1
|
Fang Z, Raza U, Song J, Lu J, Yao S, Liu X, Zhang W, Li S. Systemic aging fuels heart failure: Molecular mechanisms and therapeutic avenues. ESC Heart Fail 2025; 12:1059-1080. [PMID: 39034866 PMCID: PMC11911610 DOI: 10.1002/ehf2.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Systemic aging influences various physiological processes and contributes to structural and functional decline in cardiac tissue. These alterations include an increased incidence of left ventricular hypertrophy, a decline in left ventricular diastolic function, left atrial dilation, atrial fibrillation, myocardial fibrosis and cardiac amyloidosis, elevating susceptibility to chronic heart failure (HF) in the elderly. Age-related cardiac dysfunction stems from prolonged exposure to genomic, epigenetic, oxidative, autophagic, inflammatory and regenerative stresses, along with the accumulation of senescent cells. Concurrently, age-related structural and functional changes in the vascular system, attributed to endothelial dysfunction, arterial stiffness, impaired angiogenesis, oxidative stress and inflammation, impose additional strain on the heart. Dysregulated mechanosignalling and impaired nitric oxide signalling play critical roles in the age-related vascular dysfunction associated with HF. Metabolic aging drives intricate shifts in glucose and lipid metabolism, leading to insulin resistance, mitochondrial dysfunction and lipid accumulation within cardiomyocytes. These alterations contribute to cardiac hypertrophy, fibrosis and impaired contractility, ultimately propelling HF. Systemic low-grade chronic inflammation, in conjunction with the senescence-associated secretory phenotype, aggravates cardiac dysfunction with age by promoting immune cell infiltration into the myocardium, fostering HF. This is further exacerbated by age-related comorbidities like coronary artery disease (CAD), atherosclerosis, hypertension, obesity, diabetes and chronic kidney disease (CKD). CAD and atherosclerosis induce myocardial ischaemia and adverse remodelling, while hypertension contributes to cardiac hypertrophy and fibrosis. Obesity-associated insulin resistance, inflammation and dyslipidaemia create a profibrotic cardiac environment, whereas diabetes-related metabolic disturbances further impair cardiac function. CKD-related fluid overload, electrolyte imbalances and uraemic toxins exacerbate HF through systemic inflammation and neurohormonal renin-angiotensin-aldosterone system (RAAS) activation. Recognizing aging as a modifiable process has opened avenues to target systemic aging in HF through both lifestyle interventions and therapeutics. Exercise, known for its antioxidant effects, can partly reverse pathological cardiac remodelling in the elderly by countering processes linked to age-related chronic HF, such as mitochondrial dysfunction, inflammation, senescence and declining cardiomyocyte regeneration. Dietary interventions such as plant-based and ketogenic diets, caloric restriction and macronutrient supplementation are instrumental in maintaining energy balance, reducing adiposity and addressing micronutrient and macronutrient imbalances associated with age-related HF. Therapeutic advancements targeting systemic aging in HF are underway. Key approaches include senomorphics and senolytics to limit senescence, antioxidants targeting mitochondrial stress, anti-inflammatory drugs like interleukin (IL)-1β inhibitors, metabolic rejuvenators such as nicotinamide riboside, resveratrol and sirtuin (SIRT) activators and autophagy enhancers like metformin and sodium-glucose cotransporter 2 (SGLT2) inhibitors, all of which offer potential for preserving cardiac function and alleviating the age-related HF burden.
Collapse
Affiliation(s)
- Zhuyubing Fang
- Cardiovascular Department of Internal MedicineKaramay Hospital of People's Hospital of Xinjiang Uygur Autonomous RegionKaramayXinjiang Uygur Autonomous RegionChina
| | - Umar Raza
- School of Basic Medical SciencesShenzhen UniversityShenzhenGuangdong ProvinceChina
| | - Jia Song
- Department of Medicine (Cardiovascular Research)Baylor College of MedicineHoustonTexasUSA
| | - Junyan Lu
- Department of CardiologyZengcheng Branch of Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Shun Yao
- Department of NeurosurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| | - Xiaohong Liu
- Cardiovascular Department of Internal MedicineKaramay Hospital of People's Hospital of Xinjiang Uygur Autonomous RegionKaramayXinjiang Uygur Autonomous RegionChina
| | - Wei Zhang
- Outpatient Clinic of SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| | - Shujuan Li
- Department of Pediatric CardiologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| |
Collapse
|
2
|
Acheson J, Joanisse S, Sale C, Hodson N. Recycle, repair, recover: the role of autophagy in modulating skeletal muscle repair and post-exercise recovery. Biosci Rep 2025; 45:1-30. [PMID: 39670455 DOI: 10.1042/bsr20240137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024] Open
Abstract
Skeletal muscle is a highly plastic tissue that can adapt relatively rapidly to a range of stimuli. In response to novel mechanical loading, e.g. unaccustomed resistance exercise, myofibers are disrupted and undergo a period of ultrastructural remodeling to regain full physiological function, normally within 7 days. The mechanisms that underpin this remodeling are believed to be a combination of cellular processes including ubiquitin-proteasome/calpain-mediated degradation, immune cell infiltration, and satellite cell proliferation/differentiation. A relatively understudied system that has the potential to be a significant contributing mechanism to repair and recovery is the autophagolysosomal system, an intracellular process that degrades damaged and redundant cellular components to provide constituent metabolites for the resynthesis of new organelles and cellular structures. This review summarizes our current understanding of the autophagolysosomal system in the context of skeletal muscle repair and recovery. In addition, we also provide hypothetical models of how this system may interact with other processes involved in skeletal muscle remodeling and provide avenues for future research to improve our understanding of autophagy in human skeletal muscle.
Collapse
Affiliation(s)
- Jordan Acheson
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K
| | - Sophie Joanisse
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, U.K
| | - Craig Sale
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K
| | - Nathan Hodson
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Zhou XH, Luo YX, Yao XQ. Exercise-driven cellular autophagy: A bridge to systematic wellness. J Adv Res 2025:S2090-1232(24)00613-1. [PMID: 39756575 DOI: 10.1016/j.jare.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/28/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Exercise enhances health by supporting homeostasis, bolstering defenses, and aiding disease recovery. It activates autophagy, a conserved cellular process essential for maintaining balance, while dysregulated autophagy contributes to disease progression. Despite extensive research on exercise and autophagy independently, their interplay remains insufficiently understood. AIM OF REVIEW This review explores the molecular mechanisms of exercise-induced autophagy in various tissues, focusing on key transduction pathways. It examines how different types of exercise trigger specific autophagic responses, supporting cellular balance and addressing systemic dysfunctions. The review also highlights the signaling pathways involved, their roles in protecting organ function, reducing disease risk, and promoting longevity, offering a clear understanding of the link between exercise and autophagy. KEY SCIENTIFIC CONCEPTS OF REVIEW Exercise-induced autophagy is governed by highly coordinated and dynamic pathways integrating direct and indirect mechanical forces and biochemical signals, linking physical activity to cellular and systemic health across multiple organ systems. Its activation is influenced by exercise modality, intensity, duration, and individual biological characteristics, including age, sex, and muscle fiber composition. Aerobic exercises primarily engage AMPK and mTOR pathways, supporting mitochondrial quality and cellular homeostasis. Anaerobic training activates PI3K/Akt signaling, modulating molecules like FOXO3a and Beclin1 to drive muscle autophagy and repair. In pathological contexts, exercise-induced autophagy enhances mitochondrial function, proteostasis, and tissue regeneration, benefiting conditions like sarcopenia, neurodegeneration, myocardial ischemia, metabolic disorders, and cancer. However, excessive exercise may lead to autophagic overactivation, leading to muscle atrophy or pathological cardiac remodeling. This underscores the critical need for balanced exercise regimens to maximize therapeutic efficacy while minimizing risks. Future research should prioritize identifying reliable biomarkers, optimizing exercise protocols, and integrating exercise with pharmacological strategies to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Xiao-Han Zhou
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, PR China; Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
4
|
Onaka GM, de Carvalho MR, Onaka PK, Barbosa CM, Martinez PF, de Oliveira-Junior SA. Exercise, mTOR Activation, and Potential Impacts on the Liver in Rodents. BIOLOGY 2024; 13:362. [PMID: 38927242 PMCID: PMC11201249 DOI: 10.3390/biology13060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 06/28/2024]
Abstract
The literature offers a consensus on the association between exercise training (ET) protocols based on the adequate parameters of intensity and frequency, and several adaptive alterations in the liver. Indeed, regular ET can reverse glucose and lipid metabolism disorders, especially from aerobic modalities, which can decrease intrahepatic fat formation. In terms of molecular mechanisms, the regulation of hepatic fat formation would be directly related to the modulation of the mechanistic target of rapamycin (mTOR), which would be stimulated by insulin signaling and Akt activation, from the following three different primary signaling pathways: (I) growth factor, (II) energy/ATP-sensitive, and (III) amino acid-sensitive signaling pathways, respectively. Hyperactivation of the Akt/mTORC1 pathway induces lipogenesis by regulating the action of sterol regulatory element binding protein-1 (SREBP-1). Exercise training interventions have been associated with multiple metabolic and tissue benefits. However, it is worth highlighting that the mTOR signaling in the liver in response to exercise interventions remains unclear. Hepatic adaptive alterations seem to be most outstanding when sustained by chronic interventions or high-intensity exercise protocols.
Collapse
Affiliation(s)
- Giuliano Moreto Onaka
- Graduate Program in Health and Development in the Midwest Region, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, MS, Brazil; (G.M.O.); (P.F.M.)
| | - Marianna Rabelo de Carvalho
- Graduate Program in Health and Development in the Midwest Region, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, MS, Brazil; (G.M.O.); (P.F.M.)
| | - Patricia Kubalaki Onaka
- Graduate Program in Education and Health, State University of Mato Grosso do Sul, Dourados 79804-970, MS, Brazil
| | - Claudiane Maria Barbosa
- Graduate Program in Movement Sciences, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, MS, Brazil;
| | - Paula Felippe Martinez
- Graduate Program in Health and Development in the Midwest Region, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, MS, Brazil; (G.M.O.); (P.F.M.)
- Graduate Program in Movement Sciences, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, MS, Brazil;
| | - Silvio Assis de Oliveira-Junior
- Graduate Program in Health and Development in the Midwest Region, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, MS, Brazil; (G.M.O.); (P.F.M.)
- Graduate Program in Movement Sciences, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, MS, Brazil;
| |
Collapse
|
5
|
Du X, Fan R, Kong J. What improvements do general exercise training and traditional Chinese exercises have on knee osteoarthritis? A narrative review based on biological mechanisms and clinical efficacy. Front Med (Lausanne) 2024; 11:1395375. [PMID: 38841568 PMCID: PMC11150680 DOI: 10.3389/fmed.2024.1395375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Background Knee osteoarthritis (KOA) is a disease that significantly affects the quality of life of patients, with a complex pathophysiology that includes degeneration of cartilage and subchondral bone, synovitis, and associations with mechanical load, inflammation, metabolic factors, hormonal changes, and aging. Objective This article aims to comprehensively review the biological mechanisms and clinical effects of general exercise training and traditional Chinese exercises (such as Tai Chi and Qigong) on the treatment of KOA, providing references for the development of clinical exercise prescriptions. Methods A systematic search of databases including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure (CNKI) was conducted, reviewing studies including randomized controlled trials (RCTs), observational studies, systematic reviews, and meta-analyses. Keywords included "knee osteoarthritis," "exercise therapy," "physical activity," and "traditional Chinese exercise." Results and conclusion General exercise training positively affects KOA by mechanisms such as promoting blood circulation, improving the metabolism of inflammatory factors, enhancing the expression of anti-inflammatory cytokines, and reducing cartilage cell aging. Traditional Chinese exercises, like Tai Chi and Qigong, benefit the improvement of KOA symptoms and tissue repair by regulating immune function and alleviating joint inflammation. Clinical studies have shown that both types of exercise can improve physical function, quality of life, and pain relief in patients with KOA. Both general exercise training and traditional Chinese exercises are non-pharmacological treatment options for KOA that can effectively improve patients' physiological function and quality of life. Future research should further explore the long-term effects and biological mechanisms of these exercise interventions and develop personalized exercise programs based on the specific needs of patients.
Collapse
Affiliation(s)
- Xingbin Du
- Shandong Huayu University of Technology, Dezhou, China
- Faculty of Education, Qufu Normal University, Qufu, China
| | - Rao Fan
- College of Sports Science, Qufu Normal University, Qufu, China
| | - Jianda Kong
- College of Sports Science, Qufu Normal University, Qufu, China
| |
Collapse
|
6
|
Ortega MA, Fraile-Martinez O, de Leon-Oliva D, Boaru DL, Lopez-Gonzalez L, García-Montero C, Alvarez-Mon MA, Guijarro LG, Torres-Carranza D, Saez MA, Diaz-Pedrero R, Albillos A, Alvarez-Mon M. Autophagy in Its (Proper) Context: Molecular Basis, Biological Relevance, Pharmacological Modulation, and Lifestyle Medicine. Int J Biol Sci 2024; 20:2532-2554. [PMID: 38725847 PMCID: PMC11077378 DOI: 10.7150/ijbs.95122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego de Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), Príncipe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
7
|
Botella J, Shaw CS, Bishop DJ. Autophagy and Exercise: Current Insights and Future Research Directions. Int J Sports Med 2024; 45:171-182. [PMID: 37582398 DOI: 10.1055/a-2153-9258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Autophagy is a cellular process by which proteins and organelles are degraded inside the lysosome. Exercise is known to influence the regulation of autophagy in skeletal muscle. However, as gold standard techniques to assess autophagy flux in vivo are restricted to animal research, important gaps remain in our understanding of how exercise influences autophagy activity in humans. Using available datasets, we show how the gene expression profile of autophagy receptors and ATG8 family members differ between human and mouse skeletal muscle, providing a potential explanation for their differing exercise-induced autophagy responses. Furthermore, we provide a comprehensive view of autophagy regulation following exercise in humans by summarizing human transcriptomic and phosphoproteomic datasets that provide novel targets of potential relevance. These newly identified phosphorylation sites may provide an explanation as to why both endurance and resistance exercise lead to an exercise-induced reduction in LC3B-II, while possibly divergently regulating autophagy receptors, and, potentially, autophagy flux. We also provide recommendations to use ex vivo autophagy flux assays to better understand the influence of exercise, and other stimuli, on autophagy regulation in humans. This review provides a critical overview of the field and directs researchers towards novel research areas that will improve our understanding of autophagy regulation following exercise in humans.
Collapse
Affiliation(s)
- Javier Botella
- Metabolic Research Unit, School of Medicine and Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, VIC, Australia
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| |
Collapse
|
8
|
Li Z, Tian Z. Restoration of autophagy activity by dipsacoside B alleviates exhaustive exercise-induced kidney injury via the AMPK/mTOR pathway. Nat Prod Res 2024:1-7. [PMID: 38293762 DOI: 10.1080/14786419.2024.2308002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Exhaustive exercise (EE) induces kidney injury, but its concrete mechanism has not been fully elucidated. Hepatoprotective effects of dipsacoside B (DB) have been found previously, involving in autophagy induction. However, whether DB exerts renal protective effect and its potential mechanism are still unknown. The present study aimed to investigate the benefit of DB in EE-induced kidney injury and decipher its underlying mechanism. Here, we found that DB ameliorated EE-induced renal dysfunction and renal histopathological injury in rats. DB possessed anti-inflammatory, anti-oxidative, and anti-apoptotic functions in kidneys of exercise-induced exhausted rats. Besides, DB improved autophagy function in kidneys of EE rats. Mechanically, activation of the adenylate-activating protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway was implicated in the kidney injury-relieving effects and autophagy restoration induced by DB. Collectively, these findings provide reference for the clinical application of DB in preventing and managing EE-induced kidney injury.
Collapse
Affiliation(s)
- Zhenyu Li
- Sias University, Xinzheng, P.R. China
- The 521 Laboratory of Sports Physiology and Biochemistry, Department of Sport Science, College of Natural Science, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Zhuang Tian
- The 521 Laboratory of Sports Physiology and Biochemistry, Department of Sport Science, College of Natural Science, Jeonbuk National University, Jeonju-si, Republic of Korea
- College of Physical Education, Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
9
|
Wang YH, Zhou Y, Gao X, Sun S, Xie YZ, Hu YP, Fu Y, Fan XH, Xie Q. Duhuo Jisheng Decoction regulates intracellular zinc homeostasis by enhancing autophagy via PTEN/Akt/mTOR pathway to improve knee cartilage degeneration. PLoS One 2024; 19:e0290925. [PMID: 38166086 PMCID: PMC10760926 DOI: 10.1371/journal.pone.0290925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/15/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Articular cartilage and cartilage matrix degradation are key pathological changes occurring in the early stage of knee osteoarthritis (KOA). However, currently, there are limited strategies for early prevention and treatment of KOA. Duhuo Jisheng Decoction (DHJSD) is a formula quoted in Bei Ji Qian jin Yao Fang, which was compiled by Sun Simiao in the Tang Dynasty of China. As a complementary therapy, it is widely used to treat early-stage KOA in China; however, its mechanism has not been completely elucidated. OBJECTIVE This study investigated the potential role of DHJSD in preventing cartilage degradation and the underlying mechanism. METHODS A rat model of KOA model was established via the Hulth method. Subsequently, 25 rats were randomized into sham (saline), model control (saline), high-DHJSD (1.9g/mL of DHJSD), medium-DHJSD (1.2g/mL of DHJSD), and low-DHJSD groups (0.6g/mL of DHJSD). After 4 weeks of treatment, all rats were sacrificed and the severity of the cartilage degeneration was evaluated by a series of histological methods. The autophagosome was observed using transmission electron microscopy, and the related functional proteins were detected by the western blotting and real-time polymerase chain reaction. Next, the mechanism by which DHJSD improves knee cartilage degeneration was further clarified the in vitro by gene silencing technology combined with a series of functional experiments. The proteins levels of PTEN, Akt, p-Akt, mTOR, and p-mTOR, as well as the marker proteins of autophagy and apoptosis were determined. Zinc levels in chondrocytes were determined using inductively coupled plasma mass spectrometry. RESULTS Histopathological staining revealed that DHJSD had a protective effect on the cartilage. DHJSD increased autophagosome synthesis and the expression of autophagy proteins LC3 and Beclin-1 in chondrocytes. Moreover, it reduced the phosphorylation levels of Akt and mTOR and the levels of zinc, MMP-13, Bax, and Bcl-2. Following PTEN silencing, this DHJSD-mediated reduction in Akt and mTOR phosphorylation and Bax, Bcl-2, and zinc levels were further decreased; in addition, DHJSD-mediated increase in LC3 and Beclin-1 levels was decreased. CONCLUSION DHJSD inhibits the Akt/mTOR signaling pathway by targeting PTEN to promote autophagy in chondrocytes, which may help reduce MMP-13 production by regulating zinc levels in chondrocytes.
Collapse
Affiliation(s)
- Ye-Hui Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Sichuan Province Orthopedic Hospital, Chengdu, Sichuan, China
| | - Yi Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiang Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Sheng Sun
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi-Zhou Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - You-Peng Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yang Fu
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xiao-Hong Fan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Quan Xie
- Sichuan Province Orthopedic Hospital, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Bielawska M, Warszyńska M, Stefańska M, Błyszczuk P. Autophagy in Heart Failure: Insights into Mechanisms and Therapeutic Implications. J Cardiovasc Dev Dis 2023; 10:352. [PMID: 37623365 PMCID: PMC10456056 DOI: 10.3390/jcdd10080352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Autophagy, a dynamic and complex process responsible for the clearance of damaged cellular components, plays a crucial role in maintaining myocardial homeostasis. In the context of heart failure, autophagy has been recognized as a response mechanism aimed at counteracting pathogenic processes and promoting cellular health. Its relevance has been underscored not only in various animal models, but also in the human heart. Extensive research efforts have been dedicated to understanding the significance of autophagy and unravelling its complex molecular mechanisms. This review aims to consolidate the current knowledge of the involvement of autophagy during the progression of heart failure. Specifically, we provide a comprehensive overview of published data on the impact of autophagy deregulation achieved by genetic modifications or by pharmacological interventions in ischemic and non-ischemic models of heart failure. Furthermore, we delve into the intricate molecular mechanisms through which autophagy regulates crucial cellular processes within the three predominant cell populations of the heart: cardiomyocytes, cardiac fibroblasts, and endothelial cells. Finally, we emphasize the need for future research to unravel the therapeutic potential associated with targeting autophagy in the management of heart failure.
Collapse
Affiliation(s)
- Magdalena Bielawska
- Department of Clinical Immunology, Jagiellonian University Medical College, University Children’s Hospital, Wielicka 265, 30-663 Cracow, Poland; (M.B.)
| | - Marta Warszyńska
- Department of Clinical Immunology, Jagiellonian University Medical College, University Children’s Hospital, Wielicka 265, 30-663 Cracow, Poland; (M.B.)
| | - Monika Stefańska
- Department of Clinical Immunology, Jagiellonian University Medical College, University Children’s Hospital, Wielicka 265, 30-663 Cracow, Poland; (M.B.)
| | - Przemysław Błyszczuk
- Department of Clinical Immunology, Jagiellonian University Medical College, University Children’s Hospital, Wielicka 265, 30-663 Cracow, Poland; (M.B.)
- Department of Rheumatology, University Hospital Zurich, University of Zurich, 8952 Schlieren, Switzerland
| |
Collapse
|
11
|
Dozic S, Howden EJ, Bell JR, Mellor KM, Delbridge LMD, Weeks KL. Cellular Mechanisms Mediating Exercise-Induced Protection against Cardiotoxic Anthracycline Cancer Therapy. Cells 2023; 12:cells12091312. [PMID: 37174712 PMCID: PMC10177216 DOI: 10.3390/cells12091312] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Anthracyclines such as doxorubicin are widely used chemotherapy drugs. A common side effect of anthracycline therapy is cardiotoxicity, which can compromise heart function and lead to dilated cardiomyopathy and heart failure. Dexrazoxane and heart failure medications (i.e., beta blockers and drugs targeting the renin-angiotensin system) are prescribed for the primary prevention of cancer therapy-related cardiotoxicity and for the management of cardiac dysfunction and symptoms if they arise during chemotherapy. However, there is a clear need for new therapies to combat the cardiotoxic effects of cancer drugs. Exercise is a cardioprotective stimulus that has recently been shown to improve heart function and prevent functional disability in breast cancer patients undergoing anthracycline chemotherapy. Evidence from preclinical studies supports the use of exercise training to prevent or attenuate the damaging effects of anthracyclines on the cardiovascular system. In this review, we summarise findings from experimental models which provide insight into cellular mechanisms by which exercise may protect the heart from anthracycline-mediated damage, and identify knowledge gaps that require further investigation. Improved understanding of the mechanisms by which exercise protects the heart from anthracyclines may lead to the development of novel therapies to treat cancer therapy-related cardiotoxicity.
Collapse
Affiliation(s)
- Sanela Dozic
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Erin J Howden
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - James R Bell
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kimberley M Mellor
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand
| | - Lea M D Delbridge
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kate L Weeks
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
12
|
Khoury R, Saad J, Jabre V, Ghayad LM, Khalifeh M, Houbeika R, El Ahmad P, Mezher A, El Masri D, Haddad Z, Eid F, Barmo N, Nasrallah P, Sleiman SF, Stephan JS. Autophagy regulates the release of exercise factors and their beneficial effects on spatial memory recall. Heliyon 2023; 9:e14705. [PMID: 37025840 PMCID: PMC10070545 DOI: 10.1016/j.heliyon.2023.e14705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Exercise promotes learning and memory recall as well as rescues cognitive decline associated with aging. The positive effects of exercise are mediated by circulatory factors that predominantly increase Brain Derived Neurotrophic Factor (BDNF) signaling in the hippocampus. Identifying the pathways that regulate the release of the circulatory factors by various tissues during exercise and that mediate hippocampal Mus musculus Bdnf expression will allow us to harness the therapeutic potential of exercise. Here, we report that two weeks of voluntary exercise in male mice activates autophagy in the hippocampus by increasing LC3B protein levels (p = 0.0425) and that autophagy is necessary for exercise-induced spatial learning and memory retention (p < 0.001; exercise + autophagy inhibitor chloroquine CQ versus exercise). We place autophagy downstream of hippocampal BDNF signaling and identify a positive feedback activation between the pathways. We also assess whether the modulation of autophagy outside the nervous system is involved in mediating exercise's effect on learning and memory recall. Indeed, plasma collected from young exercise mice promote spatial learning (p = 0.0446; exercise versus sedentary plasma) and memory retention in aged inactive mice (p = 0.0303; exercise versus sedentary plasma), whereas plasma collected from young exercise mice that received the autophagy inhibitor chloroquine diphosphate failed to do so. We show that the release of exercise factors that reverse the symptoms of aging into the circulation is dependent on the activation of autophagy in young animals. Indeed, we show that the release of the exercise factor, beta-hydroxybutyrate (DBHB), into the circulation, is autophagy-dependent and that DBHB promotes spatial learning and memory formation (p = 0.0005) by inducing hippocampal autophagy (p = 0.0479). These results implicate autophagy in peripheral tissues and in the hippocampus in mediating the effects of exercise on learning and memory recall and identify DBHB as a candidate endogenous exercise factor whose release and positive effects are autophagy-dependent.
Collapse
|
13
|
Wu Q, Tao J, Wu L, Wei W, Zhang X, Zhang Z, Zhang X, Jiang X, Chen N. Corn peptide enhances exercise performance and prevents myocardial damage of mice caused by overtraining through activating autophagy. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Wang P, Li CG, Zhou X, Cui D, Ouyang T, Chen W, Ding S. A single bout of exhaustive treadmill exercise increased AMPK activation associated with enhanced autophagy in mice skeletal muscle. Clin Exp Pharmacol Physiol 2022; 49:536-543. [PMID: 35108422 DOI: 10.1111/1440-1681.13632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/13/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Abstract
Previous studies reported inconsistent findings on autophagy activation in skeletal muscles after acute exercise. In this study, we investigated the effect of a single bout of exhaustive treadmill exercise on AMPK and autophagy activations in mice gastrocnemius muscle in vivo. Male ICR/CD-1 mice were randomly divided into the control and exercise groups. The later was subjected to a single bout of exhaustive treadmill exercise. Changes of AMPK, phosphorylation of AMPKThr172 (pAMPKThr172 ), and autophagy markers including Beclin1, LC3II/LC3I and p62 mRNA and protein expressions in gastrocnemius muscle at different times (0, 6, 12, 24 h) after the exercise were analysed by quantitative real-time PCR and western blot. Our results demonstrated that a single bout of exhaustive treadmill exercise significantly induced AMPK content and AMPK activity at 0, 6 and 12 h after the exercise, and changed the expressions of autophagy markers at different time points in the recovery period, respectively. Moreover, we observed positive correlations between expressions of LC3II/LC3I ratio and pAMPKThr172 or AMPK, and a negative correlation between expressions of p62 and AMPK or pAMPKThr172 . In conclusion, a single bout of exhaustive treadmill exercise in mice caused a prolonged activation of AMPK and improved autophagy in the gastrocnemius muscle. The regulation of autophagic markers were related to enhanced AMPK activity. The findings indicate that acute exercise enhanced AMPK-related autophagy activation may be the underlying molecular mechanism that regulates cellular energy metabolism during exercise.
Collapse
Affiliation(s)
- Ping Wang
- School of Physical Education, Hangzhou Normal University, Hangzhou, China
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, New South Wales, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, New South Wales, Australia
| | - Di Cui
- College of Physical Education, Hunan University, Changsha, China
| | - Ting Ouyang
- College of Physical Education, Hunan University, Changsha, China
| | - Weikai Chen
- College of Physical Education, Hunan University, Changsha, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- School of Physical Education and Health, East China Normal University, Shanghai, China
| |
Collapse
|
15
|
Pinto AP, Ropelle ER, Quadrilatero J, da Silva ASR. Physical Exercise and Liver Autophagy: Potential Roles of IL-6 and Irisin. Exerc Sport Sci Rev 2022; 50:89-96. [PMID: 34961755 DOI: 10.1249/jes.0000000000000278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Autophagic dysregulation contributes to liver diseases. Although some investigations have examined the effects of endurance and resistance exercise on autophagy activation, potential myokines responsible for skeletal muscle-liver crosstalk are still unknown. Based on experimental studies and bioinformatics, we hypothesized that interleukin 6 (IL-6) and irisin might be key players in the contraction-induced release of molecules that regulate liver autophagic responses.
Collapse
Affiliation(s)
- Ana P Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | | |
Collapse
|
16
|
Galán B, Serdan T, Rodrigues L, Manoel R, Gorjão R, Masi L, Pithon-Curi T, Curi R, Hirabara S. Reviewing physical exercise in non-obese diabetic Goto-Kakizaki rats. Braz J Med Biol Res 2022; 55:e11795. [PMID: 35648976 PMCID: PMC9150428 DOI: 10.1590/1414-431x2022e11795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/09/2022] [Indexed: 11/26/2022] Open
Abstract
There is a high incidence of non-obese type 2 diabetes mellitus (non-obese-T2DM) cases, particularly in Asian countries, for which the pathogenesis remains mainly unclear. Interestingly, Goto-Kakizaki (GK) rats spontaneously develop insulin resistance (IR) and non-obese-T2DM, making them a lean diabetes model. Physical exercise is a non-pharmacological therapeutic approach to reduce adipose tissue mass, improving peripheral IR, glycemic control, and quality of life in obese animals or humans with T2DM. In this narrative review, we selected and analyzed the published literature on the effects of physical exercise on the metabolic features associated with non-obese-T2DM. Only randomized controlled trials with regular physical exercise training, freely executed physical activity, or skeletal muscle stimulation protocols in GK rats published after 2008 were included. The results indicated that exercise reduces plasma insulin levels, increases skeletal muscle glycogen content, improves exercise tolerance, protects renal and myocardial function, and enhances blood oxygen flow in GK rats.
Collapse
Affiliation(s)
- B.S.M. Galán
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| | - T.D.A. Serdan
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil; New York University, USA
| | - L.E. Rodrigues
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| | - R. Manoel
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| | - R. Gorjão
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| | - L.N. Masi
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| | - T.C. Pithon-Curi
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| | - R. Curi
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil; Instituto Butantan, Brasil
| | - S.M. Hirabara
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| |
Collapse
|
17
|
Wang Z, Niu Y, Lei B, Yu L, Ke Z, Cao C, Wang R, Li J. Downhill Running Decreases the Acetylation of Tubulins and Impairs Autophagosome Degradation in Rat Skeletal Muscle. Med Sci Sports Exerc 2021; 53:2477-2484. [PMID: 34115728 DOI: 10.1249/mss.0000000000002728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study was designed to probe the effect of downhill running on microtubule acetylation and autophagic flux in rat skeletal muscle. METHODS Sprague-Dawley rats were subjected to an exercise protocol of a 90-min downhill run with a slope of -16° and a speed of 16 m·min-1, and then the soleus was sampled at 0, 12, 24, 48, and 72 h after exercise. Protein expression levels of microtubule-associated protein 1 light chain 3 (LC3), p62/sequestosome 1 (p62), α-tubulin, and acetylated α-tubulin (AcK40 α-tubulin) were detected by Western blotting. Alpha-tubulin was costained with AcK40 α-tubulin or cytoplasmic dynein intermediate chain in a single muscle fiber, and LC3 was costained with lysosomal-associated membrane protein 1 in cryosections. To assess autophagic flux in vivo, colchicine or vehicle was injected intraperitoneally 3 d before the exercise experiment, and the protein levels of LC3 and p62 were measured by Western blotting. RESULTS Downhill running induced a significant increase in the protein levels of LC3-II and p62, whereas the level and proportion of AcK40 α-tubulin were markedly decreased. Furthermore, the amount of dynein on α-tubulin was decreased after downhill running, and autophagosomes accumulated in the middle of myofibrils. Importantly, LC3-II flux was decreased after downhill running compared with that in the control group. CONCLUSIONS A bout of downhill running decreases microtubule acetylation, which may impair dynein recruitment and autophagosome transportation, causing blocked autophagic flux.
Collapse
Affiliation(s)
- Zhen Wang
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| | | | - Bingkai Lei
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Liang Yu
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Zhifei Ke
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Chunxia Cao
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Ruiyuan Wang
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Junping Li
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| |
Collapse
|