1
|
Moreira Morais J, da Silva Brito R, Saiki P, Cirqueira Dias F, de Oliveira Neto JR, da Cunha LC, Lopes Rocha T, Bailão EFLC. Ecotoxicological assessment of UV filters benzophenone-3 and TiO 2 nanoparticles, isolated and in a mixture, in developing zebrafish ( Danio rerio). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:687-700. [PMID: 38836411 DOI: 10.1080/15287394.2024.2362809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The increasing use of UV filters, such as benzophenone-3 (BP-3) and titanium dioxide nanoparticles (TiO2 NPs), has raised concerns regarding their ecotoxicological effects on the aquatic environment. The aim of the present study was to examine the embryo-larval toxicity attributed to BP-3 or TiO2 NPs, either alone or in a mixture, utilizing zebrafish (Danio rerio) as a model after exposure to environmentally relevant concentrations of these compounds. Zebrafish embryos were exposed to BP-3 (10, 100, or 1000 ng/L) or TiO2 NPs (1000 ng/L) alone or in a mixture (BP-3 10, 100, or 1000 ng/L plus 1000 ng/L of TiO2 NPs) under static conditions for 144 hr. After exposure, BP-3 levels were determined by high-performance liquid chromatography (HPLC). BP-3 levels increased in the presence of TiO2 NPs, indicating that the BP-3 degradation decreased in the presence of the NPs. In addition, in the presence of zebrafish, BP-3 levels in water decreased, indicating that zebrafish embryos and larvae might absorb BP-3. Data demonstrated that, in general, environmentally relevant concentrations of BP-3 and TiO2 NPs, either alone or in a mixture, did not significantly induce changes in heart and spontaneous contractions frequencies, levels of reactive oxygen species (ROS), morphological and morphometric parameters as well as mortality rates during 144 hr exposure. However, the groups exposed to TiO2 NPs alone and in a mixture with BP-3 at 10 ng/L exhibited an earlier significant hatching rate than the controls. Altogether, the data indicates that a potential ecotoxicological impact on the aquatic environment exists.
Collapse
Affiliation(s)
- Jéssyca Moreira Morais
- Laboratory of Biotechnology, Central Campus, State University of Goiás, Anápolis, Goiás, Brazil
| | - Rafaella da Silva Brito
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Patrícia Saiki
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
- Federal Institute of Education, Science and Technology of Goiás (IFG), Goiânia, Goiás, Brazil
| | - Felipe Cirqueira Dias
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Luiz Carlos da Cunha
- Center for Toxic-Pharmacological Studies and Research, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | |
Collapse
|
2
|
Gashkina NA. Metal Toxicity: Effects on Energy Metabolism in Fish. Int J Mol Sci 2024; 25:5015. [PMID: 38732234 PMCID: PMC11084289 DOI: 10.3390/ijms25095015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Metals are dispersed in natural environments, particularly in the aquatic environment, and accumulate, causing adverse effects on aquatic life. Moreover, chronic polymetallic water pollution is a common problem, and the biological effects of exposure to complex mixtures of metals are the most difficult to interpret. In this review, metal toxicity is examined with a focus on its impact on energy metabolism. Mechanisms regulating adenosine triphosphate (ATP) production and reactive oxygen species (ROS) emission are considered in their dual roles in the development of cytotoxicity and cytoprotection, and mitochondria may become target organelles of metal toxicity when the transmembrane potential is reduced below its phosphorylation level. One of the main consequences of metal toxicity is additional energy costs, and the metabolic load can lead to the disruption of oxidative metabolism and enhanced anaerobiosis.
Collapse
Affiliation(s)
- Natalia A Gashkina
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin St., Moscow 119991, Russia
| |
Collapse
|
3
|
Jiang D, Yang G, Huang LJ, Chen K, Tang Y, Pi X, Yang R, Peng X, Cui C, Li N. Unveiling the toxic effects, physiological responses and molecular mechanisms of tobacco (Nicotiana tabacum) in exposure to organic ultraviolet filters. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133060. [PMID: 38016314 DOI: 10.1016/j.jhazmat.2023.133060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Exposure to organic ultraviolet (UV) filters has raised concerns due to their potential adverse effects on environments. However, their toxic mechanisms on plants remain elusive. In this study, using integrative physiological and transcriptomic approaches we investigated the physiological and molecular responses to three representative UV filters, namely oxybenzone (OBZ), avobenzone (AVB), and octinoxate (OMC), in an agricultural model plant tobacco. The exposure to UV filters disrupts the functionality of photosystem reaction centers and the light-harvesting apparatus. Concurrently, UV filters exert a suppressive effect on the expression of genes encoding Rubisco and Calvin-Benson cycle enzymes, resulting in a decreased efficiency of the Calvin-Benson cycle and consequently hampering the process of photosynthesis. Exposure to UV filters leads to significant generation of reactive oxygen species within tobacco leaves and downregulation of oxidoreductase activities. Moreover, UV filters promote abscisic acid (ABA) accumulation by inducing the expression of ABA biosynthesis genes whereas repress indole-3-acetic acid (IAA) biosynthesis gene expression, which induce leaf yellowing and slow plant growth. In summary, the organic UV filters exert toxic effects on tobacco growth by inhibiting chlorophyll synthesis, photosynthesis, and the Calvin-Benson cycle, while generating excessive reactive oxygen species. This study sheds light on the toxic and tolerance mechanisms of UV filters in agricultural crops.
Collapse
Affiliation(s)
- Dong Jiang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, China.
| | - Guoqun Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, China.
| | - Li-Jun Huang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China.
| | - Kebin Chen
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, China.
| | - Yangcan Tang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, China.
| | - Xin Pi
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China.
| | - Runke Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China.
| | - Xia Peng
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China.
| | - Chuantong Cui
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China.
| | - Ning Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, China.
| |
Collapse
|
4
|
Lee S, Ka Y, Lee B, Lee I, Seo YE, Shin H, Kho Y, Ji K. Single and mixture toxicity evaluation of avobenzone and homosalate to male zebrafish and H295R cells. CHEMOSPHERE 2023; 343:140271. [PMID: 37758070 DOI: 10.1016/j.chemosphere.2023.140271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
Avobenzone and homosalate are widely used in sunscreens to provide ultraviolet (UV) protection, either as single compounds or in combination. Some UV filters exhibit estrogenic or anti-androgenic activities, however, studies regarding their interactions and toxicity in mixtures are limited. In this study, the effect of the toxicity of a binary mixture comprising avobenzone (0.72 μg L-1) and homosalate (1.02 and 103 μg L-1) on steroid hormone biosynthesis were investigated using male zebrafish and human adrenocortical carcinoma (H295R) cells. In fish exposed to homosalate, a significant decrease in the gonadosomatic index, testosterone level, and transcription of several genes (e.g, hsd3b2, cyp17a1, and hsd17b1) and a significant increase in the hepatosomatic index, liver steatosis, 17β-estradiol level, and transcription of vtg gene were observed. These results suggest that estrogenic and anti-androgenic effects of homosalate were mediated by the steroidogenic pathway. The presence of 0.72 μg L-1 of avobenzone augmented the anti-androgenic responses in male fish. The testosterone level in the H295R cells were significantly decreased after they were exposed to homosalate alone or in combination with avobenzone, which is consistent with observations in male zebrafish. Further studies need to be conducted to understand the endocrine disrupting properties of long-term exposure to substances typically used in sunscreens.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Environmental Health, Graduate School at Yongin University, Yongin, Gyeonggi, 17092, Republic of Korea
| | - Yujin Ka
- Department of Environmental Health, Graduate School at Yongin University, Yongin, Gyeonggi, 17092, Republic of Korea
| | - Bomi Lee
- Institute of Natural Science, Yongin University, Yongin, Gyeonggi, 17092, Republic of Korea
| | - Inhye Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye Eun Seo
- Department of Food Technology & Service, Eulji University, Seongnam, Gyeonggi, 13135, Republic of Korea
| | - Hyewon Shin
- Department of Health, Environment & Safety, Eulji University, Seongnam, Gyeonggi, 13135, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, Gyeonggi, 13135, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin, Gyeonggi, 17092, Republic of Korea.
| |
Collapse
|
5
|
Moreno-Ortiz G, Aguilar L, Caamal-Monsreal C, Noreña-Barroso E, Rosas C, Rodríguez-Fuentes G. Benzophenone-3 does not Cause Oxidative Stress or B-esterase Inhibition During Embryo Development of Octopus maya (Voss and Solís Ramírez, 1966). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:60. [PMID: 37903889 PMCID: PMC10615918 DOI: 10.1007/s00128-023-03788-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/12/2023] [Indexed: 11/01/2023]
Abstract
Benzophenone-3 (BP-3) is an active ingredient in sunscreen lotions and personal-care products that protects against the damaging effects of ultraviolet rays. Given its worldwide dissemination, it has been linked with harmful effects on aquatic biota; however, its impact is not fully understood calling for further studies. To understand the impacts on an important economically and ecologically species, we evaluated the toxicity of BP-3 during the embryonic development of Octopus maya. Embryos were exposed to increasing concentrations of up to 500 µg BP-3/L until hatching. Antioxidant enzyme activities, oxidative-stress indicators, and B-esterases activities were measured at different developmental phases (organogenesis, activation, and growth). There were no significant differences between treatments, suggesting the lack of production of toxic metabolites that may be related to a protective chorion, an underdeveloped detoxification system, and the experimental conditions that limited phototoxicity.
Collapse
Affiliation(s)
- Gissela Moreno-Ortiz
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México, C.P. 04510, México
| | - Letícia Aguilar
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México
| | - Claudia Caamal-Monsreal
- Unidad Disciplinaria de Docencia e investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México
| | - Elsa Noreña-Barroso
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México
| | - Carlos Rosas
- Unidad Disciplinaria de Docencia e investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México
| | - Gabriela Rodríguez-Fuentes
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México.
| |
Collapse
|
6
|
Marcin S, Aleksander A. Acute toxicity assessment of nine organic UV filters using a set of biotests. Toxicol Res 2023; 39:649-667. [PMID: 37779587 PMCID: PMC10541396 DOI: 10.1007/s43188-023-00192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 10/03/2023] Open
Abstract
UV filters in environmental compartments are a source of concern related to their ecotoxicological effects. However, little is known about UV filters' toxicity, particularly those released into the environment as mixtures. Acute toxicity of nine organic UV filters benzophenone-1, benzophenone-2, benzophenone-3, 4-methoxy benzylidene camphor, octocrylene, ethylhexyl methoxycinnamate, 2-ethylhexyl salicylate, homosalate, and butyl methoxydibenzoylmethane was determined. UV filter solutions were tested as single, binary, and ternary mixtures of various compositions. Single solutions were tested using a set of bio tests, including tests on saline crustaceans (Artemia franciscana), freshwater crustaceans (Daphnia magna), marine bacteria (Aliivibrio fischeri), and freshwater plants (Lemna minor). The tests represent different stages of the trophic chain, and hence their overall results could be used to risk assessment concerning various water reservoirs. The toxicity of binary and ternary mixtures was analyzed using the standardized Microtox® method. Generally, organic UV filters were classified as acutely toxic. Octocrylene was the most toxic for Arthemia franciscana (LC50 = 0.55 mg L-1) and Daphnia magna (EC50 = 2.66-3.67 mg L-1). The most toxic against freshwater plants were homosalate (IC50 = 1.46 mg L-1) and octocrylene (IC50 = 1.95 mg L-1). Ethylhexyl methoxycinnamate (EC50 = 1.38-2.16 mg L-1) was the most toxic for marine bacteria. The least toxic for crustaceans and plants were benzophenone-1 (EC50 = 6.15-46.78 mg L-1) and benzophenone-2 (EC50 = 14.15-54.30 mg L-1), while 4-methoxy benzylidene camphor was the least toxic for marine bacteria (EC50 = 12.97-15.44 mg L-1). Individual species differ in their sensitivity to the tested organic UV filters. An assessment of the toxicity of mixtures indicates high and acute toxicity to marine bacteria after exposition to a binary mixture of benzophenone-2 with octocrylene, 2-ethylhexyl salicylate, or homosalate. The toxicity of mixtures was lower than single solutions predicting antagonistic interaction between chemicals. Graphical abstract
Collapse
Affiliation(s)
- Stec Marcin
- Environmental Chemistry Research Unit, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland
| | - Astel Aleksander
- Environmental Chemistry Research Unit, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland
| |
Collapse
|
7
|
Reis AT, Costa C, Fraga S. Editorial of Special Issue: The Toxicity of Nanomaterials and Legacy Contaminants: Risks to the Environment and Human Health. Int J Mol Sci 2023; 24:11723. [PMID: 37511482 PMCID: PMC10380669 DOI: 10.3390/ijms241411723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Nanotechnology and the incorporation of nanomaterials (NM) into everyday products help to solve problems in society and improve the quality of life, allowing for major advances in the technological, industrial, and medical fields [...].
Collapse
Affiliation(s)
- Ana Teresa Reis
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, 4000-055 Porto, Portugal
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, 4050-600 Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, 4050-600 Porto, Portugal
| | - Carla Costa
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, 4000-055 Porto, Portugal
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, 4050-600 Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, 4050-600 Porto, Portugal
| | - Sónia Fraga
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, 4000-055 Porto, Portugal
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, 4050-600 Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, 4050-600 Porto, Portugal
| |
Collapse
|
8
|
Moreira ALP, Paiva WS, de Souza AM, Pereira MCG, Rocha HAO, de Medeiros SRB, Luchiari AC. Benzophenone-3 causes oxidative stress in the brain and impairs aversive memory in adult zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104164. [PMID: 37245610 DOI: 10.1016/j.etap.2023.104164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Oxybenzone (BP-3) is an ultraviolet (UV) filter widely used in industries that is directly or indirectly released into the aquatic environment. However, little is known about its effects on brain performance. Here, we investigated whether BP-3 exposure affects the redox imbalance in zebrafish and how they respond to a task that requires memory of an aversive situation. Fish were exposed to BP-3 10 and 50 μg L-1 for 15 days and then tested using an associative learning protocol with electric shock as a stimulus. Brains were extracted for reactive oxygen species (ROS) measurement and qPCR analysis of antioxidant enzyme genes. ROS production increased for exposed animals, and catalase (cat) and superoxide dismutase 2 (sod 2) were upregulated. Furthermore, learning and memory were reduced in zebrafish exposed to BP-3. These results suggested that BP-3 may lead to a redox status imbalance, causing impaired cognition and reinforcing the need to replace the toxic UV filters with filters that minimize environmental effects.
Collapse
Affiliation(s)
- Ana Luisa Pires Moreira
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil.
| | - Weslley Souza Paiva
- Laboratory of Biotechnology of Natural Biopolymers, Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Maria Clara Galvão Pereira
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratory of Biotechnology of Natural Biopolymers, Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | | | - Ana Carolina Luchiari
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| |
Collapse
|
9
|
Wang X, Li F, Teng Y, Ji C, Wu H. Characterization of oxidative damage induced by nanoparticles via mechanism-driven machine learning approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162103. [PMID: 36764549 DOI: 10.1016/j.scitotenv.2023.162103] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The wide application of TiO2-based engineered nanoparticles (nTiO2) inevitably led to release into aquatic ecosystems. Importantly, increasing studies have emphasized the high risks of nTiO2 to coastal environments. Bivalves, the representative benthic filter feeders in coastal zones, acted as important roles to assess and monitor the toxic effects of nanoparticles. Oxidative damage was one of the main toxic mechanisms of nTiO2 on bivalves, but the experimental variables/nanomaterial characteristics were diverse and the toxicity mechanism was complex. Therefore, it was very necessary to develop machine learning model to characterize and predict the potential toxicity. In this study, thirty-six machine learning models were built by nanodescriptors combined with six machine learning algorithms. Among them, random forest (RF) - catalase (CAT), k-neighbors classifier (KNN) - glutathione peroxidase (GPx), neural networks - multilayer perceptron (ANN) - glutathione s-transferase (GST), random forest (RF) - malondialdehyde (MDA), random forest (RF) - reactive oxygen species (ROS), and extreme gradient boosting decision tree (XGB) - superoxide dismutase (SOD) models performed good with high accuracy and balanced accuracy for both training sets and external validation sets. Furthermore, the best model revealed the predominant factors (exposure concentration, exposure periods, and exposure matrix) influencing the oxidative stress induced by nTiO2. These results showed that high exposure concentrations and short exposure-intervals tended to cause oxidative damage to bivalves. In addition, gills and digestive glands could be vulnerable to nTiO2-induced oxidative damage as tissues/organs differences were the important factors controlling MDA activity. This study provided insights into important nano-features responsible for the different indicators of oxidative stress and thereby extended the application of machine learning approaches in toxicological assessment for nanoparticles.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Yuefa Teng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
10
|
Scheele A, Sutter K, Karatum O, Danley-Thomson AA, Redfern LK. Environmental impacts of the ultraviolet filter oxybenzone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160966. [PMID: 36535482 DOI: 10.1016/j.scitotenv.2022.160966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/17/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Organic UV filters are emerging contaminants with increasing evidence of their negative impact on environmental health and water quality. One of the most common and environmentally relevant organic UV filters is oxybenzone (OBZ). While much of the initial focus has been on investigating the interaction of OBZ with coral reefs, there have been several recent studies that indicate that organic UV filters are affecting other environmental endpoints, including marine animals, algae, and plants. OBZ has been found to bioaccumulate in marine animals such as fish and mussels and then potentially acting as an endocrine disruptor. In plants, exposure to OBZ has been associated with decreased photosynthesis, inhibited seed germination, and impaired plant growth. In this review, we summarize the current state of knowledge regarding the environmental impacts of OBZ and suggest potential future directions.
Collapse
Affiliation(s)
- Alexis Scheele
- Department of Bioengineering, Civil and Environmental Engineering, Florida Gulf Coast University, Fort Myers, FL 33965, United States of America
| | - Kimberly Sutter
- Department of Bioengineering, Civil and Environmental Engineering, Florida Gulf Coast University, Fort Myers, FL 33965, United States of America
| | - Osman Karatum
- Department of Bioengineering, Civil and Environmental Engineering, Florida Gulf Coast University, Fort Myers, FL 33965, United States of America
| | - Ashley A Danley-Thomson
- Department of Bioengineering, Civil and Environmental Engineering, Florida Gulf Coast University, Fort Myers, FL 33965, United States of America
| | - Lauren K Redfern
- Department of Bioengineering, Civil and Environmental Engineering, Florida Gulf Coast University, Fort Myers, FL 33965, United States of America.
| |
Collapse
|
11
|
Zhang YK, Ke HY, Qin YQ, Ju HY, Chen YM, Lin F, Zhang JL, Diao XP. Environmental concentrations of benzophenone-3 disturbed lipid metabolism in the liver of clown anemonefish (Amphiprion ocellaris). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120792. [PMID: 36473638 DOI: 10.1016/j.envpol.2022.120792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/09/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Benzophenone-3 (BP-3) often used as a UV filter in various products and an endocrine disruptor. In this work, we exposed the clown anemonefish to 10 μg/L and 50 μg/L BP-3 for 7 and 14 days. Liver histological, biochemical analysis, and transcriptome sequencing were used to explore the mechanism of the lipid metabolism disorder in the liver of three-month-old clown anemonefish treated with BP-3. The histological and biochemical analysis showed that BP-3 induces morphological changes and lipid droplet accumulation, and the lipid content, lipase, and antioxidant enzyme activity were abnormal. After treatment with 10 μg/L and 50 μg/L BP-3 for 7 days, the transcriptome analysis further demonstrated that the KEGG analysis revealed that the differentially expressed genes (DEGs) were mainly associated with fat digestion and absorption, PPAR signaling pathway, circadian rhythm, and mineral absorption pathways; After 10 μg/L and 50 μg/L of BP-3 exposure for 14 days, the KEGG analysis were mainly associated with circadian rhythm, circadian rhythm-fly, protein processing in the endoplasmic reticulum, and beta-alanine metabolism pathways. Several key genes were involved in the process of liver lipid metabolism, including CD36, APoA-Ⅰ, FABP, LPL, ACS, and PEPCK. The qRT-PCR validation results showed that eight genes (CYP8B1, FABP1, LPL, MGAT, PEPCK, PER1, PSMB4, PSME2) were significantly down-regulated, and the other two genes (Fbxl3, RXR) were significantly up-regulated after 7 days of BP-3 exposure. Similarly, eleven genes (AMPK, ARNTL, Bmal1, CASP3, CYC, CYP2J, CYP2U1, GSK3A, PEPCK, RAC1, RORA) were significantly up-regulated, and the other four genes (NR1D1, PER1, PTGDS, HLF) were significantly down-regulated after 14 days of BP-3 exposure. In conclusion, our results elucidate the physiological and molecular responses to BP-3 exposure in the liver lipid metabolism of clown anemonefish, and these findings reveal that the regulation of lipid metabolism is disturbed when clown anemonefish is exposed to UV filters.
Collapse
Affiliation(s)
- Yan-Kun Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, 571158, China; College of Life Science Hainan Normal University, Haikou, Hainan, 571158, China
| | - Huai-Yang Ke
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, 571158, China; College of Life Science Hainan Normal University, Haikou, Hainan, 571158, China
| | - Yong-Qiang Qin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, 571158, China; College of Life Science Hainan Normal University, Haikou, Hainan, 571158, China
| | - Han-Ye Ju
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, 571158, China; College of Life Science Hainan Normal University, Haikou, Hainan, 571158, China
| | - Yu-Mei Chen
- College of Ecology and Environment Hainan University, Haikou, Hainan, 570228, China
| | - Fang Lin
- College of Ecology and Environment Hainan University, Haikou, Hainan, 570228, China
| | - Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, 571158, China; College of Life Science Hainan Normal University, Haikou, Hainan, 571158, China
| | - Xiao-Ping Diao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, 571158, China; College of Life Science Hainan Normal University, Haikou, Hainan, 571158, China.
| |
Collapse
|
12
|
Araújo MJ, Sousa ML, Fonseca E, Felpeto AB, Martins JC, Vázquez M, Mallo N, Rodriguez-Lorenzo L, Quarato M, Pinheiro I, Turkina MV, López-Mayán JJ, Peña-Vázquez E, Barciela-Alonso MC, Spuch-Calvar M, Oliveira M, Bermejo-Barrera P, Cabaleiro S, Espiña B, Vasconcelos V, Campos A. Proteomics reveals multiple effects of titanium dioxide and silver nanoparticles in the metabolism of turbot, Scophthalmus maximus. CHEMOSPHERE 2022; 308:136110. [PMID: 36007739 DOI: 10.1016/j.chemosphere.2022.136110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Titanium dioxide (TiO2) and silver (Ag) NPs are among the most used engineered inorganic nanoparticles (NPs); however, their potential effects to marine demersal fish species, are not fully understood. Therefore, this study aimed to assess the proteomic alterations induced by sub-lethal concentrations citrate-coated 25 nm ("P25") TiO2 or polyvinylpyrrolidone (PVP) coated 15 nm Ag NPs to turbot, Scophthalmus maximus. Juvenile fish were exposed to the NPs through daily feeding for 14 days. The tested concentrations were 0, 0.75 or 1.5 mg of each NPs per kg of fish per day. The determination of NPs, Titanium and Ag levels (sp-ICP-MS/ICP-MS) and histological alterations (Transmission Electron Microscopy) supported proteomic analysis performed in the liver and kidney. Proteomic sample preparation procedure (SP3) was followed by LC-MS/MS. Label-free MS quantification methods were employed to assess differences in protein expression. Functional analysis was performed using STRING web-tool. KEGG Gene Ontology suggested terms were discussed and potential biomarkers of exposure were proposed. Overall, data shows that liver accumulated more elements than kidney, presented more histological alterations (lipid droplets counts and size) and proteomic alterations. The Differentially Expressed Proteins (DEPs) were higher in Ag NPs trial. The functional analysis revealed that both NPs caused enrichment of proteins related to generic processes (metabolic pathways). Ag NPs also affected protein synthesis and nucleic acid transcription, among other processes. Proteins related to thyroid hormone transport (Serpina7) and calcium ion binding (FAT2) were suggested as biomarkers of TiO2 NPs in liver. For Ag NPs, in kidney (and at a lower degree in liver) proteins related with metabolic activity, metabolism of exogenous substances and oxidative stress (e.g.: NADH dehydrogenase and Cytochrome P450) were suggested as potential biomarkers. Data suggests adverse effects in turbot after medium/long-term exposures and the need for additional studies to validate specific biological applications of these NPs.
Collapse
Affiliation(s)
- Mário J Araújo
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Maria L Sousa
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Elza Fonseca
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Aldo Barreiro Felpeto
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - José Carlos Martins
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - María Vázquez
- CETGA - Cluster de la Acuicultura de Galicia, 15965, Ribeira, Galicia, A Coruña, Spain
| | - Natalia Mallo
- CETGA - Cluster de la Acuicultura de Galicia, 15965, Ribeira, Galicia, A Coruña, Spain
| | - Laura Rodriguez-Lorenzo
- INL - International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, Braga, Portugal
| | - Monica Quarato
- INL - International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, Braga, Portugal
| | - Ivone Pinheiro
- INL - International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, Braga, Portugal
| | - Maria V Turkina
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Juan José López-Mayán
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., 15782, Santiago de Compostela, Spain
| | - Elena Peña-Vázquez
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., 15782, Santiago de Compostela, Spain
| | - María Carmen Barciela-Alonso
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., 15782, Santiago de Compostela, Spain
| | - Miguel Spuch-Calvar
- TeamNanoTech / Magnetic Materials Group, CINBIO, Universidade de Vigo - Campus Universitario Lagoas Marcosende, 36310, Vigo, Spain
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Pilar Bermejo-Barrera
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., 15782, Santiago de Compostela, Spain
| | - Santiago Cabaleiro
- CETGA - Cluster de la Acuicultura de Galicia, 15965, Ribeira, Galicia, A Coruña, Spain
| | - Begoña Espiña
- INL - International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, Braga, Portugal
| | - Vitor Vasconcelos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Alexandre Campos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| |
Collapse
|
13
|
Fenni F, Sunyer-Caldú A, Ben Mansour H, Diaz-Cruz MS. Contaminants of emerging concern in marine areas: First evidence of UV filters and paraben preservatives in seawater and sediment on the eastern coast of Tunisia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119749. [PMID: 35820572 DOI: 10.1016/j.envpol.2022.119749] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/22/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
UV filters (UVFs) and paraben preservatives (PBs) are widely used components in many personal care products. However, there has been a rising concern for their endocrine-disrupting effects on wildlife once they reach aquatic ecosystems via recreative activities and wastewater treatment plants effluents. This study addresses UVFs and PBs occurrence in seawater and sediment impacted by tourism and sewage discharges along the coast of Mahdia, center East Tunisia. Samples of water and sediment were collected for 6 months from 3 coastal areas. Among the 14 investigated UVFs, 8 were detected in seawater and 4 were found in sediment. All PBs were present in seawater and only methylparaben (MePB) was detected in sediment. Benzophenone-3 (oxybenzone, BP3), benzocaine (EtPABA), and MePB were present in all water samples with concentrations in the ranges 16.4-66.9, 7.3-37.7, and 17.6-222 ng/L, respectively. However, the highest value, 1420 ng/L, corresponded to octinoxate (EHMC). In sediments, avobenzone (AVO), 4-methyl benzylidene camphor (4MBC), EHMC, 5-methyl-1-H-benzotriazole (MeBZT), and MePB were detected at concentrations within the range 1.1-17.6 ng/g dw, being MePB the most frequently detected (89%). MePB and MBZT presented the highest sediment-water partition coefficients and MePB also showed a positive correlation with total suspended solids' water content. Overall, pollutants concentrations remained rather constant along the sampling period, showing little seasonal variation. This study constitutes the first monitoring of UVFs and PBs on the Tunisian coastline and provides occurrence data for reference in further surveys in the country.
Collapse
Affiliation(s)
- Ferdaws Fenni
- Research Unit of Analysis and Process Applied to the Environment-APAE UR17ES32, Higher Institute of Applied Sciences and Technology Mahdia "ISSAT", University of Monastir, 5100 Mahdia, Tunisia
| | - Adrià Sunyer-Caldú
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish Council for Scientific Research (IDAEA-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to the Environment-APAE UR17ES32, Higher Institute of Applied Sciences and Technology Mahdia "ISSAT", University of Monastir, 5100 Mahdia, Tunisia
| | - M Silvia Diaz-Cruz
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish Council for Scientific Research (IDAEA-CSIC), Jordi Girona 18, 08034, Barcelona, Spain.
| |
Collapse
|
14
|
Martin N, Wassmur B, Slomberg D, Labille J, Lammel T. Influence of TiO 2 nanocomposite UV filter surface chemistry and their interactions with organic UV filters on uptake and toxicity toward cultured fish gill cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113984. [PMID: 35988383 DOI: 10.1016/j.ecoenv.2022.113984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/28/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Aquatic environments have been found to be contaminated with a variety of inorganic and organic UV filters. This includes novel nano-sized titanium dioxide (TiO2) composite particles, which have been increasingly developed and incorporated into commercial sunscreens in recent years. So far, relatively little is known about the effects of this novel class of UV filters on aquatic life. Therefore, this study aimed to determine and compare the toxicity of three such nanoparticulate TiO2 UV filters with different surface coatings, namely Eusolex® T-Avo (SiO2-coated), T-Lite™ SF (Al(OH)3/PDMS-coated), and Eusolex® T-S (Al2O3/stearic acid-coated) either alone, or in the presence of selected organic UV filters (octinoxate, avobenzone, octocrylene), toward fish using RTgill-W1 cell cultures as an in vitro experimental model. Besides standard exposure protocols, alternative approaches (i.e., exposure to water accommodated fractions (WAFs), hanging-drop exposure) were explored to account for nanoparticle (NP)-specific fate in the medium and obtain additional/complementary information on their toxicity in different conditions. The AlamarBlue, CFDA-AM and Neutral Red Retention (NR) assays were used to measure effects on different cellular endpoints. Transmission electron microscopy (TEM) was used to examine NP uptake. Our results showed that none of the TiO2 NP UV filters were cytotoxic at the concentrations tested (0.1-10 µg/mL; 24 h) but there were differences in their uptake by the cells. Thus, only the hydrophilic T-AVO was detected inside cells, but the hydrophobic T-Lite SF and T-S were not. In addition, our results show that the presence of NPs (or the used dispersant) tended to decrease organic UV filter toxicity. The level of combination effect depended on both NP-type (surface chemistry) and concentration, suggesting that the reduced toxicity resulted from reduced availability of the organic UV filters due to their adsorption to the NP surface. Thus, mixtures of TiO2 NP UV filters and organic UV filters may have a different toxicological profile compared to the single substances, but probably do not pose an increased hazard.
Collapse
Affiliation(s)
- Nicolas Martin
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Britt Wassmur
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Danielle Slomberg
- Aix-Marseille University, CNRS, IRD, INRAe, Coll. France, CEREGE, Aix-en-Provence, France
| | - Jérôme Labille
- Aix-Marseille University, CNRS, IRD, INRAe, Coll. France, CEREGE, Aix-en-Provence, France
| | - Tobias Lammel
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden.
| |
Collapse
|
15
|
Cuccaro A, De Marchi L, Oliva M, Monni G, Miragliotta V, Fumagalli G, Freitas R, Pretti C. The influence of salinity on the toxicity of chemical UV-filters to sperms of the free-spawning mussel Mytilus galloprovincialis (Lamark, 1819). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106263. [PMID: 35939883 DOI: 10.1016/j.aquatox.2022.106263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Marine-coastal systems have been increasingly exposed to multiple stressors, including anthropogenic pollution and variations of Climate Change (CC) related factors, whose coexistence could create associated environmental and ecotoxicological risks. Among emergent stressors, 4-methylbenzylidenecamphor (4-MBC) and benzophenone-3 (BP-3) UV-filters are compounds widely used in increasing consumer products, resulting in their ubiquity in aquatic environments and possible pressing challenges on gamete susceptibility. Since most marine invertebrates reproduce by external fertilization, after spawning, gametes may be exposed to several pressures, affecting reproductive success and outcome. The present study focuses on the spermiotoxicity of the environmentally relevant UV-filters 4-MBC and BP-3 combined with salinity shifts, as potential modulators of their harmful effects. For this, Mytilus galloprovincialis male gametes were exposed in vitro to environmentally relevant and slightly higher concentrations (1, 10 and 100 µg/L) of 4-MBC or BP-3 under three different salinities (S 20, 30 and 40). Sperm quality endpoints associated with oxidative status, viability, motility, kinetics, and genotoxicity were evaluated. Similarities and differences in sperm responses among all conditions were highlighted by principal coordinates analysis (PCO). Results showed that salinity acting alone posed greater sperms impairments at the lowest (20) and highest (40) tested levels. When salinity acts as a co-varying stressor, salinity-dominant interactive effects resulted evident, especially for 4-MBC at S 40 and BP-3 at S 20. These findings were pointed out as the worst exposure conditions for M. galloprovincialis sperms, since caused major toxicological effects in terms of: (I) oxidative stress, sperm structural impairments, motility and kinetic alterations in 4-MBC-exposed sperms; (II) DNA damage, compromised mitochondrial activity and hyperactivation in BP-3-exposed ones. Overall, it stands out that salinity influences UV-filter toxicological pathways and, thereby, the potential environmental risk of these contaminants on M. galloprovincialis male gametes, especially in an expected salinity stress scenario.
Collapse
Affiliation(s)
- Alessia Cuccaro
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", Livorno 57128, Italy
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", Livorno 57128, Italy
| | - Gianfranca Monni
- Department of Veterinary Sciences, University of Pisa, Via Livornese Lato Monte, San Piero a Grado, PI 56122, Italy
| | - Vincenzo Miragliotta
- Department of Veterinary Sciences, University of Pisa, Via Livornese Lato Monte, San Piero a Grado, PI 56122, Italy
| | - Giorgia Fumagalli
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", Livorno 57128, Italy
| | - Rosa Freitas
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", Livorno 57128, Italy; Department of Veterinary Sciences, University of Pisa, Via Livornese Lato Monte, San Piero a Grado, PI 56122, Italy.
| |
Collapse
|
16
|
Jesus A, Sousa E, Cruz MT, Cidade H, Lobo JMS, Almeida IF. UV Filters: Challenges and Prospects. Pharmaceuticals (Basel) 2022; 15:ph15030263. [PMID: 35337062 PMCID: PMC8955451 DOI: 10.3390/ph15030263] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
The use of sunscreens is an established and recommended practice to protect skin from solar-induced damage. Around 30 UV filters can be used in sunscreen products in the European Union, which ought to follow the requirements of the regulation 1223/2009 to ensure their efficacy and safety for humans. Nevertheless, low photostability and putative toxicity for humans and environment have been reported for some UV filters. Particularly, the negative impact in marine organisms has recently raised concern on the scientific community. Therefore, it is important to develop new UV filters with improved safety profile and photostability. Over the last two decades, nearly 200 new compounds have revealed promising photoprotection properties. The explored compounds were obtained through different approaches, including exploration of natural sources, synthetic pathways, and nanotechnology. Almost 50 natural products and around 140 synthetic derivatives, such as benzimidazoles, benzotriazoles, hydroxycinnamic acids, xanthones, triazines, among others, have been studied aiming the discovery of novel, effective, and safer future photoprotective agents. Herein, we provide the reader with an overview about UV filters’ challenges and prospects, offering a forward-looking to the next-generation of UV filters.
Collapse
Affiliation(s)
- Ana Jesus
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Maria T. Cruz
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Correspondence: (H.C.); (I.F.A.); Tel.: +351-220-428 (I.F.A.)
| | - José M. Sousa Lobo
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Isabel F. Almeida
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (H.C.); (I.F.A.); Tel.: +351-220-428 (I.F.A.)
| |
Collapse
|
17
|
Moreira ALP, Luchiari AC. Effects of oxybenzone on zebrafish behavior and cognition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152101. [PMID: 34863770 DOI: 10.1016/j.scitotenv.2021.152101] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The increased ultraviolet (UV) radiation on the Earth's surface increased the need for UV filters products. One of the most used is oxybenzone, which is indiscriminately released in the environment. Oxybenzone's ecotoxicological effects on physiology have been investigated because of the bioaccumulation and action as an endocrine disruptor. However, little is known about its effects on behavior or cognition. In this study, we approach the effects of short-term oxybenzone exposure on locomotion, anxiety-like, social behavior, and short-term memory in zebrafish (Danio rerio). Adult zebrafish were exposed to oxybenzone 10, 100 and 1000 μg L-1 for 15 days and then tested (novel tank, shoal preference, mirror test, and T-maze with novelty). Fish exposed to oxybenzone showed reduced locomotion, decreased anxiety-like behavior, less time near/interacting with the shoal, fewer interactions with the mirror image, and decreased exploration of the novel arm in the T-maze test. These results suggest that oxybenzone affects perception, increases risk-taking, impairs proper aggressive response, and jeopardizes the animals' ability to retain information. These results reinforce the risk posed by products discarded into the aquatic ecosystems, especially those with underestimated toxic potential.
Collapse
Affiliation(s)
- Ana Luisa Pires Moreira
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil.
| |
Collapse
|