1
|
Atienza-Navarro I, Del Marco A, Alves-Martinez P, Garcia-Perez MDLA, Raya-Marin A, Benavente-Fernandez I, Gil C, Martinez A, Lubian-Lopez S, Garcia-Alloza M. Glycogen Synthase Kinase-3β Inhibitor VP3.15 Ameliorates Neurogenesis, Neuronal Loss and Cognitive Impairment in a Model of Germinal Matrix-intraventricular Hemorrhage of the Preterm Newborn. Transl Stroke Res 2024:10.1007/s12975-023-01229-2. [PMID: 38231413 DOI: 10.1007/s12975-023-01229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
Advances in neonatology have significantly reduced mortality rates due to prematurity. However, complications of prematurity have barely changed in recent decades. Germinal matrix-intraventricular hemorrhage (GM-IVH) is one of the most severe complications of prematurity, and these children are prone to suffer short- and long-term sequelae, including cerebral palsy, cognitive and motor impairments, or neuropsychiatric disorders. Nevertheless, GM-IVH has no successful treatment. VP3.15 is a small, heterocyclic molecule of the 5-imino-1,2,4-thiadiazole family with a dual action as a phosphodiesterase 7 and glycogen synthase kinase-3β (GSK-3β) inhibitor. VP3.15 reduces neuroinflammation and neuronal loss in other neurodegenerative disorders and might ameliorate complications associated with GM-IVH. We administered VP3.15 to a mouse model of GM-IVH. VP3.15 reduces the presence of hemorrhages and microglia in the short (P14) and long (P110) term. It ameliorates brain atrophy and ventricle enlargement while limiting tau hyperphosphorylation and neuronal and myelin basic protein loss. VP3.15 also improves proliferation and neurogenesis as well as cognition after the insult. Interestingly, plasma gelsolin levels, a feasible biomarker of brain damage, improved after VP3.15 treatment. Altogether, our data support the beneficial effects of VP3.15 in GM-IVH by ameliorating brain neuroinflammatory, vascular and white matter damage, ultimately improving cognitive impairment associated with GM-IVH.
Collapse
Affiliation(s)
- Isabel Atienza-Navarro
- Division of Physiology, School of Medicine, University of Cadiz, C/Dr. Marañon 3, 3rd Floor, 11002, Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Angel Del Marco
- Division of Physiology, School of Medicine, University of Cadiz, C/Dr. Marañon 3, 3rd Floor, 11002, Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Pilar Alves-Martinez
- Division of Physiology, School of Medicine, University of Cadiz, C/Dr. Marañon 3, 3rd Floor, 11002, Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | | | - Alvaro Raya-Marin
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Isabel Benavente-Fernandez
- Area of Pediatrics, Department of Child and Mother Health and Radiology, School of Medicine, University of Cadiz, Cadiz, Spain
- Section of Neonatology, Division of Pediatrics, Puerta del Mar University Hospital, Avda. Ana de Viya sn, 11007, Cadiz, Spain
| | - Carmen Gil
- Centro de Investigaciones, Biologicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones, Biologicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
- Centro de Investigaciones Biomedicas en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Avda. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Simon Lubian-Lopez
- Area of Pediatrics, Department of Child and Mother Health and Radiology, School of Medicine, University of Cadiz, Cadiz, Spain.
- Section of Neonatology, Division of Pediatrics, Puerta del Mar University Hospital, Avda. Ana de Viya sn, 11007, Cadiz, Spain.
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, University of Cadiz, C/Dr. Marañon 3, 3rd Floor, 11002, Cadiz, Spain.
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain.
| |
Collapse
|
2
|
Benítez‐Fernández R, Josa‐Prado F, Sánchez E, Lao Y, García‐Rubia A, Cumella J, Martínez A, Palomo V, de Castro F. Efficacy of a benzothiazole-based LRRK2 inhibitor in oligodendrocyte precursor cells and in a murine model of multiple sclerosis. CNS Neurosci Ther 2024; 30:e14552. [PMID: 38287523 PMCID: PMC10808848 DOI: 10.1111/cns.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 01/31/2024] Open
Abstract
AIMS Multiple sclerosis (MS) is a chronic neurological disease that currently lacks effective curative treatments. There is a need to find effective therapies, especially to reverse the progressive demyelination and neuronal damage. Oligodendrocytes form the myelin sheath around axons in the central nervous system (CNS) and oligodendrocyte precursor cells (OPCs) undergo mechanisms that enable spontaneously the partial repair of damaged lesions. The aim of this study was to discover small molecules with potential effects in demyelinating diseases, including (re)myelinating properties. METHODS Recently, it has been shown how LRRK2 inhibition promotes oligodendrogliogenesis and therefore an efficient repair or myelin damaged lesions. Here we explored small molecules inhibiting LRRK2 as potential enhancers of primary OPCs proliferation and differentiation, and their potential impact on the clinical score of experimental autoimmune encephalomyelitys (EAE) mice, a validated model of the most frequent clinical form of MS, relapsing-remitting MS. RESULTS One of the LRRK2 inhibitors presented in this study promoted the proliferation and differentiation of OPC primary cultures. When tested in the EAE murine model of MS, it exerted a statistically significant reduction of the clinical burden of the animals, and histological evidence revealed how the treated animals presented a reduced lesion area in the spinal cord. CONCLUSIONS For the first time, a small molecule with LRRK2 inhibition properties presented (re)myelinating properties in primary OPCs cultures and potentially in the in vivo murine model. This study provides an in vivo proof of concept for a LRRK2 inhibitor, confirming its potential for the treatment of MS.
Collapse
Affiliation(s)
- Rocío Benítez‐Fernández
- Centro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
- Instituto Cajal‐CSICMadridSpain
| | | | | | | | | | - José Cumella
- Instituto de Química Médica, IQM‐CSICMadridSpain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
- Centro de Investigaciones Biomédicas en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadridSpain
| | - Valle Palomo
- Centro de Investigaciones Biomédicas en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadridSpain
- Instituto Madrileño de Estudios AvanzadosIMDEA NanocienciaMadridSpain
- Unidad de Nanobiotecnología Asociada al Centro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
| | | |
Collapse
|
3
|
Balboni B, Masi M, Rocchia W, Girotto S, Cavalli A. GSK-3β Allosteric Inhibition: A Dead End or a New Pharmacological Frontier? Int J Mol Sci 2023; 24:7541. [PMID: 37108703 PMCID: PMC10139115 DOI: 10.3390/ijms24087541] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Most kinase inhibitors are designed to bind to highly homologous ATP-binding sites, which leads to promiscuity and possible off-target effects. Allostery is an alternative approach to pursuing selectivity. However, allostery is difficult to exploit due to the wide variety of underlying mechanisms and the potential involvement of long-range conformational effects that are difficult to pinpoint. GSK-3β is involved in several pathologies. This critical target has an ATP-binding site that is highly homologous with the orthosteric sites of other kinases. Unsurprisingly, there is also great similarity between the ATP-binding sites of GSK-3β and its isomer, which is not redundant and thus would benefit from selective inhibition. Allostery would also allow for a moderate and tunable inhibition, which is ideal for GSK-3β, because this target is involved in multiple pathways, some of which must be preserved. However, despite considerable research efforts, only one allosteric GSK-3β inhibitor has reached the clinic. Moreover, unlike other kinases, there are no X-ray structures of GSK-3β in complex with allosteric inhibitors in the PDB data bank. This review aims to summarize the state of the art in allosteric GSK-3β inhibitor investigations, highlighting the aspects that make this target challenging for an allosteric approach.
Collapse
Affiliation(s)
- Beatrice Balboni
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (B.B.); (M.M.)
| | - Mirco Masi
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (B.B.); (M.M.)
| | - Walter Rocchia
- Computational mOdelling of NanosCalE and bioPhysical sysTems (CONCEPT) Lab, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Stefania Girotto
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (B.B.); (M.M.)
| |
Collapse
|
4
|
Garcia-Martin G, Sanz-Rodriguez M, Alcover-Sanchez B, Pereira MP, Wandosell F, Cubelos B. R-Ras1 and R-Ras2 Expression in Anatomical Regions and Cell Types of the Central Nervous System. Int J Mol Sci 2022; 23:978. [PMID: 35055164 PMCID: PMC8781598 DOI: 10.3390/ijms23020978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Abstract
Since the optic nerve is one of the most myelinated tracts in the central nervous system (CNS), many myelin diseases affect the visual system. In this sense, our laboratory has recently reported that the GTPases R-Ras1 and R-Ras2 are essential for oligodendrocyte survival and maturation. Hypomyelination produced by the absence of one or both proteins triggers axonal degeneration and loss of visual and motor function. However, little is known about R-Ras specificity and other possible roles that they could play in the CNS. In this work, we describe how a lack of R-Ras1 and/or R-Ras2 could not be compensated by increased expression of the closely related R-Ras3 or classical Ras. We further studied R-Ras1 and R-Ras2 expression within different CNS anatomical regions, finding that both were more abundant in less-myelinated regions, suggesting their expression in non-oligodendroglial cells. Finally, using confocal immunostaining colocalization, we report for the first time that R-Ras2 is specifically expressed in neurons. Neither microglia nor astrocytes expressed R-Ras1 or R-Ras2. These results open a new avenue for the study of neuronal R-Ras2's contribution to the process of myelination.
Collapse
Affiliation(s)
- Gonzalo Garcia-Martin
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Miriam Sanz-Rodriguez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Berta Alcover-Sanchez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Marta P. Pereira
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Francisco Wandosell
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
- Alzheimer’s Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|