used to gather articles. Results Diverse biochemical and physiological indices can mirror complicated malaria e.g., hypoglycemia, dyslipidemia, elevated renal and hepatic functions in addition to the lower antioxidant capacity that does not only destroy the parasite but also induces endothelial damage. Multiple trials have been conducted to improve recent points of care in malaria involving biosensors, lap on-chip, and microdevices technology. Regarding recent therapeutic trials, chemical falcipain inhibitors and plant extracts with anti-plasmodial activities are presented. Moreover, antimalaria nano-medicine and the emergence of nanocarrier (either active or passive) in drug transportation are promising. The combination therapeutic trials e.g., amodiaquine + artemether + lumefantrine are presented to safely counterbalance the emerging drug resistance in addition to the Tafenoquine as a new anti-relapse therapy. Conclusion Recognizing the pathophysiology indices potentiate diagnosis of malaria. The new points of care can smartly manipulate the biochemical and hematological alterations for a more sensitive and specific diagnosis of malaria. Nano-medicine appeared promising. Chemical and plant extracts remain points of research.
Collapse
Affiliation(s)
- Enas El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Giza, Egypt
- Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt
| | - Mohamed F. Farag
- Department of Medical Physiology, Armed Forces College of Medicine, Cairo, Giza, Egypt
| | - Hossam H. Gebreil
- Department of Medical Biochemistry & Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt
| | - Mohamed Abdelfatah
- Department of Medical Physiology, Armed Forces College of Medicine, Cairo, Giza, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Giza, Egypt
| | - Mansour Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Emad A. Albadawi
- Department of Anatomy, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Marwa Ali Abd Elkhalek
- Department of Medical Biochemistry & Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt
- Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Mohamed WA, El-Nekhily NA, Mahmoud HE, Hussein AA, Sabra SA. Prodigiosin/celecoxib-loaded into zein/sodium caseinate nanoparticles as a potential therapy for triple negative breast cancer. Sci Rep 2024; 14:181. [PMID: 38168547 PMCID: PMC10761898 DOI: 10.1038/s41598-023-50531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Nowadays, breast cancer is considered one of the most upsetting malignancies among females. Encapsulation of celecoxib (CXB) and prodigiosin (PDG) into zein/sodium caseinate nanoparticles (NPs) produce homogenous and spherical nanoparticles with good encapsulation efficiencies (EE %) and bioavailability. In vitro cytotoxicity study conducted on human breast cancer MDA-MB-231 cell lines revealed that there was a significant decline in the IC50 for encapsulated drugs when compared to each drug alone or their free combination. In addition, results demonstrated that there is a synergism between CXB and PDG as their combination indices were 0.62251 and 0.15493, respectively. Moreover, results of scratch wound healing assay revealed enhanced antimigratory effect of free drugs and fabricated NPs in comparison to untreated cells. Furthermore, In vitro results manifested that formulated nanoparticles exhibited induction of apoptosis associated with reduced angiogenesis, proliferation, and inflammation. In conclusion, nanoencapsulation of multiple drugs into nanoparticles might be a promising approach to develop new therapies for the managing of triple negative breast cancer.
Collapse
Affiliation(s)
- Wafaa A Mohamed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Nefertiti A El-Nekhily
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Hoda E Mahmoud
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Ahmed A Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt.
| |
Collapse
|
5
|
Fulgheri F, Manca ML, Fernàndez-Busquets X, Manconi M. Analysis of complementarities between nanomedicine and phytodrugs for the treatment of malarial infection. Nanomedicine (Lond) 2023; 18:1681-1696. [PMID: 37955573 DOI: 10.2217/nnm-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Abstract
The use of nanocarriers in medicine, so-called nanomedicine, is one of the most innovative strategies for targeting drugs at the action site and increasing their activity index and effectiveness. Phytomedicine is the oldest traditional method used to treat human diseases and solve health problems. The recent literature on the treatment of malaria infections using nanodelivery systems and phytodrugs or supplements has been analyzed. For the first time, in the present review, a careful look at the considerable potential of nanomedicine in promoting phytotherapeutic efficacy was done, and its key role in addressing a translation through a significant reduction of the current burden of malaria in many parts of the world has been underlined.
Collapse
Affiliation(s)
- Federica Fulgheri
- Department of Life & Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, Monserrato, 09042 CA, Italy
| | - Maria Letizia Manca
- Department of Life & Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, Monserrato, 09042 CA, Italy
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 1 49-153, 08036 Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Maria Manconi
- Department of Life & Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, Monserrato, 09042 CA, Italy
| |
Collapse
|
6
|
Xu Q, Duan YY, Pan M, Jin QW, Tao JP, Huang SY. In Vitro Evaluation Reveals Effect and Mechanism of Artemether against Toxoplasma gondii. Metabolites 2023; 13:metabo13040476. [PMID: 37110135 PMCID: PMC10145583 DOI: 10.3390/metabo13040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Due to the limited effectiveness of existing drugs for the treatment of toxoplasmosis, there is a dire need for the discovery of new therapeutic options. Artemether is an important drug for malaria and several studies have indicated that it also exhibits anti-T. gondii activity. However, its specific effect and mechanisms are still not clear. To elucidate its specific role and potential mechanism, we first evaluated its cytotoxicity and anti-Toxoplasma effect on human foreskin fibroblast cells, and then analyzed its inhibitory activity during T. gondii invasion and intracellular proliferation. Finally, we examined its effect on mitochondrial membrane potential and reactive oxygen species (ROS) in T. gondii. The CC50 value of artemether was found to be 866.4 μM, and IC50 was 9.035 μM. It exhibited anti-T. gondii activity and inhibited the growth of T. gondii in a dose-dependent manner. We also found that the inhibition occurred primarily in intracellular proliferation, achieved by reducing the mitochondrial membrane integrity of T. gondii and stimulating ROS production. These findings suggest that the mechanism of artemether against T. gondii is related to a change in the mitochondrial membrane and the increase in ROS production, which may provide a theoretical basis for optimizing artemether derivatives and further improving their anti-Toxoplasma efficacy.
Collapse
Affiliation(s)
- Qiong Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Yin-Yan Duan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Ming Pan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Qi-Wang Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Jian-Ping Tao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
7
|
Wang Y, Zhang L, Li T, Wang Y, Jiang J, Zhang X, Huang J, Xia B, Wang S, Dong W. Zein Coacervate as a New Coating Material for temperature-triggered microcapsule and fruit preservation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
8
|
Kong ST, Lin HS, Ching J, Xie H, Ho PC. Dried Blood Spots as Matrix for Evaluation of Valproate Levels and the Immediate and Delayed Metabolomic Changes Induced by Single Valproate Dose Treatment. Int J Mol Sci 2022; 23:ijms23137083. [PMID: 35806086 PMCID: PMC9266449 DOI: 10.3390/ijms23137083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
The immediate and delayed metabolic changes in rats treated with valproate (VPA), a drug used for the treatment of epilepsy, were profiled. An established approach using dried blood spots (DBS) as sample matrices for gas chromatography/mass spectrometry-based metabolomics profiling was modified using double solvents in the extraction of analytes. With the modified method, some of the previously undetectable metabolites were recovered and subtle differences in the metabolic changes upon exposure to a single dose of VPA between males and female rats were identified. In male rats, changes in 2-hydroxybutyric acid, pipecolic acid, tetratriacontane and stearic acid were found between the control and treatment groups at various time points from 2.5 h up to 24 h. In contrast, such differences were not observed in female rats, which could be caused by the vast inter-individual variations in metabolite levels within the female group. Based on the measured DBS drug concentrations, clearance and apparent volume of distribution of VPA were estimated and the values were found to be comparable to those estimated previously from full blood drug concentrations. The current study indicated that DBS is a powerful tool to monitor drug levels and metabolic changes in response to drug treatment.
Collapse
Affiliation(s)
- Sing Teang Kong
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore; (S.T.K.); (H.-S.L.)
| | - Hai-Shu Lin
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore; (S.T.K.); (H.-S.L.)
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Jianhong Ching
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
- KK Research Centre, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Huiqing Xie
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore 138634, Singapore
- Correspondence: (H.X.); (P.C.H.)
| | - Paul C. Ho
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore; (S.T.K.); (H.-S.L.)
- Correspondence: (H.X.); (P.C.H.)
| |
Collapse
|
9
|
De Marco I. Zein Microparticles and Nanoparticles as Drug Delivery Systems. Polymers (Basel) 2022; 14:polym14112172. [PMID: 35683844 PMCID: PMC9182932 DOI: 10.3390/polym14112172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 12/18/2022] Open
Abstract
Zein is a natural, biocompatible, and biodegradable polymer widely used in the pharmaceutical, biomedical, and packaging fields because of its low water vapor permeability, antibacterial activity, and hydrophobicity. It is a vegetal protein extracted from renewable resources (it is the major storage protein from corn). There has been growing attention to producing zein-based drug delivery systems in the recent years. Being a hydrophobic biopolymer, it is used in the controlled and targeted delivery of active principles. This review examines the present-day landscape of zein-based microparticles and nanoparticles, focusing on the different techniques used to obtain particles, the optimization of process parameters, advantages, disadvantages, and final applications.
Collapse
Affiliation(s)
- Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
10
|
Rodrigues DA, Miguel SP, Loureiro J, Ribeiro M, Roque F, Coutinho P. Oromucosal Alginate Films with Zein Nanoparticles as a Novel Delivery System for Digoxin. Pharmaceutics 2021; 13:pharmaceutics13122030. [PMID: 34959312 PMCID: PMC8706652 DOI: 10.3390/pharmaceutics13122030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
Digoxin is a hydrophobic drug used for the treatment of heart failure that possesses a narrow therapeutic index, which raises safety concerns for toxicity. This is of utmost relevance in specific populations, such as the elderly. This study aimed to demonstrate the potential of the sodium alginate films as buccal drug delivery system containing zein nanoparticles incorporated with digoxin to reduce the number of doses, facilitating the administration with a quick onset of action. The film was prepared using the solvent casting method, whereas nanoparticles by the nanoprecipitation method. The nanoparticles incorporated with digoxin (0.25 mg/mL) exhibited a mean size of 87.20 ± 0.88 nm, a polydispersity index of 0.23 ± 0.00, and a zeta potential of 21.23 ± 0.07 mV. Digoxin was successfully encapsulated into zein nanoparticles with an encapsulation efficiency of 91% (±0.00). Films with/without glycerol and with different concentrations of ethanol were produced. The sodium alginate (SA) films with 10% ethanol demonstrated good performance for swelling (maximum of 1474%) and mechanical properties, with a mean tensile strength of 0.40 ± 0.04 MPa and an elongation at break of 27.85% (±0.58), compatible with drug delivery application into the buccal mucosa. The current study suggests that SA films with digoxin-loaded zein nanoparticles can be an effective alternative to the dosage forms available on the market for digoxin administration.
Collapse
Affiliation(s)
- Daniela A. Rodrigues
- Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda (CPIRN-UDI/IPG), Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (D.A.R.); (S.P.M.); (J.L.); (M.R.); (F.R.)
| | - Sónia P. Miguel
- Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda (CPIRN-UDI/IPG), Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (D.A.R.); (S.P.M.); (J.L.); (M.R.); (F.R.)
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Jorge Loureiro
- Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda (CPIRN-UDI/IPG), Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (D.A.R.); (S.P.M.); (J.L.); (M.R.); (F.R.)
| | - Maximiano Ribeiro
- Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda (CPIRN-UDI/IPG), Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (D.A.R.); (S.P.M.); (J.L.); (M.R.); (F.R.)
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Fátima Roque
- Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda (CPIRN-UDI/IPG), Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (D.A.R.); (S.P.M.); (J.L.); (M.R.); (F.R.)
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Paula Coutinho
- Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda (CPIRN-UDI/IPG), Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (D.A.R.); (S.P.M.); (J.L.); (M.R.); (F.R.)
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: ; Tel.: +351-965544187
| |
Collapse
|