1
|
Valencia J, Bonilla-Correal S, Pinart E, Bonet S, Yeste M. Clustering of spermatozoa examined through flow cytometry provides more information than the conventional assessment: a resilience to osmotic stress example. Reprod Fertil Dev 2024; 36:RD23132. [PMID: 38769680 DOI: 10.1071/rd23132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 04/20/2024] [Indexed: 05/22/2024] Open
Abstract
Context Conventional sperm quality tests may not be sufficient to predict the fertilising ability of a given ejaculate; thus, rapid, reliable and sensitive tests are necessary to measure sperm function. Aims This study sought to address whether a cluster analysis approach based on flow cytometry variables could provide more information about sperm function. Methods Spermatozoa were exposed to either isotonic (300mOsm/kg) or hypotonic (180mOsm/kg) media for 5 and 20min, and were then stained with SYBR14 and propidium iodide (PI). Based on flow cytometry dot plots, spermatozoa were classified as either viable (SYBR14+ /PI- ) or with different degrees of plasma membrane alteration (SYBR14+ /PI+ and SYBR14- /PI+ ). Moreover, individual values of electronic volume (EV), side scattering (SS), green (FL1) and red (FL3) fluorescence were recorded and used to classify sperm cells through cluster analysis. Two strategies of this approach were run. The first one was based on EV and the FL3/FL1 quotient, and the second was based on EV, SS and the FL3/FL1 quotient. Key results The two strategies led to the identification of more than three sperm populations. In the first strategy, EV did not differ between membrane-intact and membrane-damaged sperm, but it was significantly (P P P Conclusions Cluster analysis based on flow cytometry variables provides more information about sperm function than conventional assessment does. Implications Combining flow cytometry with cluster analysis is a more robust approach for sperm evaluation.
Collapse
Affiliation(s)
- Julian Valencia
- Faculty of Veterinary Medicine, University Antonio Nariño, Popayán CO-190002, Colombia; and Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain
| | - Sebastián Bonilla-Correal
- Faculty of Veterinary Medicine, University Antonio Nariño, Popayán CO-190002, Colombia; and Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain; and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona ES-08010, Spain
| |
Collapse
|
2
|
Delgado-Bermúdez A, Yeste M, Bonet S, Pinart E. Physiological role of potassium channels in mammalian germ cell differentiation, maturation, and capacitation. Andrology 2024. [PMID: 38436215 DOI: 10.1111/andr.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Ion channels are essential for differentiation and maturation of germ cells, and even for fertilization in mammals. Different types of potassium channels have been identified, which are grouped into voltage-gated channels (Kv), ligand-gated channels (Kligand ), inwardly rectifying channels (Kir ), and tandem pore domain channels (K2P ). MATERIAL-METHODS The present review includes recent findings on the role of potassium channels in sperm physiology of mammals. RESULTS-DISCUSSION While most studies conducted thus far have been focused on the physiological role of voltage- (Kv1, Kv3, and Kv7) and calcium-gated channels (SLO1 and SLO3) during sperm capacitation, especially in humans and rodents, little data about the types of potassium channels present in the plasma membrane of differentiating germ cells exist. In spite of this, recent evidence suggests that the content and regulation mechanisms of these channels vary throughout spermatogenesis. Potassium channels are also essential for the regulation of sperm cell volume during epididymal maturation and for preventing premature membrane hyperpolarization. It is important to highlight that the nature, biochemical properties, localization, and regulation mechanisms of potassium channels are species-specific. In effect, while SLO3 is the main potassium channel involved in the K+ current during sperm capacitation in rodents, different potassium channels are implicated in the K+ outflow and, thus, plasma membrane hyperpolarization during sperm capacitation in other mammalian species, such as humans and pigs. CONCLUSIONS Potassium conductance is essential for male fertility, not only during sperm capacitation but throughout the spermiogenesis and epididymal maturation.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
| |
Collapse
|
3
|
Cooray A, Kim J, Nirujan BR, Jayathilake NJ, Lee KP. Pharmacological Evidence Suggests That Slo3 Channel Is the Principal K + Channel in Boar Spermatozoa. Int J Mol Sci 2023; 24:ijms24097806. [PMID: 37175513 PMCID: PMC10178124 DOI: 10.3390/ijms24097806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Sperm ion channels are associated with the quality and type of flagellar movement, and their differential regulation is crucial for sperm function during specific phases. The principal potassium ion channel is responsible for the majority of K+ ion flux, resulting in membrane hyperpolarization, and is essential for sperm capacitation-related signaling pathways. The molecular identity of the principal K+ channel varies greatly between different species, and there is a lack of information about boar K+ channels. We aimed to determine the channel identity of boar sperm contributing to the primary K+ current using pharmacological dissection. A series of Slo1 and Slo3 channel modulators were used for treatment. Sperm motility and related kinematic parameters were monitored using a computer-assisted sperm analysis system under non-capacitated conditions. Time-lapse flow cytometry with fluorochromes was used to measure changes in different intracellular ionic concentrations, and conventional flow cytometry was used to determine the acrosome reaction. Membrane depolarization, reduction in acrosome reaction, and motility parameters were observed upon the inhibition of the Slo3 channel, suggesting that the Slo3 gene encodes the main K+ channel in boar spermatozoa. The Slo3 channel was localized on the sperm flagellum, and the inhibition of Slo3 did not reduce sperm viability. These results may aid potential animal-model-based extrapolations and help to ameliorate motility and related parameters, leading to improved assisted reproductive methods in industrial livestock production.
Collapse
Affiliation(s)
- Akila Cooray
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeongsook Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Beno Ramesh Nirujan
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Nishani Jayanika Jayathilake
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
4
|
Pinto FM, Odriozola A, Candenas L, Subirán N. The Role of Sperm Membrane Potential and Ion Channels in Regulating Sperm Function. Int J Mol Sci 2023; 24:6995. [PMID: 37108159 PMCID: PMC10138380 DOI: 10.3390/ijms24086995] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
During the last seventy years, studies on mammalian sperm cells have demonstrated the essential role of capacitation, hyperactivation and the acrosome reaction in the acquisition of fertilization ability. These studies revealed the important biochemical and physiological changes that sperm undergo in their travel throughout the female genital tract, including changes in membrane fluidity, the activation of soluble adenylate cyclase, increases in intracellular pH and Ca2+ and the development of motility. Sperm are highly polarized cells, with a resting membrane potential of about -40 mV, which must rapidly adapt to the ionic changes occurring through the sperm membrane. This review summarizes the current knowledge about the relationship between variations in the sperm potential membrane, including depolarization and hyperpolarization, and their correlation with changes in sperm motility and capacitation to further lead to the acrosome reaction, a calcium-dependent exocytosis process. We also review the functionality of different ion channels that are present in spermatozoa in order to understand their association with human infertility.
Collapse
Affiliation(s)
- Francisco M. Pinto
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Ainize Odriozola
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Nerea Subirán
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| |
Collapse
|
5
|
Bang S, Tanga BM, Fang X, Seong G, Saadeldin IM, Qamar AY, Lee S, Kim KJ, Park YJ, Nabeel AHT, Yu IJ, Cooray A, Lee KP, Cho J. Cryopreservation of Pig Semen Using a Quercetin-Supplemented Freezing Extender. Life (Basel) 2022; 12:life12081155. [PMID: 36013334 PMCID: PMC9410179 DOI: 10.3390/life12081155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS) produced during freeze−thaw procedures cause oxidative damage to the sperm, reducing fertility. We aimed to improve the post-thaw quality of pig sperm by quercetin (QRN) supplementation to reduce the cryodamage associated with the freeze−thaw procedure. Four equal aliquots of pooled boar semen were diluted with a freezing extender supplemented with different concentrations of QRN (0, 25, 50, and 100 µM) and then were subjected to cryopreservation in liquid nitrogen. Semen analysis was performed following 7 days of cryopreservation. Results demonstrated that the semen samples supplemented with 50 µM QRN significantly improved the post-thaw sperm quality than those subjected to other supplementations (p < 0.05). Semen samples supplemented with 50 µM QRN showed significantly improved plasma membrane functional integrity (47.5 ± 1.4 vs. 43.1 ± 4.1, 45.3 ± 1.7, and 44.1 ± 1.4) and acrosome integrity (73.6 ± 3.4 vs. 66.3 ± 2.4, 66.7 ± 3.6, and 68.3 ± 32.9) as compared to the control, 25 µM, and 100 µM QRN groups, respectively. The mitochondrial activity of the 50 µM QRN group was greater than control and 25 µM QRN groups (43.0 ± 1.0 vs. 39.1 ± 0.9 and 41.9 ± 1.0) but showed no difference with the 100 µM QRN group. Moreover, the 50 µM QRN group showed a higher sperm number displaced to 1 cm and 3 cm points in the artificial mucus than other groups. Therefore, supplementing the freezing extender with QRN can serve as an effective tool to reduce the magnitude of oxidative damage associated with sperm freezing.
Collapse
Affiliation(s)
- Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
| | - Bereket Molla Tanga
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
| | - Xun Fang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
| | - Gyeonghwan Seong
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
| | - Islam M. Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ahmad Yar Qamar
- Collage of Veterinary and Animal Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
| | - Keun-Jung Kim
- Livestock Experiment Institute, Government of Chungcheongnam-do, Cheongyang-gun 33303, Korea; (K.-J.K.); (Y.-J.P.)
| | - Yun-Jae Park
- Livestock Experiment Institute, Government of Chungcheongnam-do, Cheongyang-gun 33303, Korea; (K.-J.K.); (Y.-J.P.)
| | - Abdelbagi Hamad Talha Nabeel
- Laboratory of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea; (A.H.T.N.); (I.-j.Y.)
| | - Il-jeoung Yu
- Laboratory of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea; (A.H.T.N.); (I.-j.Y.)
| | - Akila Cooray
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (A.C.); (K.P.L.)
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (A.C.); (K.P.L.)
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
- Correspondence: ; Tel.: +82-42-821-6788; Fax: +82-72-821-89
| |
Collapse
|
6
|
Reproductive Consequences of Electrolyte Disturbances in Domestic Animals. BIOLOGY 2022; 11:biology11071006. [PMID: 36101387 PMCID: PMC9312130 DOI: 10.3390/biology11071006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022]
Abstract
Electrolyte balance is essential to maintain homeostasis in the body. The most crucial electrolytes are sodium (Na+), potassium (K+), magnesium (Mg2+), chloride (Cl−), and calcium (Ca2+). These ions maintain the volume of body fluids, and blood pressure, participate in muscle contractions, and nerve conduction, and are important in enzymatic reactions. The balance is mainly ensured by the kidneys, which are an important organ that regulates the volume and composition of urine, together with which excess electrolytes are excreted. They are also important in the reproductive system, where they play a key role. In the male reproductive system, electrolytes are important in acrosomal reaction and sperm motility. Sodium, calcium, magnesium, and chloride are related to sperm capacitation. Moreover, Mg2+, Ca2+, and Na+ play a key role in spermatogenesis and the maintenance of morphologically normal spermatozoa. Infertility problems are becoming more common. It is known that disturbances in the electrolyte balance lead to reproductive dysfunction. In men, there is a decrease in sperm motility, loss of sperm capacitation, and male infertility. In the female reproductive system, sodium is associated with estrogen synthesis. In the contraction and relaxation of the uterus, there is sodium, potassium, and calcium. Calcium is associated with oocyte activation. In turn, in women, changes in the composition of the follicular fluid are observed, leading to a restriction of follicular growth. Imbalance of oocyte electrolytes, resulting in a lack of oocyte activation and, consequently, infertility.
Collapse
|
7
|
Pinart E. Ion Channels of Spermatozoa: Structure, Function, and Regulation Mechanisms. Int J Mol Sci 2022; 23:ijms23115880. [PMID: 35682559 PMCID: PMC9180134 DOI: 10.3390/ijms23115880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Ion transport is essential for sperm physiology, being involved in sperm-cell differentiation and maturation, motility activation, chemotaxis towards the oocyte, and fertilization, as well as in sperm adaptation to the surrounding medium [...].
Collapse
Affiliation(s)
- Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain
| |
Collapse
|
8
|
Kumari K, Kumar A, Bahadur I, Singh P. Investigate the interaction of testosterone/progesterone with ionic liquids on varying the anion to combat COVID-19: Density functional theory calculations and molecular docking approach. J PHYS ORG CHEM 2021; 34:e4273. [PMID: 34511718 PMCID: PMC8420490 DOI: 10.1002/poc.4273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 01/07/2023]
Abstract
Hormones like testosterone and progesterone in the humans play significant role in the regulation of various biological processes like the body growth, reproduction, and others. In last two decades, researchers are using ionic liquids (ILs) extensively in different areas of sciences, and they are a novel class of compounds as well as their polarity can be tuned. ILs are multidisciplinary in nature and can be used in chemistry, materials science, chemical engineering, and environmental science. Further, ILs are being explored to increase the solubility of drugs or biological potential molecules. Testosterone and progesterone are found to be not very polar in nature; therefore, the authors attempt to increase the solubility of testosterone and progesterone via interaction with ILs. It was studied with density functional theory calculations using Gaussian, and an increase in the value of dipole moment is observed for the complex of testosterone/progesterone with the ILs in comparison of individual one. The optimization energy and other thermodynamic energies of the ILs (IL1-IL3), testosterone (T), testosterone-IL (T-IL1 to T-IL3), progesterone (P), and progesterone-ILs (P-IL1 to P-IL3) are found to be negative. Further, the change in free energy for the formation of complexes at room temperature is calculated. Further, the authors have investigated the synergistic effect of testosterone and progesterone against the main protease of new coronavirus using molecular docking. It is observed that the testosterone-IL1 {IL1-3-(2-hydroxyethyl)-1-methyl-1H-imidazol-3-ium 2,4,6-trinitrophenolate} is found to be prominent against the main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Kamlesh Kumari
- Department of Zoology, Deen Dayal Upadhyaya CollegeUniversity of DelhiNew DelhiIndia
| | - Ajay Kumar
- Department of ChemistryIndian Institute of TechnologyNew DelhiIndia
| | - Indra Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural SciencesNorth‐West UniversityMmabathoSouth Africa
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma CollegeUniversity of DelhiNew DelhiIndia
| |
Collapse
|