1
|
Zhang H, Yang Y, Gao M, Peng J, Li D, Zhu J. Bibliometric analysis of chondrocyte apoptosis in knee osteoarthritis. Medicine (Baltimore) 2024; 103:e40000. [PMID: 39465698 PMCID: PMC11460941 DOI: 10.1097/md.0000000000040000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Apoptosis, a form of programmed cell death, plays a significant role in osteoarthritis; however, bibliometric studies in this field remain scarce. Bibliometrics provides a visual representation of research outcomes and trends, guiding future investigations. METHOD Journal data from January 1, 2013, to December 31, 2023, in this field were obtained from the Web of Science (WOS) core database. Analysis was conducted using VOSviewer and CiteSpace. RESULTS Analysis revealed that over the past decade, 794 articles were published in 299 journals by 4447 authors from 49 countries and 877 institutions. The top contributors were China, the United States, and the United Kingdom. Zhuang Chao emerged as the most prolific author, and "osteoarthritis and cartilage" ranked as the most frequently cited journal. Keyword clustering focused on mechanisms, inflammation, and cartilage. The most-cited article was "chondrocyte apoptosis in the pathogenesis of osteoarthritis" in the "International Journal of Molecular Sciences." Burst word analysis highlighted extracellular matrix, circular RNA, micro RNA, indicating current research hotspots. CONCLUSION Utilizing bibliometrics and visual analysis, we explored the hotspots and trends in the field of chondrocyte apoptosis in osteoarthritis. Extracellular matrix, Circular RNA, Micro RNA, among others, are likely to become future research focal points and frontiers.
Collapse
Affiliation(s)
- Hongxing Zhang
- Department of Second Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Yao Yang
- Department of Second Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Minglei Gao
- Department of Second Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Jiafeng Peng
- Department of Second Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Danyang Li
- Department of Second Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Junchen Zhu
- Department of Orthopaedics, Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| |
Collapse
|
2
|
Camilli AC, de Godoi MA, Costa VB, Fernandes NAR, Cirelli G, da Silva LKF, Assis LR, Regasini LO, Guimarães-Stabili MR. Local Application of a New Chalconic Derivative (Chalcone T4) Reduces Inflammation and Oxidative Stress in a Periodontitis Model in Rats. Antioxidants (Basel) 2024; 13:1192. [PMID: 39456446 PMCID: PMC11504102 DOI: 10.3390/antiox13101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Chalcones are phenolic compounds with biological properties. This study had the aim to evaluate the effects of topical administration of a new synthetic chalcone, Chalcone T4, in an animal model of periodontitis induced by ligature. Forty rats were distributed in the following experimental groups: negative control (without periodontitis and topical application of distilled water), positive control (periodontitis and topical application of distilled water), chalcone I and II (periodontitis and topical application of 0.6 mg/mL and 1.8 mg/mL, respectively). Chalcone or distilled water was administered into the gingival sulcus of the first molars daily for 10 days, starting with the ligature installation. The following outcomes were evaluated: alveolar bone loss (µCT and methylene blue dye staining), quantification of osteoclasts (histomorphometry), cell infiltrate and collagen content (stereometry), gene expression of mediators (Nfact11, Tnf-α, Mmp-13, iNos, Sod and Nrf2) by (RT-qPCR); expression of BCL-2 and Caspase-1 (immunohistochemistry). Chalcone T4 inhibited bone resorption and prevented collagen matrix degradation. Reduction in the expression of inflammatory markers (Nfact11, Tnf-α, Mmp-13, and Caspase-1), attenuation of oxidative stress (iNOS reduction, and increase in Sod), and pro-apoptotic effect of the compound (BCL-2 reduction), were associated its effects on periodontal tissues. Topical application of Chalcone T4 prevented bone resorption and inflammation, demonstrating potential in the adjunctive treatment of periodontitis.
Collapse
Affiliation(s)
- Angelo Constantino Camilli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara 14801-903, SP, Brazil; (A.C.C.); (M.A.d.G.); (V.B.C.); (N.A.R.F.); (G.C.); (L.K.F.d.S.)
| | - Mariely Araújo de Godoi
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara 14801-903, SP, Brazil; (A.C.C.); (M.A.d.G.); (V.B.C.); (N.A.R.F.); (G.C.); (L.K.F.d.S.)
| | - Vitória Bonan Costa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara 14801-903, SP, Brazil; (A.C.C.); (M.A.d.G.); (V.B.C.); (N.A.R.F.); (G.C.); (L.K.F.d.S.)
| | - Natalie Aparecida Rodrigues Fernandes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara 14801-903, SP, Brazil; (A.C.C.); (M.A.d.G.); (V.B.C.); (N.A.R.F.); (G.C.); (L.K.F.d.S.)
| | - Giovani Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara 14801-903, SP, Brazil; (A.C.C.); (M.A.d.G.); (V.B.C.); (N.A.R.F.); (G.C.); (L.K.F.d.S.)
| | - Larissa Kely Faustino da Silva
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara 14801-903, SP, Brazil; (A.C.C.); (M.A.d.G.); (V.B.C.); (N.A.R.F.); (G.C.); (L.K.F.d.S.)
| | - Letícia Ribeiro Assis
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto 01049-010, SP, Brazil; (L.R.A.); (L.O.R.)
| | - Luis Octavio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto 01049-010, SP, Brazil; (L.R.A.); (L.O.R.)
| | - Morgana Rodrigues Guimarães-Stabili
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara 14801-903, SP, Brazil; (A.C.C.); (M.A.d.G.); (V.B.C.); (N.A.R.F.); (G.C.); (L.K.F.d.S.)
| |
Collapse
|
3
|
Hu K, Wen H, Song T, Che Z, Song Y, Song M. Deciphering the Role of LncRNAs in Osteoarthritis: Inflammatory Pathways Unveiled. J Inflamm Res 2024; 17:6563-6581. [PMID: 39318993 PMCID: PMC11421445 DOI: 10.2147/jir.s489682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Long non-coding RNA (LncRNA), with transcripts over 200 nucleotides in length, play critical roles in numerous biological functions and have emerged as significant players in the pathogenesis of osteoarthritis (OA), an inflammatory condition traditionally viewed as a degenerative joint disease. This review comprehensively examines the influence of LncRNA on the inflammatory processes driving OA progression, focusing on their role in regulating gene expression, cellular activities, and inflammatory pathways. Notably, LncRNAs such as MALAT1, H19, and HOTAIR are upregulated in OA and exacerbate the inflammatory milieu by modulating key signaling pathways like NF-κB, TGF-β/SMAD, and Wnt/β-catenin. Conversely, LncRNA like MEG3 and GAS5, which are downregulated in OA, show potential in dampening inflammatory responses and protecting against cartilage degradation by influencing miRNA interactions and cytokine production. By enhancing our understanding of LncRNA' roles in OA inflammation, we can better leverage them as potential biomarkers for the disease and develop innovative therapeutic strategies for OA management. This paper aims to delineate the mechanisms by which LncRNA influence inflammatory responses in OA and propose them as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kangyi Hu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Haonan Wen
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Ting Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Zhixin Che
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yongjia Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Min Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
4
|
Rošin M, Kelam N, Jurić I, Racetin A, Ogorevc M, Corre B, Čarić D, Filipović N, Vukojević K. Syndecans, Exostosins and Sulfotransferases as Potential Synovial Inflammation Moderators in Patients with Hip Osteoarthritis. Int J Mol Sci 2024; 25:4557. [PMID: 38674142 PMCID: PMC11049902 DOI: 10.3390/ijms25084557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The gradual deterioration of articular cartilage was thought to be the central event in osteoarthritis (OA), but recent studies demonstrated the importance of low-grade synovitis in the progression of OA. The Syndecan (SDC) family of membrane proteoglycans is known to be involved in the regulation of inflammation, but there is limited evidence considering the role of syndecans in OA synovitis. Our study aimed to investigate the hip OA synovial membrane expression patterns of SDC1, SDC2 and SDC4, as well as exostosins and sulfotransferases (enzymes involved in the polymerisation and modification of syndecans' heparan sulphate chains). Synovial membrane samples of patients with OA (24) were divided into two groups according to their Krenn synovitis score severity. The immunohistochemical expressions of SDC1, SDC2, SDC4, EXT1, EXT2, NDST1 and NDST2 in synovial intima and subintima were then analysed and compared with the control group (patients with femoral neck fracture). According to our study, the immunoexpression of SDC1, NDST1 and EXT2 is significantly increased in the intimal cells of OA synovial membrane in patients with lower histological synovitis scores and SDC4 in patients with higher synovitis scores, in comparison with non-OA controls. The difference in the expression of SDC2 among the OA and non-OA groups was insignificant. SDC1, SDC4, NDST1 and EXT2 seem to be involved as inflammation moderators in low-grade OA synovitis and, therefore, should be further investigated as potential markers of disease progression and therapeutic goals.
Collapse
Affiliation(s)
- Matko Rošin
- Surgery Department, Orthopaedics and Traumatology Division, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (M.R.); (D.Č.)
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (M.O.); (N.F.)
| | - Ivana Jurić
- Department of Emergency Medicine, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia;
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (M.O.); (N.F.)
| | - Marin Ogorevc
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (M.O.); (N.F.)
| | - Brieuc Corre
- Faculty of Medicine and Health Sciences, University of Brest, 29200 Brest, France;
| | - Davor Čarić
- Surgery Department, Orthopaedics and Traumatology Division, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (M.R.); (D.Č.)
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (M.O.); (N.F.)
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (M.O.); (N.F.)
- Center for Translational Research in Biomedicine, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
| |
Collapse
|
5
|
Huang P, Lin J, Shen H, Zhao X. PSD95 as a New Potential Therapeutic Target of Osteoarthritis: A Study of the Identification of Hub Genes through Self-Contrast Model. Int J Mol Sci 2023; 24:14682. [PMID: 37834131 PMCID: PMC10572132 DOI: 10.3390/ijms241914682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Osteoarthritis (OA) is a worldwide joint disease. However, the precise mechanism causing OA remains unclear. Our primary aim was to identify vital biomarkers associated with the mechano-inflammatory aspect of OA, providing potential diagnostic and therapeutic targets for OA. Thirty OA patients who underwent total knee arthroplasty were recruited, and cartilage samples were obtained from both the lateral tibial plateau (LTP) and medial tibial plateau (MTP). GO and KEGG enrichment analyses were performed, and the protein-protein interaction (PPI) assessment was conducted for hub genes. The effect of PSD95 inhibition on cartilage degeneration was also conducted and analyzed. A total of 1247 upregulated and 244 downregulated DEGs were identified. Significant differences were observed between MTP and LTP in mechanical stress-related genes and activated sensory neurons based on a self-contrast model of human knee OA. Cluster analysis identified DLG4 as the hub gene. Cyclic loading stress increased PSD95 (encoded by DLG4) expression in LTP cartilage, and PSD95 inhibitors could alleviate OA progression. This study suggests that inhibiting PSD95 could be a potential therapeutic strategy for preventing articular cartilage degradation.
Collapse
Affiliation(s)
- Ping Huang
- Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (P.H.); (J.L.)
| | - Jieming Lin
- Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (P.H.); (J.L.)
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiang Zhao
- Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (P.H.); (J.L.)
| |
Collapse
|
6
|
Tang CH. Research of Pathogenesis and Novel Therapeutics in Arthritis 3.0. Int J Mol Sci 2023; 24:10166. [PMID: 37373313 DOI: 10.3390/ijms241210166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Arthritis has a high prevalence globally and includes over 100 types, the most common of which are rheumatoid arthritis (RA), osteoarthritis (OA), psoriatic arthritis (PsA), and inflammatory arthritis [...].
Collapse
Affiliation(s)
- Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404333, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404333, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 400354, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu 30272, Taiwan
| |
Collapse
|
7
|
Expression of Cell Cycle Markers and Proliferation Factors during Human Eye Embryogenesis and Tumorigenesis. Int J Mol Sci 2022; 23:ijms23169421. [PMID: 36012688 PMCID: PMC9409163 DOI: 10.3390/ijms23169421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
The expression pattern of the markers p19, Ki-67, MSX1, MSX2, PDL1, pRB, and CYCLINA2 was quantitatively and semiquantitatively analyzed in histologic sections of the developing and postnatal human eye at week 8, in retinoblastoma, and in various uveal melanomas post hoc studies by double immunofluorescence. The p19 immunoreactivity characterized retinal and/or choroidal cells in healthy and tumor tissues: expression was lower in the postnatal retina than in the developing retina and retinoblastoma, whereas it was high in epithelioid melanomas. Ki67 expression was high in the developing eye, retinoblastoma, and choroidal melanomas. MSX1 and MSX2 expression was similar in the developing eye and retinoblastoma, whereas it was absent in the postnatal eye. Their different expression was evident between epithelioid and myxoid melanomas. Similarly, PDL1 was absent in epithelioid melanomas, whereas it was highly expressed in developing and tumor tissues. Expression of pRB and CYCA2 was characteristic of developing and tumorous eye samples but not of the healthy postnatal eye. The observed expression differences of the analyzed markers correlate with the origin and stage of cell differentiation of the tissue samples. The fine balance of expression could play a role in both human eye development and ocular tumorigenesis. Therefore, understanding their relationship and interplay could open new avenues for potential therapeutic interventions and a better understanding of the mechanisms underlying the developmental plasticity of the eye and the development of neoplasms.
Collapse
|
8
|
Jia Z, Kang B, Cai Y, Chen C, Yu Z, Li W, Zhang W. Cell-free fat extract attenuates osteoarthritis via chondrocytes regeneration and macrophages immunomodulation. Stem Cell Res Ther 2022; 13:133. [PMID: 35365233 PMCID: PMC8973552 DOI: 10.1186/s13287-022-02813-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/02/2022] [Indexed: 01/15/2023] Open
Abstract
Background The prevalence of osteoarthritis (OA) is increasing, yet clinically effective and economical treatments are unavailable. We have previously proposed a cell-free fat extract (CEFFE) containing multiple cytokines, which possessed antiapoptotic, anti-oxidative, and proliferation promotion functions, as a “cell-free” strategy. In this study, we aimed to evaluate the therapeutic effect of CEFFE in vivo and in vitro. Methods In vivo study, sodium iodoacetate-induced OA rats were treated with CEFFE by intra-articular injections for 8 weeks. Behavioral experiments were performed every two weeks. Histological analyses, anti-type II collagen, and toluidine staining provided structural evaluation. Macrophage infiltration was assessed by anti-CD68 and anti-CD206 staining. In vitro study, the effect of CEFFE on macrophage polarization and secretory factors was evaluated by flow cytometry, immunofluorescence, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The effect of CEFFE on cartilage regeneration was accessed by cell counting kit-8 assay and qRT-PCR. The generation of reactive oxygen species (ROS) and levels of ROS-related enzymes were investigated by qRT-PCR and western blotting. Results In rat models with sodium iodoacetate (MIA)-induced OA, CEFFE increased claw retraction pressure while decreasing bipedal pressure in a dose-dependent manner. Moreover, CEFFE promoted cartilage structure restoration and increased the proportion of CD206+ macrophages in the synovium. In vitro, CEFFE decreased the proportion of CD86+ cells and reduced the expression of pro-inflammatory factors in LPS + IFN-γ induced Raw 264.7. In addition, CEFFE decreased the expression of interleukin-6 and ADAMTs-5 and promoted the expression of SOX-9 in mouse primary chondrocytes. Besides, CEFFE reduced the intracellular levels of reactive oxygen species in both in vitro models through regulating ROS-related enzymes. Conclusions CEFFE inhibits the progression of OA by promoting cartilage regeneration and limiting low-grade joint inflammation. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02813-3.
Collapse
Affiliation(s)
- Zhuoxuan Jia
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China
| | - Bijun Kang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China
| | - Yizuo Cai
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China
| | - Chingyu Chen
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China
| | - Zheyuan Yu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China.
| | - Wei Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China.
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China.
| |
Collapse
|
9
|
Yegorov YE, Poznyak AV, Bezsonov EE, Zhuravlev AD, Nikiforov NG, Vishnyakova KS, Orekhov AN. Somatic Mutations of Hematopoietic Cells Are an Additional Mechanism of Body Aging, Conducive to Comorbidity and Increasing Chronification of Inflammation. Biomedicines 2022; 10:biomedicines10040782. [PMID: 35453534 PMCID: PMC9028317 DOI: 10.3390/biomedicines10040782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
It is known that the development of foci of chronic inflammation usually accompanies body aging. In these foci, senescent cells appear with a pro-inflammatory phenotype that helps maintain inflammation. Their removal with the help of senolytics significantly improves the general condition of the body and, according to many indicators, contributes to rejuvenation. The cells of the immune system participate in the initiation, development, and resolution of inflammation. With age, the human body accumulates mutations, including the cells of the bone marrow, giving rise to the cells of the immune system. We assume that a number of such mutations formed with age can lead to the appearance of “naive” cells with an initially pro-inflammatory phenotype, the migration of which to preexisting foci of inflammation contributes not to the resolution of inflammation but its chronicity. One of such cell variants are monocytes carrying mitochondrial mutations, which may be responsible for comorbidity and deterioration in the prognosis of the course of pathologies associated with aging, such as atherosclerosis, arthritis, osteoporosis, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yegor E. Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Correspondence: (Y.E.Y.); (A.V.P.); (A.N.O.)
| | - Anastasia V. Poznyak
- Institute for Atherosclerosis Research, 121609 Moscow, Russia
- Correspondence: (Y.E.Y.); (A.V.P.); (A.N.O.)
| | - Evgeny E. Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.E.B.); (A.D.Z.); (N.G.N.)
- Institute of Human Morphology, 117418 Moscow, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 105043 Moscow, Russia
| | - Alexander D. Zhuravlev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.E.B.); (A.D.Z.); (N.G.N.)
- Institute of Human Morphology, 117418 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, 119334 Moscow, Russia
| | - Nikita G. Nikiforov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.E.B.); (A.D.Z.); (N.G.N.)
- Institute of Human Morphology, 117418 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, 119334 Moscow, Russia
| | - Khava S. Vishnyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.E.B.); (A.D.Z.); (N.G.N.)
- Institute of Human Morphology, 117418 Moscow, Russia
- Correspondence: (Y.E.Y.); (A.V.P.); (A.N.O.)
| |
Collapse
|
10
|
Immunofluorescence Analysis of NF-kB and iNOS Expression in Different Cell Populations during Early and Advanced Knee Osteoarthritis. Int J Mol Sci 2021; 22:ijms22126461. [PMID: 34208719 PMCID: PMC8233870 DOI: 10.3390/ijms22126461] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 01/15/2023] Open
Abstract
Synovitis of the knee synovium is proven to be a precursor of knee osteoarthritis (OA), leading to a radiologically advanced stage of the disease. This study was conducted to elucidate the expression pattern of different inflammatory factors—NF-kB, iNOS, and MMP-9 in a subpopulation of synovial cells. Thirty synovial membrane intra-operative biopsies of patients (ten controls, ten with early OA, and ten with advanced OA, according to the Kellgren–Lawrence radiological score) were immunohistochemically stained for NF-kB, iNOS, and MMP9, and for different cell markers for macrophages, fibroblasts, leukocytes, lymphocytes, blood vessel endothelial cells, and blood vessel smooth muscle cells. The total number of CD68+/NF-kB+ cells/mm2 in the intima of early OA patients (median = 2359) was significantly higher compared to the total number of vimentin+/Nf-kB+ cells/mm2 (median = 1321) and LCA+/NF-kB+ cells/mm2 (median = 64) (p < 0.001 and p < 0.0001, respectively). The total number of LCA+/NF-kB+ cells/mm2 in the subintima of advanced OA patients (median = 2123) was significantly higher compared to the total number of vimentin+/NF-kB+ cells/mm2 (median = 14) and CD68+/NF-kB+ cells/mm2 (median = 29) (p < 0.0001). The total number of CD68+/iNOS+ cells/mm2 in the intima of both early and advanced OA patients was significantly higher compared to the total number of vimentin+/iNOS+ cells/mm2 and LCA+/iNOS+ cells/mm2 (p < 0.0001 and p < 0.001, respectively). The total number of CD68+/MMP-9+ cells/mm2 in the intima of both early and advanced OA patients was significantly higher compared to the total number of vimentin+/MMP-9+ cells/mm2 and CD5+/MMP-9+ cells/mm2 (p < 0.0001). Macrophages may have a leading role in OA progression through the NF-kB production of inflammatory factors (iNOS and MMP-9) in the intima, except in advanced OA, where leukocytes could have a dominant role through NF-kB production in subintima. The blocking of macrophageal and leukocyte NF-kB expression is a possible therapeutic target as a disease modifying drug.
Collapse
|