1
|
Wang Y, Yu Y, Yu J, Wang C, Wang Y, Fu R, Zhang C. The Role of the Dysregulation of circRNAs Expression in Glioblastoma Multiforme. J Mol Neurosci 2025; 75:9. [PMID: 39841303 DOI: 10.1007/s12031-024-02285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 01/23/2025]
Abstract
Primary brain tumors that were the most severe and aggressive were called glioblastoma multiforme (GBM). Cancers are caused in part by aberrant expression of circular RNA. Often referred to as competitive endogenous RNA (ceRNA), circRNA molecules act as "miRNA sponges" in cells by decreasing the inhibitory impact of miRNA on their target genes and hence raising the expression levels of those genes. circRNA molecules are rich in miRNA binding sites. The discovery of more structurally diverse and GBM-related circRNAs has great promise for the use of GMB prognostic biomarkers and therapeutic targets, as well as for comprehending the molecular regulatory mechanisms of GBM. In this work, we present an overview of the circRNA expression patterns associated with GBM and offer a potential integrated electrochemical strategy for detecting circRNA with extreme sensitivity in the diagnosis of glioblastoma.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ying Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiahua Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Cheng Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunkun Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Runxi Fu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Ghadami E, Jafari M, Razipour M, Maghsudlu M, Ghadami M. Circular RNAs in glioblastoma. Clin Chim Acta 2025; 565:120003. [PMID: 39447824 DOI: 10.1016/j.cca.2024.120003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Glioblastoma multiforme (GBM) is the most malignant and common form of brain cancer in adults. The molecular mechanisms underlying GBM progression and resistance are complex and poorly understood. Circular RNAs (circRNAs) are a new class of non-coding RNAsformed by covalently closed loopstructures with no free ends. Their circular structure makes them more stable than linear RNA and resistant to exonuclease degradation. In recent years, they have received significant attention due to their diverse functions in gene regulation and their association with various diseases, including cancer. Therefore, understanding the functions and applications of circRNAs is critical to developing targeted therapeutic interventions and advancing the field of glioblastoma cancer research. In this review, we summarized the main functions of circRNAs and their potential applications in the diagnosis, prognosis and targeted therapy of GBM.
Collapse
Affiliation(s)
- Elham Ghadami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahjoobeh Jafari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Masoumeh Razipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohaddese Maghsudlu
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Ghadami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cardiac Primary Research Center, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Mlika M, Zorgati MM, Makhlouf A, Mezni F. L’utilité du facteur d’épissage SRSF1 dans le grading des tumeurs
gliales: Une méta-analyse. LA TUNISIE MEDICALE 2024; 102:513-520. [PMID: 39287342 PMCID: PMC11459235 DOI: 10.62438/tunismed.v102i9.4954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/02/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION The grading of glial tumors is based on morphological and sometimes on molecular features. Many markers have been assessed in order to grade the glial tumours without a real consensus. Some authors reported that SRSF1, a spiling factor, presents an expression correlated to the tumours grades. AIM In this study, we aimed to assess the utility of the SRSF1 into the grading of gliomas based on its immunohistochemical expression. METHODS The authors conducted a meta-analysis under the PRISMA guidelines during a 10-year-period (2013-2023). The Meta-Disc software 5.4 (free version) was used. Q test and I2 statistics were carried out to explore the heterogeneity among studies. Meta-regression was performed in case of significant heterogeneity. Publication bias was assessed using the funnel plot test and the Egger's test (free version JASP). RESULTS According to the inclusion criteria, 4 studies from 193 articles were included. The pooled SEN, SPE and DOR accounted respectively for 0.592, 0.565 and 1.852. The AUC was estimated to 0.558 suggesting a bad diagnostic accuracy. The heterogeneity in the pooled SEN and SPE was statistically significant. The meta-regression analysis focusing on the technique used, the clones, the dilution, the interpretation technique revealed no covariate factors (P>0.05). CONCLUSION Even if this meta-analysis highlighted the absence of a real diagnostic utility of the SRSF1 in grading the glial tumours, the heterogeneity revealed reinforces the need for more prospective studies performed according to the quality assessment criteria.
Collapse
Affiliation(s)
- Mona Mlika
- Department of pathology,Trauma and Major Burn Center Ben Arous
- Faculty of medicine of Tunis, University of Tunis El Manar. Tunisia
| | | | - Aymen Makhlouf
- Department of pathology,Trauma and Major Burn Center Ben Arous
| | - Faouzi Mezni
- Faculty of medicine of Tunis, University of Tunis El Manar. Tunisia
| |
Collapse
|
4
|
Conn VM, Chinnaiyan AM, Conn SJ. Circular RNA in cancer. Nat Rev Cancer 2024; 24:597-613. [PMID: 39075222 DOI: 10.1038/s41568-024-00721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/31/2024]
Abstract
Over the past decade, circular RNA (circRNA) research has evolved into a bona fide research field shedding light on the functional consequence of this unique family of RNA molecules in cancer. Although the method of formation and the abundance of circRNAs can differ from their cognate linear mRNA, the spectrum of interacting partners and their resultant cellular functions in oncogenesis are analogous. However, with 10 times more diversity in circRNA variants compared with linear RNA variants, combined with their hyperstability in the cell, circRNAs are equipped to influence every stage of oncogenesis. This is an opportune time to address the breadth of circRNA in cancer focused on their spatiotemporal expression, mutations in biogenesis factors and contemporary functions through each stage of cancer. In this Review, we highlight examples of functional circRNAs in specific cancers, which satisfy critical criteria, including their physical co-association with the target and circRNA abundance at stoichiometrically valid quantities. These considerations are essential to develop strategies for the therapeutic exploitation of circRNAs as biomarkers and targeted anticancer agents.
Collapse
Affiliation(s)
- Vanessa M Conn
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Simon J Conn
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia.
| |
Collapse
|
5
|
Barbagallo D, Ponti D, Bassani B, Bruno A, Pulze L, Akkihal SA, George-William JN, Gundamaraju R, Campomenosi P. MiR-223-3p in Cancer Development and Cancer Drug Resistance: Same Coin, Different Faces. Int J Mol Sci 2024; 25:8191. [PMID: 39125761 PMCID: PMC11311375 DOI: 10.3390/ijms25158191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
MicroRNAs (miRNAs) are mighty post-transcriptional regulators in cell physiology and pathophysiology. In this review, we focus on the role of miR-223-3p (henceforth miR-223) in various cancer types. MiR-223 has established roles in hematopoiesis, inflammation, and most cancers, where it can act as either an oncogenic or oncosuppressive miRNA, depending on specific molecular landscapes. MiR-223 has also been linked to either the sensitivity or resistance of cancer cells to treatments in a context-dependent way. Through this detailed review, we highlight that for some cancers (i.e., breast, non-small cell lung carcinoma, and glioblastoma), the oncosuppressive role of miR-223 is consistently reported in the literature, while for others (i.e., colorectal, ovarian, and pancreatic cancers, and acute lymphocytic leukemia), an oncogenic role prevails. In prostate cancer and other hematological malignancies, although an oncosuppressive role is frequently described, there is less of a consensus. Intriguingly, NLRP3 and FBXW7 are consistently identified as miR-223 targets when the miRNA acts as an oncosuppressor or an oncogene, respectively, in different cancers. Our review also describes that miR-223 was increased in biological fluids or their extracellular vesicles in most of the cancers analyzed, as compared to healthy or lower-risk conditions, confirming the potential application of this miRNA as a diagnostic and prognostic biomarker in the clinic.
Collapse
Affiliation(s)
- Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “Giovanni Sichel”, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
| | - Donatella Ponti
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Corso della Repubblica 79, 04100 Latina, Italy;
| | - Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Via Fantoli 16/15, 20138 Milano, Italy; (B.B.); (A.B.)
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Via Fantoli 16/15, 20138 Milano, Italy; (B.B.); (A.B.)
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy;
| | - Laura Pulze
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy;
| | - Shreya A. Akkihal
- Independent Researcher, 35004 SE Swenson St, Snoqualmie, WA 98065, USA;
| | - Jonahunnatha N. George-William
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi, 93, 20054 Segrate, Italy;
| | - Rohit Gundamaraju
- Department of Laboratory Medicine, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA;
- ER Stress and Mucosal Immunology Team, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia
| | - Paola Campomenosi
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy;
| |
Collapse
|
6
|
Khalilian S, Tabari MAK, Omrani MA, Ghafouri-Fard S. Emerging functions and significance of circCDYL in human disorders. Mol Biol Rep 2023; 51:7. [PMID: 38085365 DOI: 10.1007/s11033-023-08993-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023]
Abstract
Circular RNAs (circRNAs) are a group of non-coding transcripts in which a loop structure is shaped via a back splicing procedure. They have central roles in the regulation of gene expression. hsa_circ_0008285, alternatively named as circCDYL, is a circular RNA originated from the exon 4 of CDYL gene. It is produced by a back-splice incident and is mainly located in the cytoplasm. It has no internal ribosome entry site, open reading frame and intronic sequences. CircCDYL dysregulation has been reported in the malignant conditions including multiple myeloma, mantle cell lymphoma, breast cancer, non-small cell lung cancer, Wilms tumor, bladder cancer, colon cancer, and hepatocellular carcinoma. It also has an emerging role in the pathophysiology of non-malignant conditions including myocardial infarction, gestational diabetes mellitus, membranous nephropathy, and abdominal aortic aneurysm. In the current study, we summarize the emerging roles of circCDYL in malignant and non-malignant conditions.
Collapse
Affiliation(s)
- Sheyda Khalilian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Bhardwaj V, Singh A, Choudhary A, Dalavi R, Ralte L, Chawngthu RL, Senthil Kumar N, Vijay N, Chande A. HIV-1 Vpr induces ciTRAN to prevent transcriptional repression of the provirus. SCIENCE ADVANCES 2023; 9:eadh9170. [PMID: 37672576 PMCID: PMC10482341 DOI: 10.1126/sciadv.adh9170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023]
Abstract
The functional consequences of circular RNA (circRNA) expression on HIV-1 replication are largely unknown. Using a customized protocol involving direct RNA nanopore sequencing, here, we captured circRNAs from HIV-1-infected T cells and identified ciTRAN, a circRNA that modulates HIV-1 transcription. We found that HIV-1 infection induces ciTRAN expression in a Vpr-dependent manner and that ciTRAN interacts with SRSF1, a protein known to repress HIV-1 transcription. Our results suggest that HIV-1 hijacks ciTRAN to exclude serine/arginine-rich splicing factor 1 (SRSF1) from the viral transcriptional complex, thereby promoting efficient viral transcription. In addition, we demonstrate that an SRSF1-inspired mimic can inhibit viral transcription regardless of ciTRAN induction. The hijacking of a host circRNA thus represents a previously unknown facet of primate lentiviruses in overcoming transmission bottlenecks.
Collapse
Affiliation(s)
- Vipin Bhardwaj
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Aman Singh
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Aditi Choudhary
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Rishikesh Dalavi
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | | | | | | | - Nagarjun Vijay
- Computational and Evolutionary Genomics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Ajit Chande
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| |
Collapse
|
8
|
Pisignano G, Michael DC, Visal TH, Pirlog R, Ladomery M, Calin GA. Going circular: history, present, and future of circRNAs in cancer. Oncogene 2023; 42:2783-2800. [PMID: 37587333 PMCID: PMC10504067 DOI: 10.1038/s41388-023-02780-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023]
Abstract
To date, thousands of highly abundant and conserved single-stranded RNA molecules shaped into ring structures (circRNAs) have been identified. CircRNAs are multifunctional molecules that have been shown to regulate gene expression transcriptionally and post-transcriptionally and exhibit distinct tissue- and development-specific expression patterns associated with a variety of normal and disease conditions, including cancer pathogenesis. Over the past years, due to their intrinsic stability and resistance to ribonucleases, particular attention has been drawn to their use as reliable diagnostic and prognostic biomarkers in cancer diagnosis, treatment, and prevention. However, there are some critical caveats to their utility in the clinic. Their circular shape limits their annotation and a complete functional elucidation is lacking. This makes their detection and biomedical application still challenging. Herein, we review the current knowledge of circRNA biogenesis and function, and of their involvement in tumorigenesis and potential utility in cancer-targeted therapy.
Collapse
Affiliation(s)
- Giuseppina Pisignano
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - David C Michael
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Tanvi H Visal
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Radu Pirlog
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol, BS16 1QY, UK
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Roles of circular RNAs in regulating the development of glioma. J Cancer Res Clin Oncol 2023; 149:979-993. [PMID: 35776196 DOI: 10.1007/s00432-022-04136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Glioma is the most common malignant tumor in the central nervous system. In patients with glioma, the prognosis is poor and median survival is only 12-15 months. With the recent development of sequencing technology, important roles of noncoding RNAs are being discovered in cells, especially those of circular RNAs (circRNAs). Because circRNAs are stable, abundant, and highly conserved, they are regarded as novel biomarkers in the early diagnosis and prognosis of diseases. PURPOSE In this review, roles and mechanisms of circRNAs in the development of glioma are summarized. METHODS This paper collects and reviews relevant PubMed literature. CONCLUSION Several classes of circRNAs are highly expressed in glioma and are associated with malignant biological behaviors of gliomas, including proliferation, migration, invasion, apoptosis, angiogenesis, and drug resistance. Further studies are needed to clarify the roles of circRNAs in glioma and to determine whether it is possible to increase therapeutic effects on tumors through circRNA intervention.
Collapse
|
10
|
TARDBP promotes ovarian cancer progression by altering vascular endothelial growth factor splicing. Oncogene 2023; 42:49-61. [PMID: 36369320 DOI: 10.1038/s41388-022-02539-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Disruptions in alternative splicing regulation play an essential role in ovarian cancer progression. However, the underlying mechanism remains unclear. TAR DNA-binding protein (TARDBP) plays a crucial role in alternative splicing regulation. Herein we found that TARDBP expression was significantly upregulated in OC tissue samples, particularly in cases of metastasis; further, TARDBP expression was markedly upregulated in OC patients with poor prognosis. These findings were validated by extensive tissue microarray data. TARDBP was also found to promote tumorigenesis and metastasis of OC cells in vitro and in vivo. Mechanistically, TARDBP increased the binding of the splicing factor serine/arginine-rich splicing factor 1 (SRSF1) to intron 7 of vascular endothelial growth factor (VEGF), increasing the formation of the proangiogenic VEGF165 isoform and decreasing that of the antiangiogenic VEGF165b isoform. The abnormal alternative splicing event was responsible for the activation of angiogenesis and contributed to the progression of OC. To conclude, TARDBP was found to regulate the alternative splicing of VEGF via SRSF1, induce the formation of VEGF165 but inhibit that of VEGF165b, and promote OC angiogenesis. Hence, TARDBP can serve as an independent prognostic factor and new target for OC cancer therapy.
Collapse
|
11
|
Cheng L, Liu Z, Xia J. New insights into circRNA and its mechanisms in angiogenesis regulation in ischemic stroke: a biomarker and therapeutic target. Mol Biol Rep 2023; 50:829-840. [PMID: 36331748 DOI: 10.1007/s11033-022-07949-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
Ischemic stroke accounts for about 71% of strokes worldwide. Due to limited recommended therapeutics for ischemic stroke, more attention is focused on angiogenesis in ischemic stroke. Not long after ischemic stroke, angiogenesis arises and is vital for the prognosis. Various pro-angiogenic, anti-angiogenic factors and their downstream pathways engage in angiogenesis regulation. CircRNAs are differentially expressed after ischemic stroke. Up to now, circRNAs have been found to exert many functions in regulating apoptosis, autophagy, proliferation, and differentiation of neurons and neural stem cells mainly as miRNAs sponges or proteins decoy. Thus, many circRNAs are considered promising biomarkers or therapeutic targets for ischemic stroke. Besides, circRNAs participate in the modulation of endothelial-mesenchymal transition and blood-brain barrier maintenance. Moreover, circRNAs play significant roles in endothelial dysfunction concerning inflammation responses, apoptosis, proliferation, and migration. They correlate with many angiogenesis-related signaling pathways and genes via the circRNA/miRNA/mRNA network. Novel insights into circRNAs significance in angiogenesis regulation in ischemic stroke could be provided for further researches on the clinical application of circRNAs in ischemic stroke.
Collapse
Affiliation(s)
- Liuyang Cheng
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Zeyu Liu
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
12
|
Liu Z, Zhou Y, Xia J. CircRNAs: Key molecules in the prevention and treatment of ischemic stroke. Biomed Pharmacother 2022; 156:113845. [DOI: 10.1016/j.biopha.2022.113845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
|
13
|
Song J, Zheng J, Liu X, Dong W, Yang C, Wang D, Ruan X, Zhao Y, Liu L, Wang P, Zhang M, Liu Y. A novel protein encoded by ZCRB1-induced circHEATR5B suppresses aerobic glycolysis of GBM through phosphorylation of JMJD5. J Exp Clin Cancer Res 2022; 41:171. [PMID: 35538499 PMCID: PMC9086421 DOI: 10.1186/s13046-022-02374-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/26/2022] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
RNA-binding proteins (RBPs) and circular RNAs (circRNAs) play important roles in glioblastoma multiforme (GBM). Aerobic glycolysis is a metabolic characteristic of GBM. However, the roles of RBPs and circRNAs in aerobic glycolysis in GBM remain unclear. The aim of this study is to explore the mechanisms by which RBPs and circRNAs regulate aerobic glycolysis in GBM cells.
Methods
RNA sequencing and circRNA microarray analysis were performed to identify RBPs and circRNAs for further study. Mass spectrometry validated the encoded protein and its interacting proteins. Quantitative reverse transcription PCR and western blot assays were used to determine the mRNA and protein expression, respectively. Furthermore, immunofluorescence and fluorescence in situ hybridization assays were used to determine the protein and RNA localization, respectively. Glucose and lactate measurement assays, Seahorse XF glycolysis stress assays and cell viability assays were conducted to investigate the effects on glycolysis and proliferation in GBM cells.
Results
We selected zinc finger CCHC-type and RNA-binding motif 1 (ZCRB1) and circRNA HEAT repeat containing 5B (circHEATR5B) as candidates for this study. These genes were expressed at low levels in GBM tissues and cells. Both ZCRB1 and circHEATR5B overexpression suppressed aerobic glycolysis and proliferation in GBM cells. ZCRB1 overexpression promoted the Alu element-mediated formation of circHEATR5B. In addition, circHEATR5B encoded a novel protein HEATR5B-881aa which interacted directly with Jumonji C-domain-containing 5 (JMJD5) and reduced its stability by phosphorylating S361. JMJD5 knockdown increased pyruvate kinase M2 (PKM2) enzymatic activity and suppressed glycolysis and proliferation in GBM cells. Finally, ZCRB1, circHEATR5B and HEATR5B-881aa overexpression inhibited GBM xenograft growth and prolonged the survival time of nude mice.
Conclusions
This study reveals a novel mechanism of regulating aerobic glycolysis and proliferation in GBM cells through the ZCRB1/circHEATR5B/HEATR5B-881aa/JMJD5/PKM2 pathway, which can provide novel strategies and potential targets for GBM therapy.
Collapse
|
14
|
Saitburkhanov R, Kubanov AA, Plakhova XI, Kondrakhina IN. Molecular markers of recurrence of basal cell skin cancer. VESTNIK DERMATOLOGII I VENEROLOGII 2022. [DOI: 10.25208/vdv1358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Basal cell carcinoma is the most common skin cancer worldwide, with rates increasing by almost 10% annually. It representing a growing public health problem with negative psychosocial and economic consequences.
Analysis of gene expression and proteomic profiling of tumor cells and the tumor microenvironment strongly suggests that certain molecules involved in the pathogenetic pathways of skin cancer may represent novel prognostic biomarkers in basal cell skin cancer.
The PubMed, MedLine, Web of Science and RSCI databases were used to search for the necessary literature.
Collapse
|
15
|
circSMARCA5 Is an Upstream Regulator of the Expression of miR-126-3p, miR-515-5p, and Their mRNA Targets, Insulin-like Growth Factor Binding Protein 2 ( IGFBP2) and NRAS Proto-Oncogene, GTPase ( NRAS) in Glioblastoma. Int J Mol Sci 2022; 23:ijms232213676. [PMID: 36430152 PMCID: PMC9690846 DOI: 10.3390/ijms232213676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022] Open
Abstract
The involvement of non-coding RNAs (ncRNAs) in glioblastoma multiforme (GBM) pathogenesis and progression has been ascertained but their cross-talk within GBM cells remains elusive. We previously demonstrated the role of circSMARCA5 as a tumor suppressor (TS) in GBM. In this paper, we explore the involvement of circSMARCA5 in the control of microRNA (miRNA) expression in GBM. By using TaqMan® low-density arrays, the expression of 748 miRNAs was assayed in U87MG overexpressing circSMARCA5. Differentially expressed (DE) miRNAs were validated through single TaqMan® assays in: (i) U87MG overexpressing circSMARCA5; (ii) four additional GBM cell lines (A172; CAS-1; SNB-19; U251MG); (iii) thirty-eight GBM biopsies; (iv) twenty biopsies of unaffected brain parenchyma (UC). Validated targets of DE miRNAs were selected from the databases TarBase and miRTarbase, and the literature; their expression was inferred from the GBM TCGA dataset. Expression was assayed in U87MG overexpressing circSMARCA5, GBM cell lines, and biopsies through real-time PCR. TS miRNAs 126-3p and 515-5p were upregulated following circSMARCA5 overexpression in U87MG and their expression was positively correlated with that of circSMARCA5 (r-values = 0.49 and 0.50, p-values = 9 × 10-5 and 7 × 10-5, respectively) in GBM biopsies. Among targets, IGFBP2 (target of miR-126-3p) and NRAS (target of miR-515-5p) mRNAs were positively correlated (r-value = 0.46, p-value = 0.00027), while their expression was negatively correlated with that of circSMARCA5 (r-values = -0.58 and -0.30, p-values = 0 and 0.019, respectively), miR-126-3p (r-value = -0.36, p-value = 0.0066), and miR-515-5p (r-value = -0.34, p-value = 0.010), respectively. Our data identified a new GBM subnetwork controlled by circSMARCA5, which regulates downstream miRNAs 126-3p and 515-5p, and their mRNA targets IGFBP2 and NRAS.
Collapse
|
16
|
Altieri R, Broggi G, Certo F, Pacella D, Cammarata G, Maione M, Garozzo M, Barbagallo D, Purrello M, Caltabiano R, Magro G, Barbagallo G. Anatomical distribution of cancer stem cells between enhancing nodule and FLAIR hyperintensity in supratentorial glioblastoma: time to recalibrate the surgical target? Neurosurg Rev 2022; 45:3709-3716. [PMID: 36171505 DOI: 10.1007/s10143-022-01863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022]
Abstract
It is ge nerally accepted that glioblastoma (GBM) arise from cancer stem cells (CSC); however, there is little evidence on their anatomical distribution. We investigated the expression and distribution of SOX-2-positive and CD133-positive CSCs both in the enhancing nodule (EN) of GBM and in the FLAIR hyperintensity zones on a surgical, histopathological series of 33 GBMs. The inclusion criterion was the intraoperative sampling of different tumor regions individualized, thanks to neuronavigation and positivity to intraoperative fluorescence with the use of 5-aminolevulinic acid (5-ALA). Thirty-three patients (20 males and 13 females with a mean age at diagnosis of 56 years) met the inclusion criterion. A total of 109 histological samples were evaluated, 52 for ENs and 57 for FLAIR hyperintensity zone. Considering the quantitative distribution of levels of intensity of staining (IS), ES (extent score), and immunoreactivity score (IRS), no difference was found between ENs and FLAIR regions for both the SOX-2 biomarker (respectively, IS p = 0.851, ES p = 0.561, IRS p = 1.000) and the CD133 biomarker (IS p = 0.653, ES p = 0.409, IRS p = 0.881). This evidence suggests to recalibrate the target of surgery for FLAIRECTOMY and 5-ALA could improve the possibility to achieve this goal.
Collapse
Affiliation(s)
- Roberto Altieri
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy.
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy.
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy.
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Daniela Pacella
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giacomo Cammarata
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
| | - Massimiliano Maione
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
| | - Marco Garozzo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
| | - Davide Barbagallo
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics Giovanni Sichel, University of Catania, Catania, Italy
| | - Michele Purrello
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics Giovanni Sichel, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Giuseppe Barbagallo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Luo K, Liu A, Wu H, Liu Q, Dai J, Liu Y, Wang Z. CircKIF4A promotes glioma growth and temozolomide resistance by accelerating glycolysis. Cell Death Dis 2022; 13:740. [PMID: 36030248 PMCID: PMC9420136 DOI: 10.1038/s41419-022-05175-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/21/2023]
Abstract
Circular RNAs (circRNAs) are a kind of noncoding RNAs that have different biological functions. CircRNAs play very important parts in the progression of cancers. Nevertheless, the exact mechanism and function of many circRNAs in glioma are not clear. In our study, circKIF4A was identified as a remarkably upregulated circRNA expressed in glioma tissues and cell lines. We performed loss-off function and gain-of-function experiments to inquire into the biological function of circKIF4A in the progression of glioma. We discovered that knockdown of circKIF4A remarkably decreased the proliferation and invasion ability of glioma cells. Moreover, subcutaneous tumorigenesis model and intracranial injection of orthotopic glioma model were established to investigate the functions of circKIF4A in vivo. Suppression of circKIF4A remarkably enhanced the sensitivity of glioma to temozolomide treatment. The glycolysis rate was accelerated by circKIF4A overexpression, which promoted glioma growth and temozolomide resistance. The glycolysis regulating enzyme ALDOA was regulated by circKIF4A through the mechanism of interactivity with miR-335-5p in glioma cells. In a word, our data showed that the upregulation of circKIF4A facilitates glioma progression by means of binding miR-335-5p and upregulating ALDOA expression.
Collapse
Affiliation(s)
- Kui Luo
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, China
| | - Aiqun Liu
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, No.19 Nonglinxia Road, Guangzhou, Guangdong, People's Republic of China
| | - Hao Wu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, China
| | - Qiang Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, China
| | - Jin Dai
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, China
| | - Yu Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, China
| | - Zhifei Wang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, China.
| |
Collapse
|
18
|
Zhu Y, Huang G, Li S, Xiong H, Chen R, Zuo L, Liu H. CircSMARCA5: A key circular RNA in various human diseases. Front Genet 2022; 13:921306. [PMID: 36081987 PMCID: PMC9445203 DOI: 10.3389/fgene.2022.921306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Circular RNAs (circRNAs) are recognized as a novel type of single-stranded endogenous noncoding RNA molecule with the characteristics of tissue specificity, sequence conservation and structural stability. Accumulating studies have shown that circRNAs play a unique biological role in different kinds of diseases. CircRNAs can affect tumor proliferation, migration, metastasis and other behaviors by modulating the expression of downstream genes. CircSMARCA5, an example of a circRNA, is dysregulated in various noninfectious diseases, such as tumors, osteoporosis, atherosclerosis and coronary heart disease. Furthermore, recent studies have demonstrated that circSMARCA5 is associated with the occurrence and development of a variety of tumors, including gastric cancer, glioblastoma, hepatocellular carcinoma, multiple myeloma, colorectal cancer, breast cancer and osteosarcoma. Mechanistically, circSMARCA5 primarily acts as a sponge of miRNAs to regulate the expression of downstream genes, and can serve as a potential biomarker for the diagnosis of malignant tumors. This review summarizes the biological roles of circSMARCA5 and its molecular mechanism of action in various diseases. Moreover, the meta-analysis of some publications showed that the expression of circSMARCA5 was significantly correlated with the prognosis of patients and tumor TNM stage, showing that circSMARCA5 has the potential to be a prognostic marker.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gaozhen Huang
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shihao Li
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hong Xiong
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ruiqi Chen
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ling Zuo
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Ling Zuo, ; Hongwei Liu,
| | - Hongwei Liu
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Ling Zuo, ; Hongwei Liu,
| |
Collapse
|
19
|
lncRNA MEG3 Inhibits the Proliferation and Growth of Glioma Cells by Downregulating Bcl-xL in the PI3K/Akt/NF-κB Signal Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3729069. [PMID: 35860793 PMCID: PMC9293524 DOI: 10.1155/2022/3729069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022]
Abstract
This study was conducted to investigate the impact and mechanisms of lncRNA MEG3 on glioma cells. lncRNA MEG3 was lowly expressed in glioma cells as compared to noncancer cells. Overexpression of MEG3 significantly downregulated the expression of Bcl-xL, slightly upregulated the expression of NF-κB p65 and IκBα, and reduced the proliferation of glioma cells with increased apoptosis and the migration and invasion ability. Subsequently, glioma cells overexpressing MEG3 had less tumorgenicity in xenograft mouse models. It is likely that MEG3 induces apoptosis in glioma cells via downregulating the Bcl-xL gene in the PI3K/Akt/NF-κB signal pathway to reduce the development of glioma.
Collapse
|
20
|
CircRNA: An emerging star in the progression of glioma. Biomed Pharmacother 2022; 151:113150. [PMID: 35623170 DOI: 10.1016/j.biopha.2022.113150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/21/2022] Open
Abstract
Circular RNAs (circRNAs), a class of single-stranded noncoding RNAs with a covalently closed loop structure, are recognized as promising biomarkers and targets for diagnosing and treating dozens of diseases, especially cancers. CircRNAs are extremely stable, abundant and conserved and have tissue- or developmental stage-specific expression. Currently, the biogenesis and biological functions of circRNAs have been increasingly revealed with deep sequencing and bioinformatics. Studies have indicated that circRNAs are frequently expressed in brain tissues and that their expression levels change in different stages of neural development, suggesting that circRNAs may play an important role in diseases of the nervous system, such as glioma. However, because the biogenesis and functions of circRNAs do not depend on a single mechanism but are coregulated by multiple factors, it is necessary to further explore the underlying mechanisms. In this review, we summarized the classification, mechanisms of biogenesis and biological functions of circRNAs. Meanwhile, we emphatically expounded on the process of abnormal expression of circRNAs, methods used in circRNA research, and their effects on the malignant biological capabilities of glioma.
Collapse
|
21
|
Genc S, Pennisi M, Yeni Y, Yildirim S, Gattuso G, Altinoz MA, Taghizadehghalehjoughi A, Bolat I, Tsatsakis A, Hacımüftüoğlu A, Falzone L. Potential Neurotoxic Effects of Glioblastoma-Derived Exosomes in Primary Cultures of Cerebellar Neurons via Oxidant Stress and Glutathione Depletion. Antioxidants (Basel) 2022; 11:1225. [PMID: 35883716 PMCID: PMC9311852 DOI: 10.3390/antiox11071225] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
High-grade gliomas are the most fatal brain tumors. Grade 4 gliomas are called glioblastoma multiforme (GBM), which are associated with the poorest survival and a 5-year survival rate of less than 4%. Many patients with GBM developed concomitant cognitive dysfunctions and epilepsy. Although the cognitive decline is well defined in glioblastomas, the neurotoxic factors underlying this pathology are not well understood in GBM patients. In this study, we aimed to investigate whether GBM-derived exosomes play a role in neuronal toxicity. For this purpose, exosomes obtained from T98G and U373 GBM cells were applied to primary neuron culture at different concentrations. Subsequently, MTT, LDH, GSH, TAS, and TOS tests were performed. Both GBM-derived exosomes induced a dose-dependent and statistically significant increase of LDH release in cerebellar neurons. MTT assay revealed as both T98G and U373 GBM-derived exosomes induced dose-dependent neurotoxic effects in cerebellar neurons. To the best of our knowledge, this study is the first study demonstrating the toxic potential of GBM-derived exosomes to primary neurons, which may explain the peritumoral edema and cognitive decline in GBM patients.
Collapse
Affiliation(s)
- Sidika Genc
- Department of Pharmacology, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik 11230, Turkey;
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey;
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum 25240, Turkey; (S.Y.); (I.B.); (A.H.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Meric A. Altinoz
- Department of Biochemistry, Acibadem Mehmet Ali Aydinlar University, İstanbul 34684, Turkey;
| | - Ali Taghizadehghalehjoughi
- Department of Pharmacology, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik 11230, Turkey;
| | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum 25240, Turkey; (S.Y.); (I.B.); (A.H.)
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece;
- Federal Scientific Center of Hygiene F. F. Erisman, 2 Semashko Street, Mytishchi 141014, Moscow, Russia
| | - Ahmet Hacımüftüoğlu
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum 25240, Turkey; (S.Y.); (I.B.); (A.H.)
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute-IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| |
Collapse
|
22
|
The Emerging Roles of circSMARCA5 in Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3015818. [PMID: 35712125 PMCID: PMC9197613 DOI: 10.1155/2022/3015818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/18/2022] [Accepted: 05/21/2022] [Indexed: 12/09/2022]
Abstract
Circular RNAs have a unique covalent closed-loop structure, which is mainly formed by the reverse splicing of exons from a precursor mRNA. With the development of key technologies such as high-throughput sequencing and the advancement of bioinformatics in recent years, our understanding of circular RNAs has become increasingly more detailed, and their abnormal expression in a variety of cancers has attracted increasing attention. Studies have shown that circSNARCA5 not only plays a crucial role in the occurrence and development of cancer but may also serve as a reliable indicator for tumor screening or a good marker for evaluating cancer prognosis. Nevertheless, there are no reviews focusing on the relationship between circSMARCA5 and cancer. Therefore, we will first explain the main biological characteristics of circSMARCA5, such as biogenesis and biological effects. Then, the focus will be on its role and significance in cancer. Finally, we will summarize the known information on circSMARCA5 in cancer and discuss future research prospects.
Collapse
|
23
|
Jiang S, Zhang Q, Li J, Raziq K, Kang X, Liang S, Sun C, Liang X, Zhao D, Fu S, Cai M. New Sights Into Long Non-Coding RNA LINC01133 in Cancer. Front Oncol 2022; 12:908162. [PMID: 35747817 PMCID: PMC9209730 DOI: 10.3389/fonc.2022.908162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
LINC01133 is a long intergenic non-coding RNA that regulates malignancy in several cancers, including those of the digestive, female reproductive, respiratory, and urinary system. LINC01133 is an extensively studied lncRNA that is highly conserved, and its relatively stable expression is essential for its robust biological function. Its expression is highly tissue-specific with a distinct subcellular localization. It functions as an oncogene or a tumor suppressor gene in different cancers via multiple mechanisms, such as those that involve competing with endogenous RNA and binding to RNA-binding proteins or DNA. Moreover, the secretion and transportation of LINC01133 by extracellular vesicles in the tumor micro-environment is regulated by other cells in the tumor micro-environment. To date, two mechanisms, an increase in copy number and regulation of transcription elements, have been found to regulate LINC01133 expression. Clinically, LINC01133 is an ideal marker for cancer prognosis and a potential therapeutic target in cancer treatment regimes. In this review, we aimed to summarize the aforementioned information as well as posit future directions for LINC01133 research.
Collapse
Affiliation(s)
- Shengnan Jiang
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Qian Zhang
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jiaqi Li
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Khadija Raziq
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xinyu Kang
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Shiyin Liang
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Chaoyue Sun
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xiao Liang
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Di Zhao
- Department of Genecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Songbin Fu
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Mengdi Cai
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- *Correspondence: Mengdi Cai,
| |
Collapse
|
24
|
Chen Z, Mai Q, Wang Q, Gou Q, Shi F, Mo Z, Cui W, Zhuang W, Li W, Xu R, Zhou Z, Chen X, Zhang J. CircPOLR2A promotes proliferation and impedes apoptosis of glioblastoma multiforme cells by up-regulating POU3F2 to facilitate SOX9 transcription. Neuroscience 2022; 503:118-130. [DOI: 10.1016/j.neuroscience.2022.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 10/31/2022]
|
25
|
The Clinical Role of SRSF1 Expression in Cancer: A Review of the Current Literature. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background: SFRS1 is a member of the splicing factor protein family. Through a specific sequence of alteration, SRSF1 can move from the cytoplasm to the nucleus where it can work autonomously as a splicing activator, or as a silencer when interacting with other regulators. Alternative splicing (AS) is a fundamental biological process that ensures protein diversity. In fact, different proteins, produced by alternative splicing, can gain different and even antagonistic biological functions. Methods: Our review is based on English articles published in the MEDLINE/PubMed medical library between 2000 and 2021. We retrieved articles that were specifically related to SRSF1 and cancers, and we excluded other reviews and meta-analyses. We included in vitro studies, animal studies and clinical studies, evaluated using the Medical Education Research Study Quality Instrument (MERSQI) and the Newcastle–Ottawa Scale-Education (NOSE). Result: SRSF1 is related to various genes and plays a role in cell cycle, ubiquitin-mediated proteolysis, nucleotide excision repair, p53 pathway, apoptosis, DNA replication and RNA degradation. In most cases, SRSF1 carries out its cancer-related function via abnormal alternative splicing (AS). However, according to the most recent literature, SRSF1 may also be involved in mRNA translation and cancer chemoresistance or radio-sensitivity. Conclusion: Our results showed that SRSF1 plays a key clinical role in tumorigenesis and tumor progression in several types of cancer (such as Prostate, Lung, Breast, Colon, Glioblastoma), through various mechanisms of action and different cellular pathways. This review could be a starting point for several studies regarding the biology of and therapies for cancer.
Collapse
|
26
|
Broggi G, Piombino E, Altieri R, Romano C, Certo F, Barbagallo GMV, Vigneri P, Condorelli D, Colarossi L, Colarossi C, Magro G, Tirrò E. Glioblastoma, IDH-Wild Type With FGFR3-TACC3 Fusion: When Morphology May Reliably Predict the Molecular Profile of a Tumor. A Case Report and Literature Review. Front Neurol 2022; 13:823015. [PMID: 35222252 PMCID: PMC8863931 DOI: 10.3389/fneur.2022.823015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 12/23/2022] Open
Abstract
It has been reported that in-frame FGFR3-TACC3 fusions confer to glioblastomas, IDH-wild type (GBMs, IDHwt) some unusual morphologic features, including monomorphous rounded cells with ovoid nuclei, nuclear palisading, endocrinoid network of “chicken-wire” vessels, microcalcifications and desmoplastic stroma, whose observation may predict the molecular profile of the tumor. We herein present a case of recurrent GBMs, IDHwt, exhibiting some of the above-mentioned morphological features and a molecularly-proven FGFR3-TACC3 fusion. A 56-year-old man presented to our hospital for a recurrent GBM, IDHwt, surgically treated at another center. Histologically, the tumor, in addition to the conventional GBM morphology, exhibited the following peculiar morphologic features: (1) monomorphous neoplastic cells with rounded nuclei and scant pale cytoplasm; (2) thin capillary-like vessels with “chicken-wire” pattern; (3) nuclear palisading; (4) formation of vague perivascular pseudorosettes; (5) spindled tumor cells embedded in a loose, myxoid background. Based on this unusual morphology, molecular analyses were performed and an FGFR3 exon17-TACC3 exon 10 fusion was found. The present case contributes to widening the morphologic spectrum of FGFR3-TACC3-fused GBM, IDHwt and emphasizes that pathologists, in the presence of a GBM, IDHwt with unconventional morphology, should promptly search for this fusion gene.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, Catania, Italy
- *Correspondence: Giuseppe Broggi
| | - Eliana Piombino
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Catania, Italy
| | - Roberto Altieri
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “G. Rodolico-San Marco” University Hospital, University of Catania, Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Francesco Certo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “G. Rodolico-San Marco” University Hospital, University of Catania, Catania, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “G. Rodolico-San Marco” University Hospital, University of Catania, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Dario Condorelli
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
| | - Lorenzo Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Catania, Italy
| | - Cristina Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Catania, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, Catania, Italy
| | - Elena Tirrò
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-San Marco”, Catania, Italy
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
27
|
Louis C, Leclerc D, Coulouarn C. Emerging roles of circular RNAs in liver cancer. JHEP Rep 2022; 4:100413. [PMID: 35036887 PMCID: PMC8749337 DOI: 10.1016/j.jhepr.2021.100413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma and cholangiocarcinoma are the most common primary liver tumours, whose incidence and associated mortality have increased over recent decades. Liver cancer is often diagnosed late when curative treatments are no longer an option. Characterising new molecular determinants of liver carcinogenesis is crucial for the development of innovative treatments and clinically relevant biomarkers. Recently, circular RNAs (circRNAs) emerged as promising regulatory molecules involved in cancer onset and progression. Mechanistically, circRNAs are mainly known for their ability to sponge and regulate the activity of microRNAs and RNA-binding proteins, although other functions are emerging (e.g. transcriptional and post-transcriptional regulation, protein scaffolding). In liver cancer, circRNAs have been shown to regulate tumour cell proliferation, migration, invasion and cell death resistance. Their roles in regulating angiogenesis, genome instability, immune surveillance and metabolic switching are emerging. Importantly, circRNAs are detected in body fluids. Due to their circular structure, circRNAs are often more stable than mRNAs or miRNAs and could therefore serve as promising biomarkers - quantifiable with high specificity and sensitivity through minimally invasive methods. This review focuses on the role and the clinical relevance of circRNAs in liver cancer, including the development of innovative biomarkers and therapeutic strategies.
Collapse
Key Words
- ASO, antisense oligonucleotide
- CCA, cholangiocarcinoma
- CLIP, cross-linking immunoprecipitation
- EMT, epithelial-to-mesenchymal transition
- EVs, extracellular vesicles
- HCC, hepatocellular carcinoma
- HN1, haematopoietic- and neurologic-expressed sequence 1
- IRES, internal ribosome entry sites
- NGS, next-generation sequencing
- QKI, Quaking
- RBP, RNA-binding protein
- RISC, RNA-induced silencing complex
- TAM, tumour-associated macrophage
- TSB, target site blockers
- biomarker
- cancer hallmarks
- cholangiocarcinoma
- circRNA
- circRNA, circular RNA
- hepatocellular carcinoma
- miRNA, microRNA
- shRNA, small-hairpin RNA
- snRNP, small nuclear ribonuclear proteins
Collapse
Affiliation(s)
- Corentin Louis
- Inserm, Univ Rennes 1, COSS (Chemistry, Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Delphine Leclerc
- Inserm, Univ Rennes 1, COSS (Chemistry, Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Cédric Coulouarn
- Inserm, Univ Rennes 1, COSS (Chemistry, Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| |
Collapse
|
28
|
Barbagallo D, Palermo CI, Barbagallo C, Battaglia R, Caponnetto A, Spina V, Ragusa M, Di Pietro C, Scalia G, Purrello M. Competing endogenous RNA network mediated by circ_3205 in SARS-CoV-2 infected cells. Cell Mol Life Sci 2022; 79:75. [PMID: 35039944 PMCID: PMC8763136 DOI: 10.1007/s00018-021-04119-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a new member of the Betacoronaviridae family, responsible for the recent pandemic outbreak of COVID-19. To start exploring the molecular events that follow host cell infection, we queried VirusCircBase and identified a circular RNA (circRNA) predicted to be synthesized by SARS-CoV-2, circ_3205, which we used to probe: (i) a training cohort comprised of two pools of cells from three nasopharyngeal swabs of SARS-CoV-2 infected (positive) or uninfected (negative, UCs) individuals; (ii) a validation cohort made up of 12 positive and 3 negative samples. The expression of circRNAs, miRNAs and miRNA targets was assayed through real-time PCR. CircRNA-miRNA interactions were predicted by TarpMiR, Analysis of Common Targets for circular RNAs (ACT), and STarMir tools. Enrichment of the biological processes and the list of predicted miRNA targets were retrieved from DIANA miRPath v3.0. Our results showed that the predicted SARS-CoV-2 circ_3205 was expressed only in positive samples and its amount positively correlated with that of SARS-CoV-2 Spike (S) mRNA and the viral load (r values = 0.80952 and 0.84867, Spearman's correlation test, respectively). Human (hsa) miR-298 was predicted to interact with circ_3205 by all three predictive tools. KCNMB4 and PRKCE were predicted as hsa-miR-298 targets. Interestingly, the function of both is correlated with blood coagulation and immune response. KCNMB4 and PRKCE mRNAs were upregulated in positive samples as compared to UCs (6 and 8.1-fold, p values = 0.049 and 0.02, Student's t test, respectively) and their expression positively correlated with that of circ_3205 (r values = 0.6 and 0.25, Spearman's correlation test, respectively). We propose that our results convincingly suggest that circ_3205 is a circRNA synthesized by SARS-CoV-2 upon host cell infection and that it may behave as a competitive endogenous RNA (ceRNA), sponging hsa-miR-298 and contributing to the upregulation of KCNMB4 and PRKCE mRNAs.
Collapse
Affiliation(s)
- Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy.
| | - Concetta Ilenia Palermo
- U.O.C. Laboratory Analysis Unit, A.O.U. Policlinico‑Vittorio Emanuele, 95123, Catania, Italy
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy
| | - Vittoria Spina
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123, Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy
| | - Guido Scalia
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123, Catania, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy
| |
Collapse
|
29
|
Broggi G, Barbagallo D, Lacarrubba F, Verzì AE, Micali G, Purrello M, Caltabiano R. The Immunohistochemical Expression of the Serine and Arginine-Rich Splicing Factor 1 (SRSF1) Is a Predictive Factor of the Recurrence of Basal Cell Carcinoma: A Preliminary Study on a Series of 52 Cases. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58010139. [PMID: 35056447 PMCID: PMC8781844 DOI: 10.3390/medicina58010139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 12/01/2022]
Abstract
Background and Objectives: Basal cell carcinomas (BCCs) are the most frequent skin tumors; although they usually exhibit a good prognosis, it has been reported that there is a 2–8% rate of local recurrence of surgically-excised BCCs, even in the presence of tumor-free surgical margins. Several histological and clinical risk factors have been associated with a higher risk of local relapse; however, the exact pathogenetic mechanisms that regulate the local recurrence of these tumors are still to be elucidated. The serine and arginine-rich splicing factor 1 (SRSF1) is an RNA-binding protein whose oncogenic function has been described in numerous forms of human cancers, including brain, lung, and prostate tumors. We evaluated the correlation between SRSF1 immunoexpression and the local recurrence of BCCs. Materials and Methods: Fifty-two cases of surgically excised BCCs with free-tumor margins (10 high-risk and 42 low-risk variants), for which follow-up data were available, were selected. Local recurrence occurred in only 5 cases. Results: We found high and low immunoexpressions of SRSF1 in 18 and 34 cases, respectively. A statistically significant association between high SRSF1 immunoexpression and the local recurrence of BCC was found (p = 0.0433). Conclusions: Our immunohistochemical results suggest an active role of SRSF1 in inducing a local recurrence of BCCs; however, further studies on a larger series are needed to validate our findings.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy;
- Correspondence: ; Tel.: +39-09-5378-2021; Fax: +39-09-5378-2023
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “Giovanni Sichel”, University of Catania, 95123 Catania, Italy; (D.B.); (M.P.)
| | - Francesco Lacarrubba
- Dermatology Clinic, University of Catania, 95123 Catania, Italy; (F.L.); (A.E.V.); (G.M.)
| | - Anna Elisa Verzì
- Dermatology Clinic, University of Catania, 95123 Catania, Italy; (F.L.); (A.E.V.); (G.M.)
| | - Giuseppe Micali
- Dermatology Clinic, University of Catania, 95123 Catania, Italy; (F.L.); (A.E.V.); (G.M.)
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “Giovanni Sichel”, University of Catania, 95123 Catania, Italy; (D.B.); (M.P.)
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
30
|
Circular RNA circFGFR1 Functions as an Oncogene in Glioblastoma Cells through Sponging to hsa-miR-224-5p. J Immunol Res 2022; 2022:7990251. [PMID: 35059468 PMCID: PMC8764274 DOI: 10.1155/2022/7990251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/28/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, increased studies have shown the important regulatory role of circular RNA (circRNA) in cancer progression and development, including glioblastoma (GBM). However, the function of circRNAs in glioblastoma is still largely unclear. Here, we state that circFGFR1 is elevated in glioma cells, resulting in aggravated glioma aggravated malignancy. The upregulation of circFGFR1 also promotes glioma growth in mouse xenograft models. Furthermore, CXCR4 level in glioma cells is positively correlated with circFGFR1 level, and higher CXCR4 expression is found in circFGFR1 overexpression groups. The effect of circFGFR1 on glioma malignancy is abolished in CXCR4 knockout cells. Then, RIP, RNA pull-down, and luciferase reporter assay results showed that hsa-miR-224-5p directly binds to circFGFR1 and CXCR4 mRNA. The CXCR4 3′-untranslated region (UTR) activated luciferase activity was reduced with hsa-miR-224-5p transfection, while it is reversed when cotransfected with circFGFR1, indicating that circFGFR1 acts as a hsa-miR-244-5p sponge to increase CXCR4 expression. The hsa-miR-224-5p expression is negatively corrected with the glioma malignancy through inhibiting CXCR4 level. Besides, the circFGFR1-induced regulation in glioma malignancy is also abrogated in hsa-miR-224-5p knockout cells. Taken together, our findings suggest that circFGFR1 plays a critical role in the tumorigenic behaviors in glioma cells by upregulating CXCR4 expression via sponging to hsa-miR-224-5p. These findings provide a new perspective on circRNAs during GBM development.
Collapse
|
31
|
Identification of Circulating Exosomal miR-101 and miR-125b Panel Act as a Potential Biomarker for Hepatocellular Carcinoma. Int J Genomics 2022; 2021:1326463. [PMID: 34988221 PMCID: PMC8723878 DOI: 10.1155/2021/1326463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/08/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with high mortality, and there is an urgent need of new diagnosis measures. This study is aimed at investigating whether circulating exosomal miRNAs could act as biomarkers for the diagnosis of HCC. Methods A four-stage strategy was adopted in this study. Candidate miRNA was selected by comprehensive analysis of four GEO datasets and TCGA database. The expression of candidate miRNAs in serum exosomal samples were examined through qRT-PCR. The diagnostic utility of the final validated miRNAs was examined by receiver operating characteristic (ROC) curve analysis. Results After synthetical analysis of four GEO datasets, six miRNAs were selected as candidates due to their higher differential fold change. miR-101 and miR-125b were selected as candidate miRNAs to further investigate their potential as biomarkers for HCC due to their differential fold change and their influence on overall survival based on the TCGA database. As a result, miR-101 and miR-125b expressions were remarkably downregulated in both tissues and serum exosomes of patients with HCC. The area under the ROC curves (AUCs) of circulating exosomal miR-101 and miR-125b were 0.894 (95% CI, 0.793–0.994) and 0.812 (95% CI, 0.675–0.950), respectively. The combination of the two miRNAs presented higher diagnostic utility for HCC (AUC = 0.953). Conclusion The exosomal miR-101 and miR-125b panel in the serum may act as a noninvasive biomarker for HCC detection.
Collapse
|
32
|
circHUWE1 Exerts an Oncogenic Role in Inducing DDP-Resistant NSCLC Progression Depending on the Regulation of miR-34a-5p/TNFAIP8. Int J Genomics 2021; 2021:3997045. [PMID: 34901263 PMCID: PMC8664528 DOI: 10.1155/2021/3997045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 12/25/2022] Open
Abstract
Background Circular RNAs (circRNAs) are reported as competing endogenous RNAs (ceRNAs) and play key roles in non-small-cell lung cancer (NSCLC) progression. Thus, this study was aimed at clarifying underlying molecular mechanisms of circHUWE1 in NSCLC. Methods The quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analyses were used for examining circHUWE1, microRNA-34a-5p (miR-34a-5p), and tumor necrosis factor alpha-induced protein 8 (TNFAIP8). IC50 of cisplatin (DDP) in A549/DDP and H1299/DDP cells and cell viability were analyzed by the Cell Counting Kit 8 (CCK-8) assay. Colony forming assay was performed to assess colony forming ability. Cell apoptosis and cell cycle distribution were determined by flow cytometry. Migrated and invaded cell numbers were examined by transwell assay. The association among circHUWE1, miR-34a-5p, and TNFAIP8 was analyzed by dual-luciferase reporter and RNA immunoprecipitation assays. A xenograft experiment was applied to clarify the functional role of circHUWE1 in vivo. Results circHUWE1 was upregulated in NSCLC tissues and cells, especially in DDP-resistant groups. circHUWE1 downregulation inhibited DDP resistance, proliferation, migration, and invasion while it induced apoptosis and cell cycle arrest of DDP-resistant NSCLC cells, which was overturned by silencing of miR-34a-5p. TNFAIP8 was a functional gene of miR-34a-5p, and the suppressive effects of miR-34a-5p overexpression on DDP-resistant NSCLC progression were dependent on the suppression of TNFAIP8. circHUWE1 inhibition also delayed tumor growth of DDP-resistant NSCLC cells. Conclusion circHUWE1 functioned as a promoter in DDP-resistant NSCLC by interaction with miR-34a-5p-TNFAIP8 networks, providing novel insight into DDP-resistant NSCLC diagnosis and treatment.
Collapse
|
33
|
Guo X, Piao H. Research Progress of circRNAs in Glioblastoma. Front Cell Dev Biol 2021; 9:791892. [PMID: 34881248 PMCID: PMC8645988 DOI: 10.3389/fcell.2021.791892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded covalently closed non-coding RNAs without a 5' cap structure or 3' terminal poly (A) tail, which are expressed in a variety of tissues and cells with conserved, stable and specific characteristics. Glioblastoma (GBM) is the most aggressive and lethal tumor in the central nervous system, characterized by high recurrence and mortality rates. The specific expression of circRNAs in GBM has demonstrated their potential to become new biomarkers for the development of GBM. The specific expression of circRNAs in GBM has shown their potential as new biomarkers for GBM cell proliferation, apoptosis, migration and invasion, which provides new ideas for GBM treatment. In this paper, we will review the biological properties and functions of circRNAs and their biological roles and clinical applications in GBM.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Ji J, You Q, Zhang J, Wang Y, Cheng J, Huang X, Zhang Y. Downregulation of TET1 Promotes Glioma Cell Proliferation and Invasion by Targeting Wnt/ β-Catenin Pathway. Anal Cell Pathol (Amst) 2021; 2021:8980711. [PMID: 34926132 PMCID: PMC8677395 DOI: 10.1155/2021/8980711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Glioma is the most common malignant tumor in adult brain characteristic with poor prognosis and low survival rate. Despite the application of advanced surgery, chemotherapy, and radiotherapy, the patients with glioma suffer poor treatment effects due to the complex molecular mechanisms of pathological process. In this paper, we conducted the experiments to prove the critical roles TET1 played in glioma and explored the downstream targets of TET1 in order to provide a novel theoretical basis for clinical glioma therapy. RT-qPCR was adopted to detect the RNA level of TET1 and β-catenin; Western blot was taken to determine the expression of proteins. CCK8 assay was used to detect the proliferation of glioma cells. Flow cytometry was used to test cell apoptosis and distribution of cell cycle. To detect the migration and invasion of glioma cells, wound healing assay and Transwell were performed. It was found that downregulation of TET1 could promote the proliferation migration and invasion of glioma cells and the concomitant upregulation of β-catenin, and its downstream targets like cyclinD1 and c-myc were observed. The further rescue experiments were performed, wherein downregulation of β-catenin markedly decreases glioma cell proliferation in vitro and in vivo. This study confirmed the tumor suppressive function of TET1 and illustrated the underlying molecular mechanisms regulated by TET1 in glioma.
Collapse
Affiliation(s)
- Jianwen Ji
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Qiuxiang You
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Jidong Zhang
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Yutao Wang
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Jing Cheng
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Xiangyun Huang
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Yundong Zhang
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| |
Collapse
|
35
|
Chen B, Wang M, Huang R, Liao K, Wang T, Yang R, Zhang W, Shi Z, Ren L, Lv Q, Ma C, Lin Y, Qiu Y. Circular RNA circLGMN facilitates glioblastoma progression by targeting miR-127-3p/LGMN axis. Cancer Lett 2021; 522:225-237. [PMID: 34582975 DOI: 10.1016/j.canlet.2021.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GBM) is one of the most devastating cancers and is characterized by rapid cell proliferation and aggressive invasiveness. Legumain (LGMN), a substrate-specific protease, is associated with poor progression of GBM. Circular RNAs (circRNAs) are aberrantly expressed in various cancers and play crucial roles in tumor progression; however, the functional roles of circRNAs originating from LGMN remain largely unknown in GBM. Herein, we found that hsa_circ_0033009 (circLGMN) was the most abundantly expressed circRNA derived from LGMN. CircLGMN was upregulated in high-grade glioma (HGG), and high expression of circLGMN was associated with poor prognosis in patients with glioma. CircLGMN overexpression promoted GBM cell proliferation and enhanced cell invasion. Mechanistically, circLGMN acts as a sponge for miR-127-3p, and prevents miR-127-3p-mediated degradation of LGMN mRNA, ultimately leading to increased LGMN protein expression. Treatment with miR-127-3p mimic suppressed proliferation and reduced invasion of GBM cells overexpressing circLGMN. Moreover, circLGMN overexpression promoted GBM malignancy in vivo, while miR-127-3p overexpression alleviated this effect. Taken together, circLGMN is a novel tumor-promoting circRNA that acts by sponging miR-127-3p, which ultimately leads to LGMN upregulation. Thus, targeting the circLGMN/miR-127-3p/LGMN axis might be a promising strategy for GBM treatment. More importantly, the discovery of the self-regulatory mechanism of LGMN expression by circLGMN, will facilitate further research on LGMN.
Collapse
Affiliation(s)
- Binghong Chen
- Department of Neurosurgery, Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Mengying Wang
- Department of Neurosurgery, Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Renhua Huang
- Department of Radiation Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Keman Liao
- Department of Neurosurgery, Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Tianwei Wang
- Department of Neurosurgery, Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Renhao Yang
- Department of Neurosurgery, Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Wenrui Zhang
- Department of Neurosurgery, Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Zhonggang Shi
- Department of Neurosurgery, Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Li Ren
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, PR China
| | - Qi Lv
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Chunhui Ma
- Department of Orthopedics, Shanghai General Hospital of Shanghai Jiao Tong University, Shanghai, 200080, PR China
| | - Yingying Lin
- Department of Neurosurgery, Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China.
| | - Yongming Qiu
- Department of Neurosurgery, Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China.
| |
Collapse
|
36
|
Broggi G, Certo F, Altieri R, Caltabiano R, Gessi M, Barbagallo GMV. A "polymorphous low-grade neuroepithelial tumor of the young (PLNTY)" diagnosed in an adult. Report of a case and review of the literature. Surg Neurol Int 2021; 12:470. [PMID: 34621585 PMCID: PMC8492409 DOI: 10.25259/sni_500_2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Polymorphous low-grade neuroepithelial tumor of the young (PLNTY) is a rare neuropathological entity, recently introduced in neuro-oncology. These tumors, histologically similar to oligodendrogliomas, cause epilepsy, occurring in children and young adults. Only few cases of PLNTY have been described in literature and all reported cases invariably focused on the onset of these tumors in children and young adults. Case Description: We report the case of a 50-year-old woman suffering from epilepsy since the 1st year of her life. Computed tomography scan and magnetic resonance imaging of the brain documented the presence of a calcified mass involving left temporal lobe. The tumor was surgically excised and the histological examination showed a hypocellular and massively calcified neoplasm with morphological and immunohistochemical features consistent with the diagnosis of “PLNTY.” Conclusion: A review of the literature revealed that there are 31 cases of PLNTY reported in literature, most of which are children or young adults. The present case represents the second PLNTY diagnosed in a middle-aged adult to the best of our knowledge, suggesting that PLNTY should always be included in the differential diagnosis of low-grade brain tumors, also in adult patients.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania
| | - Francesco Certo
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Neurological Surgery, Policlinico "Rodolico-San Marco" University Hospital, University of Catania, 95123 Catania
| | - Roberto Altieri
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Neurological Surgery, Policlinico "Rodolico-San Marco" University Hospital, University of Catania, 95123 Catania
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania
| | - Marco Gessi
- Neuropathology Unit, Catholic University, Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Rome, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Neurological Surgery, Policlinico "Rodolico-San Marco" University Hospital, University of Catania, 95123 Catania
| |
Collapse
|
37
|
Broggi G, Lo Giudice A, Di Mauro M, Asmundo MG, Pricoco E, Piombino E, Caltabiano R, Morgia G, Russo GI. SRSF-1 and microvessel density immunohistochemical analysis by semi-automated tissue microarray in prostate cancer patients with diabetes (DIAMOND study). Prostate 2021; 81:882-892. [PMID: 34196424 PMCID: PMC8362056 DOI: 10.1002/pros.24185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To study the association between insulin receptors (isoforms α and β), insulin growth factor-1 (IGF1) and serine/arginine splicing factor 1 (SRSF-1) in patients with prostate cancer (PC) and diabetes. MATERIALS AND METHODS We retrospectively analyzed data from 368 patients who underwent surgery for PC or benign prostatic hyperplasia (BPH) between 2010 and 2020 at the Department of Urology, University of Catania. Tissue microarray slides were constructed and they were stained for androgen receptor (AR), insulin receptor-α and -β, IGF1 (IGF1-R), Ki-67, and prostate specific membrane antigen (PSMA) expression using validated score. RESULTS The final cohort was represented by 100 patients with BPH and 268 with PC, with a median age of 68 years. We found that SRSF-1 expression was associated with AR (odds ratio [OR]: 1.66), PSMA (OR: 2.13), Ki-67 (OR: 5.99), insulin receptor (IR)-α (OR: 2.38), IR-β (OR: 3.48), IGF1-R (OR: 1.53), and microvascular density (MVD) was associated with PSMA (OR: 3.44), Ki-67 (OR: 2.23), IR-α (OR: 2.91), IR-β (OR: 3.02), IGF1-R (OR: 2.95), and SRSF-1 (OR: 2.21). In the sub cohort of PC patients, we found that SRSF-1 expression was associated with AR (OR: 2.34), Ki-67 (OR: 6.77), IR-α (OR: 2.7), and MVD (OR: 1.98). At the Kaplan-Meier analysis, SRSF-1+ patients had worse 5- and 9-year biochemical recurrence (36% and 6%) respect to SRSF-1- (67% and 7%; p < .01) and similarly MVD+ patients (44% and 7%) respect to MVD- (64% and 8%; p < .01). Restricting the analysis only in patients with PC and diabetes, we found that SRSF-1+ was associated with Ki-67+ (OR: 8.75; p < .05) and MVD+ (OR: 7.5; p < .05). CONCLUSIONS PC exhibits widespread heterogeneity in protein expression. In particular, the expressions of the SRSF-1 protein and of the MVD are associated with a worse prognosis and in particular with a greater cell proliferation. These results, although preliminary, may offer new future scientific insights with the aim of highlighting possible genetic alterations linked to a greater expression of SRSF-1 and associated with a worse prognosis.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic PathologyUniversity of CataniaCataniaItaly
| | - Arturo Lo Giudice
- Urology Section, Department of SurgeryUniversity of CataniaCataniaItaly
| | - Marina Di Mauro
- Urology Section, Department of SurgeryUniversity of CataniaCataniaItaly
| | - Maria Giovanna Asmundo
- Urology Section, Department of SurgeryUniversity of CataniaCataniaItaly
- Department of UrologyEuropean Institute of Oncology, IRCCSMilanItaly
| | | | - Eliana Piombino
- Department of Experimental OncologyMediterranean Institute of Oncology (IOM)CataniaItaly
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic PathologyUniversity of CataniaCataniaItaly
| | - Giuseppe Morgia
- Urology Section, Department of SurgeryUniversity of CataniaCataniaItaly
- Department of Experimental OncologyMediterranean Institute of Oncology (IOM)CataniaItaly
| | | |
Collapse
|
38
|
Gong L, Zhou X, Sun J. Circular RNAs Interaction with MiRNAs: Emerging Roles in Breast Cancer. Int J Med Sci 2021; 18:3182-3196. [PMID: 34400888 PMCID: PMC8364445 DOI: 10.7150/ijms.62219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Despite significant advances in cancer therapy strategies, breast cancer is one of the most common and lethal malignancies worldwide. Characterization of a new class of RNAs using next-generation sequencing opened new doors toward uncovering etiopathogenesis mechanisms of breast cancer as well as prognostic and diagnostic biomarkers. Circular RNAs (circRNAs) are a novel class of RNA with covalently closed and highly stable structures generated primarily from the back-splicing of precursor mRNAs. Although circRNAs exert their function through various mechanisms, acting as a sponge for miRNAs is their primary mechanism of function. Furthermore, growing evidence has shown that aberrant expression of circRNAs is involved in the various hallmarks of cancers. This paper reviews the biogenesis, characteristics, and mechanism of functions of circRNAs and their deregulation in various cancers. Finally, we focused on the circRNAs roles as a sponge for miRNAs in the development, metastasis, angiogenesis, drug resistance, apoptosis, and immune responses of breast cancer.
Collapse
Affiliation(s)
- Liu Gong
- Department of Medical Oncology, Hangzhou Xiasha Hospital, Hangzhou, Zhejiang Province, China
| | | | | |
Collapse
|
39
|
Stella M, Falzone L, Caponnetto A, Gattuso G, Barbagallo C, Battaglia R, Mirabella F, Broggi G, Altieri R, Certo F, Caltabiano R, Barbagallo GMV, Musumeci P, Ragusa M, Pietro CD, Libra M, Purrello M, Barbagallo D. Serum Extracellular Vesicle-Derived circHIPK3 and circSMARCA5 Are Two Novel Diagnostic Biomarkers for Glioblastoma Multiforme. Pharmaceuticals (Basel) 2021; 14:ph14070618. [PMID: 34198978 PMCID: PMC8308516 DOI: 10.3390/ph14070618] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequent and deadly human brain cancer. Early diagnosis through non-invasive biomarkers may render GBM more easily treatable, improving the prognosis of this currently incurable disease. We suggest the use of serum extracellular vesicle (sEV)-derived circular RNAs (circRNAs) as highly stable minimally invasive diagnostic biomarkers for GBM diagnosis. EVs were isolated by size exclusion chromatography from sera of 23 GBM and 5 grade 3 glioma (GIII) patients, and 10 unaffected controls (UC). The expression of two candidate circRNAs (circSMARCA5 and circHIPK3) was assayed by droplet digital PCR. CircSMARCA5 and circHIPK3 were significantly less abundant in sEVs from GBM patients with respect to UC (fold-change (FC) of -2.15 and -1.92, respectively) and GIII (FC of -1.75 and -1.4, respectively). Receiver operating characteristic curve (ROC) analysis, based on the expression of sEV-derived circSMARCA5 and circHIPK3, allowed us to distinguish GBM from UC (area under the curve (AUC) 0.823 (0.667-0.979) and 0.855 (0.704 to 1.000), with a 95% confidence interval (CI), respectively). Multivariable ROC analysis, performed by combining the expression of sEV-derived circSMARCA5 and circHIPK3 with preoperative neutrophil to lymphocyte (NLR), platelet to lymphocyte (PLR) and lymphocyte to monocyte (LMR) ratios, three known diagnostic and prognostic GBM markers, allowed an improvement in the GBM diagnostic accuracy (AUC 0.901 (0.7912 to 1.000), 95% CI). Our data suggest sEV-derived circSMARCA5 and circHIPK3 as good diagnostic biomarkers for GBM, especially when associated with preoperative NLR, PLR and LMR.
Collapse
Affiliation(s)
- Michele Stella
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Section of Pathology, University of Catania, 95123 Catania, Italy; (L.F.); (G.G.); (M.L.)
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, Section of Pathology, University of Catania, 95123 Catania, Italy; (L.F.); (G.G.); (M.L.)
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
| | - Federica Mirabella
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.)
| | - Roberto Altieri
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “Rodolico-San Marco” University Hospital, University of Catania, 95123 Catania, Italy; (R.A.); (F.C.); (G.M.V.B.)
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, 95123 Catania, Italy
| | - Francesco Certo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “Rodolico-San Marco” University Hospital, University of Catania, 95123 Catania, Italy; (R.A.); (F.C.); (G.M.V.B.)
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.)
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “Rodolico-San Marco” University Hospital, University of Catania, 95123 Catania, Italy; (R.A.); (F.C.); (G.M.V.B.)
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, 95123 Catania, Italy
| | - Paolo Musumeci
- Department of Physics and Astronomy, University of Catania, 95123 Catania, Italy;
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, 95123 Catania, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Section of Pathology, University of Catania, 95123 Catania, Italy; (L.F.); (G.G.); (M.L.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, 95123 Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-0953782089
| |
Collapse
|
40
|
Immunohistochemical Expression of Serine and Arginine-Rich Splicing Factor 1 (SRSF1) in Fluoro-Edenite-Induced Malignant Mesothelioma: A Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126249. [PMID: 34207798 PMCID: PMC8296067 DOI: 10.3390/ijerph18126249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022]
Abstract
The Serine and Arginine-Rich Splicing Factor 1 (SRSF1) has a proto-oncogenic function, being associated with angiogenesis and frequently overexpressed in many human malignant neoplasms. Its immunohistochemical expression has never been investigated in malignant pleural mesothelioma (MPM). We evaluated SRSF1 immunoexpression and its possible relation to angiogenesis in a selected cohort of 10 fluoro-edenite(FE)-induced MPM cases. Methods: Immunohistochemical analyses with an anti-SRSF1 antibody were performed. We interpreted the cases as positive if tumor cell nuclei were stained; a semi-quantitative analysis of the cases was performed by evaluating the intensity of staining and the percentage of tumor positive cells. A microvessel density (MVD) count was also performed. Results: High and low immunoexpressions of SRSF1 were seen in six and four MPMs, respectively. A trend of shorter overall survival was found in FE-induced MPM patients with SRSF1 overexpression. In addition, a significant association between high-MVD and high SRSF1 immunoexpression (p = 0.0476) was found. Conclusions: SRSF1 appears to be involved in MPM pathogenesis and its immunoexpression may represent a prognostic biomarker capable of identifying subgroups of patients with different prognosis. However, given the preliminary nature of the present study, further investigations on larger series, and additional in vitro studies, are required to validate our findings.
Collapse
|
41
|
Groblewska M, Mroczko B. Pro- and Antiangiogenic Factors in Gliomas: Implications for Novel Therapeutic Possibilities. Int J Mol Sci 2021; 22:ijms22116126. [PMID: 34200145 PMCID: PMC8201226 DOI: 10.3390/ijms22116126] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis, a complex, multistep process of forming new blood vessels, plays crucial role in normal development, embryogenesis, and wound healing. Malignant tumors characterized by increased proliferation also require new vasculature to provide an adequate supply of oxygen and nutrients for developing tumor. Gliomas are among the most frequent primary tumors of the central nervous system (CNS), characterized by increased new vessel formation. The processes of neoangiogenesis, necessary for glioma development, are mediated by numerous growth factors, cytokines, chemokines and other proteins. In contrast to other solid tumors, some biological conditions, such as the blood–brain barrier and the unique interplay between immune microenvironment and tumor, represent significant challenges in glioma therapy. Therefore, the objective of the study was to present the role of various proangiogenic factors in glioma angiogenesis as well as the differences between normal and tumoral angiogenesis. Another goal was to present novel therapeutic options in oncology approaches. We performed a thorough search via the PubMed database. In this paper we describe various proangiogenic factors in glioma vasculature development. The presented paper also reviews various antiangiogenic factors necessary in maintaining equilibrium between pro- and antiangiogenic processes. Furthermore, we present some novel possibilities of antiangiogenic therapy in this type of tumors.
Collapse
Affiliation(s)
- Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland
- Correspondence: ; Tel.: +48-858318785
| |
Collapse
|
42
|
Nuclear Respiratory Factor-1, a Novel SMAD4 Binding Protein, Represses TGF-β/SMAD4 Signaling by Functioning as a Transcriptional Cofactor. Int J Mol Sci 2021; 22:ijms22115595. [PMID: 34070531 PMCID: PMC8198518 DOI: 10.3390/ijms22115595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
SMAD4, a key regulator of transforming growth factor-β (TGF-β) signaling, plays a major role in cell growth, migration, and apoptosis. In particular, TGF-β/SMAD induces growth arrest, and SMAD4 induces the expression of target genes such as p21WAF1 and p15INK4b through its interaction with several cofactors. Thus, inactivating mutations or the homozygous deletion of SMAD4 could be related to tumorigenesis or malignancy progression. However, in some cancer types, SMAD4 is neither mutated nor deleted. In the current study, we demonstrate that TGF-β signaling with a preserved SMAD4 function can contribute to cancer through associations with negative pathway regulators. We found that nuclear respiratory factor-1 (NRF1) is a novel interaction SMAD4 partner that inhibits TGF-β/SMAD4-induced p15INK4b mRNA expression by binding to SMAD4. Furthermore, we confirmed that NRF1 directly binds to the core region of the SMAD4 promoter, thereby decreasing SMAD4 mRNA expression. On the whole, our data suggest that NRF1 is a negative regulator of SMAD4 and can interfere with TGF-β/SMAD-induced tumor suppression. Our findings provide a novel perception into the molecular basis of TGF-β/SMAD4-signaling suppression in tumorigenesis.
Collapse
|
43
|
Diagnostic Utility of the Immunohistochemical Expression of Serine and Arginine Rich Splicing Factor 1 (SRSF1) in the Differential Diagnosis of Adult Gliomas. Cancers (Basel) 2021; 13:cancers13092086. [PMID: 33925821 PMCID: PMC8123436 DOI: 10.3390/cancers13092086] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Gliomas represent a wide group of central nervous system neoplasms, arising from the glial component of the central nervous system. They are generally sub-classified into astrocytomas, oligodendrogliomas, ependymomas and other rarer subtypes. Apart from morphological and molecular features, there are currently no specific markers for this heterogeneous group of tumors: thus, there is a need to identify more specific and useful markers to distinguish each histological subtype from the others. SRSF1 has been recently characterized as being functionally involved in gliomagenesis and it has been found that SRSF1 is increased in glioma tissues and its increased immunohistochemical expression among adult diffuse astrocytomas is positively correlated with histological grade. The aim of this study is to evaluate the immunohistochemical expression of the SRSF1 protein in a series of astrocytic and non-astrocytic adult gliomas, emphasizing its potential use in the differential diagnosis of these neuropathological entities. Abstract Background: The aim of this study was to investigate the immunohistochemical expression and distribution of serine and arginine rich splicing factor 1 (SRSF1) in a series of 102 cases of both diffuse and circumscribed adult gliomas to establish the potential diagnostic role of this protein in the differential diagnosis of brain tumors. Methods: This retrospective immunohistochemical study included 42 glioblastoma cases, 21 oligodendrogliomas, 15 ependymomas, 15 pilocytic astrocytomas, 5 sub-ependymal giant cell astrocytoma and 4 pleomorphic xanthoastrocytomas. Results: Most glioblastoma (81%), oligodendroglioma (71%), sub-ependymal giant cell astrocytoma (80%) and pleomorphic xanthoastrocytoma (75%) cases showed strong SRSF1 immunoexpression, while no detectable staining was found in the majority of ependymomas (87% of cases) and pilocytic astrocytomas (67% of cases). Conclusions: The immunohistochemical expression of SRSF1 may be a promising diagnostic marker of astrocytomas and oligodendrogliomas and its increased expression might allow for excluding entities that often enter into differential diagnosis, such as ependymomas and pilocytic astrocytomas.
Collapse
|