1
|
KUBOHARA YUZURU. Research on a Minor Organism can also be Benefit the World: The Fascinating Cellular Slime Mold Dictyostelium discoideum. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2024; 70:339-347. [PMID: 39545231 PMCID: PMC11560335 DOI: 10.14789/jmj.jmj24-0021-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 11/17/2024]
Abstract
In 1985, when I entered the Graduate School of Science at Kyoto University, I began my research on cellular slime molds, a group of soil microorganisms. The cellular slime mold Dictyostelium discoideum is studied globally as a model organism for cell and developmental biology. I was conducting basic biological research into cell differentiation and migration using D. discoideum, and during this process, our research group made a discovery with potential implications for drug development. Specifically, we found that a chlorinated polyketide named differentiation-inducing factor 1 (DIF-1), derived from D. discoideum, exhibits antitumor activity. Based on this discovery, I began elucidating the mechanism of the antitumor action of DIF-1 and developing anticancer drugs using DIF-1 as a lead compound. During this period, in 1991, I obtained my Ph.D. in research related to D. discoideum cell differentiation, and subsequently served as a Japan Society for the Promotion of Science (JSPS) Special Research Fellow before joining the Institute for Molecular and Cellular Regulation (IMCR) at Gunma University in 1993. I then joined the Graduate School of Health and Sports Sciences at Juntendo University in 2015, where I have been until 2024. Throughout this period, I continued my research on DIF-1 and discovered that DIF-1 and its derivatives possess various biological activities ─ such as anti-diabetic, immunoregulatory, anti-bacterial, and anti-malarial activities ─ that could be applicable in drug development. In this review, I aim to present a segment of both our fundamental and applied research on D. discoideum and DIF-1.
Collapse
Affiliation(s)
- YUZURU KUBOHARA
- Corresponding author: Yuzuru Kubohara, Laboratory of Health and Life Science, Juntendo University Graduate School of Health and Sports Science, 1-1 Hiraka-gakuendai, Inzai-shi, Chiba 270-1695, Japan, TEL: +81-476-98-1001 FAX: +81-476-98-1011 E-mail:
| |
Collapse
|
2
|
Arioka M, Miura K, Han R, Igawa K, Takahashi-Yanaga F, Sasaguri T. Mammalian target of differentiation-inducing factor-1 is mitochondrial malate dehydrogenase for activation of AMP-activated protein kinase and induction of mitochondrial fission. Life Sci 2024; 351:122807. [PMID: 38852800 DOI: 10.1016/j.lfs.2024.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
AIMS Differentiation-inducing factor-1 (DIF-1) is a polyketide produced by Dictyostelium discoideum that inhibits growth and migration, while promoting the differentiation of Dictyostelium stalk cells through unknown mechanisms. DIF-1 localizes in stalk mitochondria. In addition to its effect on Dictyostelium, DIF-1 also inhibits growth and migration, and induces mitochondrial fission followed by mitophagy in mammalian cells, at least in part by activating AMP-activated protein kinase (AMPK). In a previous study, we found that DIF-1 binds to mitochondrial malate dehydrogenase (MDH2) and inhibits its activity in HeLa cells. In the present study, we investigated whether MDH2 serves as a pharmacological target of DIF-1 in mammalian cells. MAIN METHODS To examine the enzymatic activity of MDH, mitochondrial morphology, and molecular mechanisms of DIF-1 action, we conducted an MDH reverse reaction assay, immunofluorescence staining, western blotting, and RNA interference using mammalian cells such as human umbilical vein endothelial cells, human cervical cancer cells, mouse endothelial cells, and mouse breast cancer cells. KEY FINDINGS DIF-1 inhibited mitochondrial but not cytoplasmic MDH activity. Similar to DIF-1, LW6, an authentic MDH2 inhibitor, induced phosphorylation of AMPK, resulting in the phosphorylation of acetyl-CoA carboxylase (ACC) and the dephosphorylation of p70 S6 kinase with approximately the same potency. DIF-1 and LW6 induced mitochondrial fission. Furthermore, MDH2 knockdown using siRNA reproduced the DIF-1 action on the AMPK signaling and mitochondrial morphology. Conversely, an AMPK inhibitor prevented DIF-1-induced mitochondrial fission. SIGNIFICANCE We propose that MDH2 is a mammalian target of DIF-1 for the activation of AMPK and induction of mitochondrial fission.
Collapse
Affiliation(s)
- Masaki Arioka
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Koichi Miura
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ruzhe Han
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazunobu Igawa
- Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan.
| | - Fumi Takahashi-Yanaga
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Toshiyuki Sasaguri
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
3
|
Yoshida N, Kikuchi H, Hirai M, Balikagala B, Anywar DA, Taka H, Kaga N, Miura Y, Fukuda N, Odongo-Aginya EI, Kubohara Y, Mita T. A longer-chain acylated derivative of Dictyostelium differentiation-inducing factor-1 enhances the antimalarial activity against Plasmodium parasites. Biochem Pharmacol 2024; 225:116243. [PMID: 38697310 DOI: 10.1016/j.bcp.2024.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
The spread of malarial parasites resistant to first-line treatments such as artemisinin combination therapies is a global health concern. Differentiation-inducing factor 1 (DIF-1) is a chlorinated alkylphenone (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl) hexan-1-one) originally found in the cellular slime mould Dictyostelium discoideum. We previously showed that some derivatives of DIF-1, particularly DIF-1(+2) (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl) octan-1-one), exert potent antimalarial activities. In this study, we synthesised DIF-1(+3) (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl) nonan-1-one). We then evaluated the effects of DIF-1(+3) in vitro on Plasmodium falciparum and in vivo over 7 days (50-100 mg/kg/day) in a mouse model of Plasmodium berghei. DIF-1(+3) exhibited a half-maximal inhibitory concentration of approximately 20-30 % of DIF-1(+2) in three laboratory strains with a selectivity index > 263, including in strains resistant to chloroquine and artemisinin. Parasite growth and multiplication were almost completely suppressed by treatment with 100 mg/kg DIF-1(+3). The survival time of infected mice was significantly increased (P = 0.006) with no apparent adverse effects. In summary, addition of an acyl group to DIF-1(+2) to prepare DIF-1(+3) substantially enhanced antimalarial activity, even in drug-resistant malaria, indicating the potential of applying DIF-1(+3) for malaria treatment.
Collapse
Affiliation(s)
- Naoko Yoshida
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Haruhisa Kikuchi
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Makoto Hirai
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Betty Balikagala
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Denis A Anywar
- Faculty of Medicine, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Hikari Taka
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Naoko Kaga
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshiki Miura
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Naoyuki Fukuda
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | - Yuzuru Kubohara
- Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba 270-1695, Japan.
| | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
4
|
Kubohara Y, Fukunaga Y, Shigenaga A, Kikuchi H. Dictyostelium Differentiation-Inducing Factor 1 Promotes Glucose Uptake via Direct Inhibition of Mitochondrial Malate Dehydrogenase in Mouse 3T3-L1 Cells. Int J Mol Sci 2024; 25:1889. [PMID: 38339168 PMCID: PMC10855897 DOI: 10.3390/ijms25031889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Differentiation-inducing factor 1 (DIF-1), found in Dictyostelium discoideum, has antiproliferative and glucose-uptake-promoting activities in mammalian cells. DIF-1 is a potential lead for the development of antitumor and/or antiobesity/antidiabetes drugs, but the mechanisms underlying its actions have not been fully elucidated. In this study, we searched for target molecules of DIF-1 that mediate the actions of DIF-1 in mammalian cells by identifying DIF-1-binding proteins in human cervical cancer HeLa cells and mouse 3T3-L1 fibroblast cells using affinity chromatography and liquid chromatography-tandem mass spectrometry and found mitochondrial malate dehydrogenase (MDH2) to be a DIF-1-binding protein in both cell lines. Since DIF-1 has been shown to directly inhibit MDH2 activity, we compared the effects of DIF-1 and the MDH2 inhibitor LW6 on the growth of HeLa and 3T3-L1 cells and on glucose uptake in confluent 3T3-L1 cells in vitro. In both HeLa and 3T3-L1 cells, DIF-1 at 10-40 μM dose-dependently suppressed growth, whereas LW6 at 20 μM, but not at 2-10 μM, significantly suppressed growth in these cells. In confluent 3T3-L1 cells, DIF-1 at 10-40 μM significantly promoted glucose uptake, with the strongest effect at 20 μM DIF-1, whereas LW6 at 2-20 μM significantly promoted glucose uptake, with the strongest effect at 10 μM LW6. Western blot analyses showed that LW6 (10 μM) and DIF-1 (20 μM) phosphorylated and, thus, activated AMP kinase in 3T3-L1 cells. Our results suggest that MDH2 inhibition can suppress cell growth and promote glucose uptake in the cells, but appears to promote glucose uptake more strongly than it suppresses cell growth. Thus, DIF-1 may promote glucose uptake, at least in part, via direct inhibition of MDH2 and a subsequent activation of AMP kinase in 3T3-L1 cells.
Collapse
Affiliation(s)
- Yuzuru Kubohara
- Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai 270-1695, Japan
| | - Yuko Fukunaga
- Department of Animal Risk Management, Faculty of Risk and Crisis Management, Chiba Institute of Science, Choshi 288-0025, Japan;
| | - Ayako Shigenaga
- Institute of Health and Sports Science & Medicine, Juntendo University, Inzai 270-1695, Japan;
| | - Haruhisa Kikuchi
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan;
| |
Collapse
|
5
|
Kubohara Y, Fukunaga Y, Kikuchi H, Kuwayama H. Pharmacological Evidence That Dictyostelium Differentiation-Inducing Factor 1 Promotes Glucose Uptake Partly via an Increase in Intracellular cAMP Content in Mouse 3T3-L1 Cells. Molecules 2023; 28:7926. [PMID: 38067655 PMCID: PMC10708055 DOI: 10.3390/molecules28237926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Differentiation-inducing factor 1 (DIF-1) isolated from the cellular slime mold Dictyostelium discoideum can inhibit mammalian calmodulin-dependent cAMP/cGMP phosphodiesterase (PDE1) in vitro. DIF-1 also promotes glucose uptake, at least in part, via a mitochondria- and AMPK-dependent pathway in mouse 3T3-L1 fibroblast cells, but the mechanism underlying this effect has not been fully elucidated. In this study, we investigated the effects of DIF-1 on intracellular cAMP and cGMP levels, as well as the effects that DIF-1 and several compounds that increase cAMP and cGMP levels have on glucose uptake in confluent 3T3-L1 cells. DIF-1 at 20 μM (a concentration that promotes glucose uptake) increased the level of intracellular cAMP by about 20% but did not affect the level of intracellular cGMP. Neither the PDE1 inhibitor 8-methoxymethyl-3-isobutyl-1-methylxanthine at 10-200 μM nor the broad-range PDE inhibitor 3-isobutyl-1-methylxanthine at 40-400 μM had any marked effects on glucose uptake. The membrane-permeable cAMP analog 8-bromo-cAMP at 200-1000 μM significantly promoted glucose uptake (by 20-25%), whereas the membrane-permeable cGMP analog 8-bromo-cGMP at 3-100 μM did not affect glucose uptake. The adenylate cyclase activator forskolin at 1-10 μM promoted glucose uptake by 20-30%. Thus, DIF-1 may promote glucose uptake by 3T3-L1 cells, at least in part, via an increase in intracellular cAMP level.
Collapse
Affiliation(s)
- Yuzuru Kubohara
- Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai 270-1695, Japan
| | - Yuko Fukunaga
- Department of Animal Risk Management, Faculty of Risk and Crisis Management, Chiba Institute of Science, Choshi 288-0025, Japan;
| | - Haruhisa Kikuchi
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan;
| | - Hidekazu Kuwayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
| |
Collapse
|
6
|
Entezari M, Hashemi D, Taheriazam A, Zabolian A, Mohammadi S, Fakhri F, Hashemi M, Hushmandi K, Ashrafizadeh M, Zarrabi A, Ertas YN, Mirzaei S, Samarghandian S. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomed Pharmacother 2022; 146:112563. [PMID: 35062059 DOI: 10.1016/j.biopha.2021.112563] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is considered as a main challenge in both developing and developed countries, as lifestyle has changed and its management seems to be vital. Type I and type II diabetes are the main kinds and they result in hyperglycemia in patients and related complications. The gene expression alteration can lead to development of DM and related complications. The AMP-activated protein kinase (AMPK) is an energy sensor with aberrant expression in various diseases including cancer, cardiovascular diseases and DM. The present review focuses on understanding AMPK role in DM. Inducing AMPK signaling promotes glucose in DM that is of importance for ameliorating hyperglycemia. Further investigation reveals the role of AMPK signaling in enhancing insulin sensitivity for treatment of diabetic patients. Furthermore, AMPK upregulation inhibits stress and cell death in β cells that is of importance for preventing type I diabetes development. The clinical studies on diabetic patients have shown the role of AMPK signaling in improving diabetic complications such as brain disorders. Furthermore, AMPK can improve neuropathy, nephropathy, liver diseases and reproductive alterations occurring during DM. For exerting such protective impacts, AMPK signaling interacts with other molecular pathways such as PGC-1α, PI3K/Akt, NOX4 and NF-κB among others. Therefore, providing therapeutics based on AMPK targeting can be beneficial for amelioration of DM.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Hashemi
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Shima Mohammadi
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farima Fakhri
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
7
|
Gross JD, Pears CJ. Possible Involvement of the Nutrient and Energy Sensors mTORC1 and AMPK in Cell Fate Diversification in a Non-Metazoan Organism. Front Cell Dev Biol 2021; 9:758317. [PMID: 34820379 PMCID: PMC8606421 DOI: 10.3389/fcell.2021.758317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
mTORC1 and AMPK are mutually antagonistic sensors of nutrient and energy status that have been implicated in many human diseases including cancer, Alzheimer’s disease, obesity and type 2 diabetes. Starved cells of the social amoeba Dictyostelium discoideum aggregate and eventually form fruiting bodies consisting of stalk cells and spores. We focus on how this bifurcation of cell fate is achieved. During growth mTORC1 is highly active and AMPK relatively inactive. Upon starvation, AMPK is activated and mTORC1 inhibited; cell division is arrested and autophagy induced. After aggregation, a minority of the cells (prestalk cells) continue to express much the same set of developmental genes as during aggregation, but the majority (prespore cells) switch to the prespore program. We describe evidence suggesting that overexpressing AMPK increases the proportion of prestalk cells, as does inhibiting mTORC1. Furthermore, stimulating the acidification of intracellular acidic compartments likewise increases the proportion of prestalk cells, while inhibiting acidification favors the spore pathway. We conclude that the choice between the prestalk and the prespore pathways of cell differentiation may depend on the relative strength of the activities of AMPK and mTORC1, and that these may be controlled by the acidity of intracellular acidic compartments/lysosomes (pHv), cells with low pHv compartments having high AMPK activity/low mTORC1 activity, and those with high pHv compartments having high mTORC1/low AMPK activity. Increased insight into the regulation and downstream consequences of this switch should increase our understanding of its potential role in human diseases, and indicate possible therapeutic interventions.
Collapse
Affiliation(s)
- Julian D Gross
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Catherine J Pears
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Mita T, Hirai M, Maki Y, Nahar S, Yoshida N, Oshima Y, Kikuchi H, Kubohara Y. Derivatives of Dictyostelium differentiation-inducing factors suppress the growth of Plasmodium parasites in vitro and in vivo. Biochem Pharmacol 2021; 194:114834. [PMID: 34774530 DOI: 10.1016/j.bcp.2021.114834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Malaria, which is caused by protozoa of the genus Plasmodium, remains a major endemic public health problem worldwide. Since artemisinin combination therapies are used as a first-line treatment in all endemic regions, the emergence of parasites resistant to these regimens has become a serious problem. Differentiation-inducing factor 1 (DIF-1) is a chlorinated alkylphenone originally found in the cellular slime mold Dictyostelium discoideum. DIF-1 and its derivatives exhibit a range of biological activities. In the present study, we investigated the effects of 41 DIF derivatives on the growth of Plasmodium falciparum in vitro using four laboratory strains and 12 field isolates. Micromolar concentrations of several DIF derivatives strongly suppressed the growth of the four laboratory strains, including strains that exhibited resistance to chloroquine and artemisinin, as well as strains that were susceptible to these drugs. In addition, DIF-1(+2), the most potent derivative, strongly suppressed the growth of 12 field isolates. We also examined the effects of DIF-1(+2) on the activity of the rodent malarial parasite Plasmodium berghei in mice. Intraperitoneal administration of DIF-1(+2) over 4 days (50 or 70 mg/kg/day) significantly suppressed the growth of the parasite in the blood with no apparent adverse effects, and a dose of 70 mg/kg/day significantly prolonged animal survival. These results suggest that DIF derivatives, such as DIF-1(+2), could serve as new lead compounds for the development of antimalarial agents.
Collapse
Affiliation(s)
- Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Makoto Hirai
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshiko Maki
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Saifun Nahar
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Naoko Yoshida
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshiteru Oshima
- Head Office for Open Innovation Strategy, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Haruhisa Kikuchi
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Yuzuru Kubohara
- Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba 270-1695, Japan
| |
Collapse
|