1
|
Xia RJ, Du XY, Shen LW, Ma JG, Xu SM, Fan RF, Qin JW, Yan L. Roles of the tumor microenvironment in the resistance to programmed cell death protein 1 inhibitors in patients with gastric cancer. World J Gastrointest Oncol 2024; 16:3820-3831. [PMID: 39350980 PMCID: PMC11438768 DOI: 10.4251/wjgo.v16.i9.3820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024] Open
Abstract
Despite the continuous developments and advancements in the treatment of gastric cancer (GC), which is one of the most prevalent types of cancer in China, the overall survival is still poor for most patients with advanced GC. In recent years, with the progress in tumor immunology research, attention has shifted toward immunotherapy as a therapeutic approach for GC. Programmed cell death protein 1 (PD-1) inhibitors, as novel immunosuppressive medications, have been widely utilized in the treatment of GC. However, many patients are still resistant to PD-1 inhibitors and experience recurrence in the advanced stages of PD-1 immunotherapy. To reduce the occurrence of drug resistance and recurrence in GC patients receiving PD-1 immunotherapy, to maximize the clinical activity of immunosuppressive drugs, and to elicit a lasting immune response, it is essential to research the tumor microenvironment mechanisms leading to PD-1 inhibitor resistance in GC patients. This article reviews the progress in studying the factors influencing the resistance to PD-1 inhibitors in the GC tumor microenvironment, aiming to provide insights and a basis for reducing resistance to PD-1 inhibitors for GC patients in the future.
Collapse
Affiliation(s)
- Ren-Jie Xia
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Medicine, Northwest Minzu University, Lanzhou 730050, Gansu Province, China
| | - Xiao-Yu Du
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Medicine, Northwest Minzu University, Lanzhou 730050, Gansu Province, China
| | - Li-Wen Shen
- Department of Medical Support Center, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Jian-Guo Ma
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Shu-Mei Xu
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Rui-Fang Fan
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Jian-Wei Qin
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Long Yan
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| |
Collapse
|
2
|
Wang B, Song B, Li Y, Zhao Q, Tan B. Mapping spatial heterogeneity in gastric cancer microenvironment. Biomed Pharmacother 2024; 172:116317. [PMID: 38382329 DOI: 10.1016/j.biopha.2024.116317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
Gastric cancer (GC) is difficult to characterize due to its heterogeneity, and the complicated heterogeneity leads to the difficulty of precisely targeted therapy. The spatially heterogeneous composition plays a crucial role in GC onset, progression, treatment efficacy, and drug resistance. In recent years, the technological advancements in spatial omics has shifted our understanding of the tumor microenvironment (TME) from cancer-centered model to a dynamic and variant whole. In this review, we concentrated on the spatial heterogeneity within the primary lesions and between the primary and metastatic lesions of GC through the TME heterogeneity including the tertiary lymphoid structures (TLSs), the uniquely spatial organization. Meanwhile, the immune phenotype based on spatial distribution was also outlined. Furthermore, we recapitulated the clinical treatment in mediating spatial heterogeneity in GC, hoping to provide a systematic view of how spatial information could be integrated into anti-cancer immunity.
Collapse
Affiliation(s)
- Bingyu Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Buyun Song
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Yong Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China; Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China; Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, China.
| |
Collapse
|
3
|
Koumprentziotis IA, Theocharopoulos C, Foteinou D, Angeli E, Anastasopoulou A, Gogas H, Ziogas DC. New Emerging Targets in Cancer Immunotherapy: The Role of B7-H3. Vaccines (Basel) 2024; 12:54. [PMID: 38250867 PMCID: PMC10820813 DOI: 10.3390/vaccines12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Immune checkpoints (ICs) are molecules implicated in the fine-tuning of immune response via co-inhibitory or co-stimulatory signals, and serve to secure minimized host damage. Targeting ICs with various therapeutic modalities, including checkpoint inhibitors/monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), and CAR-T cells has produced remarkable results, especially in immunogenic tumors, setting a paradigm shift in cancer therapeutics through the incorporation of these IC-targeted treatments. However, the large proportion of subjects who experience primary or secondary resistance to available IC-targeted options necessitates further advancements that render immunotherapy beneficial for a larger patient pool with longer duration of response. B7-H3 (B7 Homolog 3 Protein, CD276) is a member of the B7 family of IC proteins that exerts pleiotropic immunomodulatory effects both in physiologic and pathologic contexts. Mounting evidence has demonstrated an aberrant expression of B7-H3 in various solid malignancies, including tumors less sensitive to current immunotherapeutic options, and has associated its expression with advanced disease, worse patient survival and impaired response to IC-based regimens. Anti-B7-H3 agents, including novel mAbs, bispecific antibodies, ADCs, CAR-T cells, and radioimmunotherapy agents, have exhibited encouraging antitumor activity in preclinical models and have recently entered clinical testing for several cancer types. In the present review, we concisely present the functional implications of B7-H3 and discuss the latest evidence regarding its prognostic significance and therapeutic potential in solid malignancies, with emphasis on anti-B7-H3 modalities that are currently evaluated in clinical trial settings. Better understanding of B7-H3 intricate interactions in the tumor microenvironment will expand the oncological utility of anti-B7-H3 agents and further shape their role in cancer therapeutics.
Collapse
|
4
|
Wu Z, Li G, Wang W, Zhang K, Fan M, Jin Y, Lin R. Immune checkpoints signature-based risk stratification for prognosis of patients with gastric cancer. Cell Signal 2024; 113:110976. [PMID: 37981068 DOI: 10.1016/j.cellsig.2023.110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Until now, few researches have comprehensive explored the role of immune checkpoints (ICIs) and tumor microenvironment (TME) in gastric cancer (GC) patients based on the genomic data. RNA-sequence data and clinical information were obtained from The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) database, GSE84437 and GSE84433. Univariate Cox analysis identified 60 ICIs with prognostic values, and these genes were then subjected to NMF cluster analysis and the GC samples (n = 804) were classified into two distinct subtypes (Cluster 1: n = 583; Cluster 2: n = 221). The Kaplan-Meier curves for OS analysis indicated that C1 predicted a poorer prognosis. The C2 subtype illustrated a relatively better prognosis and characteristics of "hot tumors," including high immune score, overexpression of immune checkpoint molecules, and enriched tumor-infiltrated immune cells, indicating that the NMF clustering in GC was robust and stable. Regarding the patient's heterogeneity, an ICI-score was constructed to quantify the ICI patterns in individual patients. Moreover, the study found that the low ICI-score group contained mostly MSI-low events, and the high ICI-score group contained predominantly MSI-high events. In addition, the ICI-score groups had good responsiveness to CTLA4 and PD-1 based on The Cancer Immunome Atlas (TCIA) database. Our research firstly constructed ICIs signature, as well as identified some hub genes in GC patients.
Collapse
Affiliation(s)
- Zenghong Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gangping Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengke Fan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Wang T, Zhang K, You F, Ma R, Yang N, Tian S, An G, Yang L. Preconditioning of radiotherapy enhances efficacy of B7-H3-CAR-T in treating solid tumor models. Life Sci 2023; 331:122024. [PMID: 37574043 DOI: 10.1016/j.lfs.2023.122024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
AIMS Limited efficacy of chimeric antigen receptor T (CAR-T) cells in treating solid tumors is largely due to the antigen heterogeneity and immunosuppressive tumor microenvironment (TME). B7-H3 is over-expressed in most kind of solid tumors, making it a promising target for cancer treatment. This study aims to explore the effect of B7-H3-CAR-T therapy combined with radiotherapy in treating solid tumor models. METHODS Irradiated tumor cell lines were prepared and tested. A humanized B7-H3-CAR-T was constructed, and it was evaluated that B7-H3-CAR-T cytotoxicity against solid tumor models with preconditioning of radiotherapy in vitro and vivo. RESULTS Irradiation was found to increase expression level of B7-H3 in pancreatic cancer (PANC-1), colorectal cancer (HCT-15, SW620), acute myelocytic leukemia (AML-5), epidermoid carcinoma (KB) and glioma (U87-MG) human cell lines significantly. 6Gy irradiation was also found to up-regulate tumor-infiltration molecule like intracellular adhesion molecule-1 ICAM-1 or FAS in HCT-15 cells, supporting a possible synergistic enhancement effect of radiotherapy. In vitro and in vivo experiments demonstrated that irradiation indeed significantly enhanced the ability of B7-H3-CAR-T to infiltrate and kill tumors. Interestingly in dual-tumor mouse model study, not only tumor cells on irradiation side were eradicated completely, irradiation also enhanced CAR-T tumor-killing ability on non-irradiated side, confirming the abscopal effect of irradiation existed with CAR-T therapy. CONCLUSIONS Our results suggest that B7-H3-CAR-T therapy combined with radiotherapy may be a promising modality in treating solid tumors.
Collapse
Affiliation(s)
- Tian Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; PersonGen BioTherapeutics Co., Ltd., Suzhou, PR China
| | - Kailu Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Fengtao You
- PersonGen BioTherapeutics Co., Ltd., Suzhou, PR China
| | - Renyuxue Ma
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Nan Yang
- PersonGen BioTherapeutics Co., Ltd., Suzhou, PR China
| | - Shuaiyu Tian
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Gangli An
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Lin Yang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; PersonGen BioTherapeutics Co., Ltd., Suzhou, PR China.
| |
Collapse
|
6
|
Xia L, Chen Y, Li J, Wang J, Shen K, Zhao A, Jin H, Zhang G, Xi Q, Xia S, Shi T, Li R. B7-H3 confers stemness characteristics to gastric cancer cells by promoting glutathione metabolism through AKT/pAKT/Nrf2 pathway. Chin Med J (Engl) 2023; 136:1977-1989. [PMID: 37488673 PMCID: PMC10431251 DOI: 10.1097/cm9.0000000000002772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Cancer stem-like cells (CSCs) are a small subset of cells in tumors that exhibit self-renewal and differentiation properties. CSCs play a vital role in tumor formation, progression, relapse, and therapeutic resistance. B7-H3, an immunoregulatory protein, has many protumor functions. However, little is known about the mechanism underlying the role of B7-H3 in regulating gastric cancer (GC) stemness. Our study aimed to explore the impacts of B7-H3 on GC stemness and its underlying mechanism. METHODS GC stemness influenced by B7-H3 was detected both in vitro and in vivo . The expression of stemness-related markers was examined by reverse transcription quantitative polymerase chain reaction, Western blotting, and flow cytometry. Sphere formation assay was used to detect the sphere-forming ability. The underlying regulatory mechanism of B7-H3 on the stemness of GC was investigated by mass spectrometry and subsequent validation experiments. The signaling pathway (Protein kinase B [Akt]/Nuclear factor erythroid 2-related factor 2 [Nrf2] pathway) of B7-H3 on the regulation of glutathione (GSH) metabolism was examined by Western blotting assay. Multi-color immunohistochemistry (mIHC) was used to detect the expression of B7-H3, cluster of differentiation 44 (CD44), and Nrf2 on human GC tissues. Student's t -test was used to compare the difference between two groups. Pearson correlation analysis was used to analyze the relationship between two molecules. The Kaplan-Meier method was used for survival analysis. RESULTS B7-H3 knockdown suppressed the stemness of GC cells both in vitro and in vivo . Mass spectrometric analysis showed the downregulation of GSH metabolism in short hairpin B7-H3 GC cells, which was further confirmed by the experimental results. Meanwhile, stemness characteristics in B7-H3 overexpressing cells were suppressed after the inhibition of GSH metabolism. Furthermore, Western blotting suggested that B7-H3-induced activation of GSH metabolism occurred through the AKT/Nrf2 pathway, and inhibition of AKT signaling pathway could suppress not only GSH metabolism but also GC stemness. mIHC showed that B7-H3 was highly expressed in GC tissues and was positively correlated with the expression of CD44 and Nrf2. Importantly, GC patients with high expression of B7-H3, CD44, and Nrf2 had worse prognosis ( P = 0.02). CONCLUSIONS B7-H3 has a regulatory effect on GC stemness and the regulatory effect is achieved through the AKT/Nrf2/GSH pathway. Inhibiting B7-H3 expression may be a new therapeutic strategy against GC.
Collapse
Affiliation(s)
- Lu Xia
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Yuqi Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Anjing Zhao
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Oncology, The First Affiliated Hospital of Naval Military Medical University, Shanghai 200433, China
| | - Haiyan Jin
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Suhua Xia
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| |
Collapse
|
7
|
Getu AA, Tigabu A, Zhou M, Lu J, Fodstad Ø, Tan M. New frontiers in immune checkpoint B7-H3 (CD276) research and drug development. Mol Cancer 2023; 22:43. [PMID: 36859240 PMCID: PMC9979440 DOI: 10.1186/s12943-023-01751-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
B7-H3 (CD276), a member of the B7 family of proteins, is a key player in cancer progression. This immune checkpoint molecule is selectively expressed in both tumor cells and immune cells within the tumor microenvironment. In addition to its immune checkpoint function, B7-H3 has been linked to tumor cell proliferation, metastasis, and therapeutic resistance. Furthermore, its drastic difference in protein expression levels between normal and tumor tissues suggests that targeting B7-H3 with drugs would lead to cancer-specific toxicity, minimizing harm to healthy cells. These properties make B7-H3 a promising target for cancer therapy.Recently, important advances in B7-H3 research and drug development have been reported, and these new findings, including its involvement in cellular metabolic reprograming, cancer stem cell enrichment, senescence and obesity, have expanded our knowledge and understanding of this molecule, which is important in guiding future strategies for targeting B7-H3. In this review, we briefly discuss the biology and function of B7-H3 in cancer development. We emphasize more on the latest findings and their underlying mechanisms to reflect the new advances in B7-H3 research. In addition, we discuss the new improvements of B-H3 inhibitors in cancer drug development.
Collapse
Affiliation(s)
- Ayechew Adera Getu
- Institute of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Abiye Tigabu
- Institute of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, USA
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Ming Tan
- Institute of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
8
|
Gao Q, Cui L, Huang C, Chen Z, Wang X, Wen S, Zhao Y, Wang M, Shen B, Zhu W. Gastric cancer-derived mesenchymal stem cells promote gastric cancer cell lines migration by modulating CD276 expression. Exp Cell Res 2023; 422:113414. [PMID: 36368567 DOI: 10.1016/j.yexcr.2022.113414] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/22/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
CD276 has been studied in a variety of cancers and diseases, but its regulatory mechanisms in gastric cancer is still unclear. Mesenchymal stem cells (MSCs), one of the important members of tumor microenvironment, play an important role in the occurrence, development and metastasis of tumor, but the relationship between gastric cancer mesenchymal stem cells (GCMSCs) and CD276 in gastric cancer needs to be further explored. The differential expression of CD276 was identified via UCLAN and GEPIA databases. Then, the impacts of CD276 were calculated on clinical prognosis using the Kaplan-Meier plotter and Cox analysis. GO, KEGG and GSEA analysis were used to explore potential mechanism under CD276. Next, the expression of CD276 in gastric cell lines were detected by Western blot. Immunocoprecipitation was used to explore the association between CD276 and COL1A1. And the effect of condition medium (CM) from GCMSCs on gastric cell lines migration analyzed. GC-MSCs activated the AKT/c-Myc/mTOR pathway of gastric cell lines and upregulated CD276 expression. Moreover, the upregulation of CD276 promoted the migration of gastric cancer cells. Taken together, this study shown that GCMSCs could up-regulate the expression of CD276 of gastric cell lines to promote tumor migration. Our results provide a new basis for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Qiuzhi Gao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Linjing Cui
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Chao Huang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Zhihong Chen
- Department of Gastrointestinal Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Xin Wang
- Department of Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Shaodi Wen
- Department of Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Yuanyuan Zhao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Mei Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210009, China.
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
9
|
Zhao B, Li H, Xia Y, Wang Y, Wang Y, Shi Y, Xing H, Qu T, Wang Y, Ma W. Immune checkpoint of B7-H3 in cancer: from immunology to clinical immunotherapy. J Hematol Oncol 2022; 15:153. [PMID: 36284349 PMCID: PMC9597993 DOI: 10.1186/s13045-022-01364-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022] Open
Abstract
Immunotherapy for cancer is a rapidly developing treatment that modifies the immune system and enhances the antitumor immune response. B7-H3 (CD276), a member of the B7 family that plays an immunoregulatory role in the T cell response, has been highlighted as a novel potential target for cancer immunotherapy. B7-H3 has been shown to play an inhibitory role in T cell activation and proliferation, participate in tumor immune evasion and influence both the immune response and tumor behavior through different signaling pathways. B7-H3 expression has been found to be aberrantly upregulated in many different cancer types, and an association between B7-H3 expression and poor prognosis has been established. Immunotherapy targeting B7-H3 through different approaches has been developing rapidly, and many ongoing clinical trials are exploring the safety and efficacy profiles of these therapies in cancer. In this review, we summarize the emerging research on the function and underlying pathways of B7-H3, the expression and roles of B7-H3 in different cancer types, and the advances in B7-H3-targeted therapy. Considering different tumor microenvironment characteristics and results from preclinical models to clinical practice, the research indicates that B7-H3 is a promising target for future immunotherapy, which might eventually contribute to an improvement in cancer immunotherapy that will benefit patients.
Collapse
Affiliation(s)
- Binghao Zhao
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Huanzhang Li
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Xia
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yaning Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuekun Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yixin Shi
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hao Xing
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Tian Qu
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenbin Ma
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
10
|
Liu Y, Li C, Lu Y, Liu C, Yang W. Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer. Front Immunol 2022; 13:1016817. [PMID: 36341377 PMCID: PMC9630479 DOI: 10.3389/fimmu.2022.1016817] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
Tumor microenvironment is the general term for all non-cancer components and their metabolites in tumor tissue. These components include the extracellular matrix, fibroblasts, immune cells, and endothelial cells. In the early stages of tumors, the tumor microenvironment has a tumor suppressor function. As the tumor progresses, tumor immune tolerance is induced under the action of various factors, such that the tumor suppressor microenvironment is continuously transformed into a tumor-promoting microenvironment, which promotes tumor immune escape. Eventually, tumor cells manifest the characteristics of malignant proliferation, invasion, metastasis, and drug resistance. In recent years, stress effects of the extracellular matrix, metabolic and phenotypic changes of innate immune cells (such as neutrophils, mast cells), and adaptive immune cells in the tumor microenvironment have been revealed to mediate the emerging mechanisms of immune tolerance, providing us with a large number of emerging therapeutic targets to relieve tumor immune tolerance. Gastric cancer is one of the most common digestive tract malignancies worldwide, whose mortality rate remains high. According to latest guidelines, the first-line chemotherapy of advanced gastric cancer is the traditional platinum and fluorouracil therapy, while immunotherapy for gastric cancer is extremely limited, including only Human epidermal growth factor receptor 2 (HER-2) and programmed death ligand 1 (PD-L1) targeted drugs, whose benefits are limited. Clinical experiments confirmed that cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), vascular endothelial growth factor receptor (VEGFR) and other targeted drugs alone or in combination with other drugs have limited efficacy in patients with advanced gastric cancer, far less than in lung cancer, colon cancer, and other tumors. The failure of immunotherapy is mainly related to the induction of immune tolerance in the tumor microenvironment of gastric cancer. Therefore, solving the immune tolerance of tumors is key to the success of gastric cancer immunotherapy. In this study, we summarize the latest mechanisms of various components of the tumor microenvironment in gastric cancer for inducing immune tolerance and promoting the formation of the malignant phenotype of gastric cancer, as well as the research progress of targeting the tumor microenvironment to overcome immune tolerance in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Changfeng Li, ; Wei Yang,
| | - Yaoping Lu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Changfeng Li, ; Wei Yang,
| |
Collapse
|
11
|
Zhu Y, Chen J, Liu Y, Zheng X, Feng J, Chen X, Jiang T, Li Y, Chen L. Prognostic values of B7-H3, B7-H4, and HHLA2 expression in human pancreatic cancer tissues based on mIHC and spatial distribution analysis. Pathol Res Pract 2022; 234:153911. [PMID: 35489125 DOI: 10.1016/j.prp.2022.153911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/10/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most malignant solid tumors and its 5-year survival rate remains poor. Although immunotherapy has achieved certain therapeutic efficacy in some clinical trials, such treatment still shows low responses and overall remission rate. Therefore, it is urgently necessary to dissect the tumor microenvironment and optimize the immunotherapeutic strategies against this malignancy. METHODS Using the multi-color immunohistochemistry assay, we investigated the expressions of B7-H3, B7-H4, HHLA2, CD8, and CD68 in 63 cases of PC tissues in a tissue microarray. Moreover, we analyzed immunolocalization features, clinical associations and prognostic values of these molecules. RESULTS The expressions of B7-H3, B7-H4, and HHLA2 could be detected in cytokeratin staining positive (CK+) cancer epithelial cells, CD68+tumor-associated macrophages (TAMs), and even other cells defined as CK-CD8-CD68-. Higher expression of B7-H3 in tumor cells could predict a better survival of the PC patients. A positive correlation was found between the expressions of B7-H3 and HHLA2 in tumor cells, while there was a negative correlation between the expressions of B7-H4 and HHLA2 in tumor cells. A positive correlation was found between the expressions of B7-H3 and B7-H4 or HHLA2 in CD68+TAMs, but not B7-H4 and HHLA2. Tumor-infiltrating CD8+T cells in combination with CD68+TAMs could serve as an important predictor for the postoperative prognosis of PC patients. Higher expression of B7-H3, or HHLA2 in CD68+TAMs could serve as an important predictor for poorer prognosis of PC patients. Patients with B7-H3lowB7-H4low, B7-H3lowHHLA2low, or B7-H4lowHHLA2low on CD68+TAMs could have a better postoperative prognosis compared with the other sub-populations in the combinational analysis. CONCLUSIONS Taken together, our study indicated variable expressions and prognostic values of B7-H3, B7-H4, and HHLA2, in human PC tissues, and demonstrated that these co-stimulator molecules expressed by CD68+TAMs could be used as important bio-markers for the prognostic prediction of PC patients. Moreover, these results supported that the evaluation of these markers could be used as essential candidate targets for immunotherapy against PC.
Collapse
Affiliation(s)
- Yulan Zhu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, Jiangsu, China.
| | - Junjun Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, Jiangsu, China.
| | - Yingting Liu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, Jiangsu, China.
| | - Xiao Zheng
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, Jiangsu, China.
| | - Jun Feng
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, Jiangsu, China.
| | - Xuemin Chen
- Department of Hepatobiliary Surgery, Soochow University, Changzhou 213003, Jiangsu, China.
| | - Tianwei Jiang
- Department of Neurosurgery, Soochow University, Changzhou 213003, Jiangsu, China.
| | - Yuan Li
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, Jiangsu, China.
| | - Lujun Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, Jiangsu, China.
| |
Collapse
|
12
|
Expression of Immune Checkpoints in Malignant Tumors: Therapy Targets and Biomarkers for the Gastric Cancer Prognosis. Diagnostics (Basel) 2021; 11:diagnostics11122370. [PMID: 34943606 PMCID: PMC8700640 DOI: 10.3390/diagnostics11122370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
To increase the effectiveness of anticancer therapy based on immune checkpoint (IC) inhibition, some ICs are being investigated in addition to those used in clinic. We reviewed data on the relationship between PD-L1, B7-H3, B7-H4, IDO1, Galectin-3 and -9, CEACAM1, CD155, Siglec-15 and ADAM17 expression with cancer development in complex with the results of clinical trials on their inhibition. Increased expression of the most studied ICs—PD-L1, B7-H3, and B7-H4—is associated with poor survival; their inhibition is clinically significant. Expression of IDO1, CD155, and ADAM17 is also associated with poor survival, including gastric cancer (GC). The available data indicate that CD155 and ADAM17 are promising targets for immune therapy. However, the clinical trials of anti-IDO1 antibodies have been unsatisfactory. Expression of Galectin-3 and -9, CEACAM1 and Siglec-15 demonstrates a contradictory relationship with patient survival. The lack of satisfactory results of these IC inhibitor clinical trials additionally indicates the complex nature of their functioning. In conclusion, in many cases it is important to analyze the expression of other participants of the immune response besides target IC. The PD-L1, B7-H3, B7-H4, IDO1 and ADAM17 may be considered as candidates for prognosis markers for GC patient survival.
Collapse
|
13
|
Bolandi N, Derakhshani A, Hemmat N, Baghbanzadeh A, Asadzadeh Z, Afrashteh Nour M, Brunetti O, Bernardini R, Silvestris N, Baradaran B. The Positive and Negative Immunoregulatory Role of B7 Family: Promising Novel Targets in Gastric Cancer Treatment. Int J Mol Sci 2021; 22:ijms221910719. [PMID: 34639059 PMCID: PMC8509619 DOI: 10.3390/ijms221910719] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer (GC), with a heterogeneous nature, is the third leading cause of death worldwide. Over the past few decades, stable reductions in the incidence of GC have been observed. However, due to the poor response to common treatments and late diagnosis, this cancer is still considered one of the lethal cancers. Emerging methods such as immunotherapy with immune checkpoint inhibitors (ICIs) have transformed the landscape of treatment for GC patients. There are presently eleven known members of the B7 family as immune checkpoint molecules: B7-1 (CD80), B7-2 (CD86), B7-H1 (PD-L1, CD274), B7-DC (PDCD1LG2, PD-L2, CD273), B7-H2 (B7RP1, ICOS-L, CD275), B7-H3 (CD276), B7-H4 (B7x, B7S1, Vtcn1), B7-H5 (VISTA, Gi24, DD1α, Dies1 SISP1), B7-H6 (NCR3LG1), B7-H7 (HHLA2), and Ig-like domain-containing receptor 2 (ILDR2). Interaction of the B7 family of immune-regulatory ligands with the corresponding receptors resulted in the induction and inhibition of T cell responses by sending co-stimulatory and co-inhibitory signals, respectively. Manipulation of the signals provided by the B7 family has significant potential in the management of GC.
Collapse
Affiliation(s)
- Nadia Bolandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95100 Catania, Italy;
| | - Nicola Silvestris
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, 70124 Bari, Italy
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| |
Collapse
|
14
|
Huang L, Zhou Y, Sun Q, Cao L, Zhang X. Evaluation of the role of soluble B7-H3 in association with membrane B7-H3 expression in gastric adenocarcinoma. Cancer Biomark 2021; 33:123-129. [PMID: 34459388 DOI: 10.3233/cbm-210178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Gastric adenocarcinoma (GAC) is one of the most common malignancies. Increasing data have indicated a correlation between soluble B7-H3 (sB7-H3) levels and tumor malignancies. In this study, we aim to investigate the level of soluble B7-H3 in serum of GAC patients. Further, we analyze the correlation between sB7-H3 level and tissue B7-H3 expression and explore the clinical evaluation value of sB7-H3 associated with pathological characteristics and prognosis of GAC patients. METHODS One hundred and twenty-eight serum and tissue samples of GAC 20 serum and tissue samples of gastritis patients and 77 serum, 5 tissue samples of healthy controls were collected. The serum levels of sB7-H3 were detected by Enzyme-linked immunosorbent assay (ELISA), while the expression of membrane B7-H3 (mB7-H3) and Ki67 were evaluated by immunohistochemistry. The correlation between sB7-H3 and mB7-H3, sB7-H3 and Ki67, sB7-H3 or mB7-H3 and clinical features were analyzed by Pearson's Chi-square test. RESULTS Both serum level of sB7-H3 and tissue B7-H3 of GAC patients were significantly higher than those of gastritis patients and healthy controls. sB7-H3 level was correlated with total B7-H3 expression in tissues (r= 0.2801, P= 0.0014). Notably, the concentration of sB7-H3 was correlated with its expression of membrane form in tumor cells (r= 0.3251, P= 0.002) while not in stromal cells (r= 0.07676, P= 0.3891). Moreover, the levels of sB7-H3 in patients with TNM stage III/IV or with Infiltration depth T3/T4 or with lymph node metastasis were significantly higher than those of patients with TNM stage I/II (P= 0.0020) or with Infiltration depth T1/T2 (P= 0.0169) or with no lymph node metastasis (P= 0.0086). Tumor B7-H3 score, but not stromal B7-H3 score, in patients with TNM stage III/IV or with lymph node metastasis was significantly higher than those with TNM stage I/II (P= 0.0150) or with no lymph node metastasis (P= 0.182). CONCLUSIONS Soluble B7-H3 level may reflect the tissue B7-H3 expression on tumor cells of GAC tissues. Elevated level of sB7-H3 in serum suggests poor clinical pathological characteristics of GAC patients.
Collapse
Affiliation(s)
- Lili Huang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan Zhou
- The AoYang Cancer Research Institute of Jiangsu University, Zhangjiagang, Suzhou, Jiangsu, China.,Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiuwei Sun
- The AoYang Cancer Research Institute of Jiangsu University, Zhangjiagang, Suzhou, Jiangsu, China
| | - Lei Cao
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Suzhou, Jiangsu, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Suzhou, Jiangsu, China
| |
Collapse
|