1
|
Chu L, Wang C, Zhou H. Inflammation mechanism and anti-inflammatory therapy of dry eye. Front Med (Lausanne) 2024; 11:1307682. [PMID: 38420354 PMCID: PMC10899709 DOI: 10.3389/fmed.2024.1307682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/14/2024] [Indexed: 03/02/2024] Open
Abstract
Dry eye is a widespread chronic inflammatory disease that causes fatigue, tingling, burning, and other symptoms. Dry eye is attributed to rheumatic diseases, diabetes, hormone disorders, and contact lenses, which activate inflammatory pathways: mitogen-activated protein kinases (MAPK) and nuclear factor-B (NF-κB), promote macrophage inflammatory cell and T cell activation, and inflammation factors. Clinicians use a combination of anti-inflammatory drugs to manage different symptoms of dry eye; some of these anti-inflammatory drugs are being developed. This review introduces the dry eye inflammation mechanisms and the involved inflammatory factors. We also elucidate the anti-inflammatory drug mechanism and the detection limits.
Collapse
Affiliation(s)
- Liyuan Chu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Caiming Wang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Shahraki T, Baradaran-Rafii A, Ayyala R, Arabi A, Jarstad J, Memar F. New advances in medical management of dry eye: optimizing treatment strategies for enhanced relief. Int Ophthalmol 2024; 44:49. [PMID: 38337030 DOI: 10.1007/s10792-024-02978-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/29/2023] [Indexed: 02/12/2024]
Abstract
PURPOSE Dry eye disease (DED) is a prevalent ocular surface disease that is conventionally characterized by tear film hyperosmolarity and instability. This review presents a summarized classification of DED, followed by a comprehensive discussion of the most recent topical and systemic medications and clinical recommendations for selecting the most appropriate option for each patient. METHODS An extensive literature search was conducted on electronic databases, such as PubMed, Scopus, and Web of Science, using keywords including "dry eye syndrome," "ocular surface disease," "medical management," "artificial tears," "topical immunomodulators," and "meibomian gland dysfunction." RESULTS The underlying reasons for DED can range from insufficient aqueous tear production to increased tear evaporation. Recent literature has provided a more in-depth understanding of the pathophysiology of DED by examining the tear film's lipid, aqueous, and mucin layers. However, despite these advancements, medical management of patients with symptomatic DED has not fully reflected this modernized knowledge of its pathophysiology. CONCLUSION To develop a rationalized strategy for treating DED, it is crucial to have updated knowledge of therapeutic options, their mechanisms of actions, and indications based on the DED type and underlying causes.
Collapse
Affiliation(s)
- Toktam Shahraki
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, No. 23, Paidarfard St., Boostan 9 St., Pasdaran Ave, Tehran, Iran.
| | - Alireza Baradaran-Rafii
- Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Ramesh Ayyala
- Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Amir Arabi
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, No. 23, Paidarfard St., Boostan 9 St., Pasdaran Ave, Tehran, Iran
| | - John Jarstad
- Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | | |
Collapse
|
3
|
Guarise C, Acquasaliente L, Pasut G, Pavan M, Soato M, Garofolin G, Beninatto R, Giacomel E, Sartori E, Galesso D. The role of high molecular weight hyaluronic acid in mucoadhesion on an ocular surface model. J Mech Behav Biomed Mater 2023; 143:105908. [PMID: 37209594 DOI: 10.1016/j.jmbbm.2023.105908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 05/22/2023]
Abstract
Hyaluronic acid (HA) is frequently formulated in eye drops to improve the stability of the tear film by hydration and lubrication. Mucoadhesion is related to the ocular residence time and therefore to the effectiveness of the eye drops. The ocular residence time of the HA formulation is correlated with the ability of HA to create specific strong interactions in the ocular surface with the mucus layer, mainly composed of a mixture of secreted mucins (MUC; gel forming MUC5AC and MUC2) and shed membrane-bound soluble mucins (MUC1, MUC4, and MUC16). Dry eye disease (DED) is a multifactorial pathology of the preocular tear film with possible damage to the ocular surface classified in two types: (1) aqueous-deficient dry eye and (2) evaporative dry eye, caused by a decrease in goblet cell density that reduces MUC expression and/or by meibomian gland dysfunction, that results in a drop in the lipidic fraction of the tear film. In this work, the binding affinity between HA and MUC2 has been evaluated with three complementary approaches because the secreted MUCs play a pivotal role in the viscoelastic properties of the tear film: 1. Rheological analysis, measuring the mucoadhesive index and the complex viscosity in relation to MM (Molecular Mass) and concentration; 2. Fluorescence analysis, using a fluorescent hydrophobic probe, to investigate the conformational change of MUC2 during the interaction with the HA polymer; 3. Surface plasmon resonance analysis, used to measure the affinity between MUC2 (immobilized on the surface of a sensor chip) and the HA polymers that flowed on it at the molecular level. For all these tests, the mucoadhesive performance of the natural HA linearly increases with the MM, whereas cross-linked HA and other emollient and gelling agents (formulated in artificial tears) do not show the same mucoadhesive properties (with the exception of xanthan gum). The mucoadhesive performance of high MM HA has also been confirmed in conditions that simulate the pathological condition of the tear film during DED by decreasing the MUC2 or oleic acid concentration. Physico-chemical analysis of a series of marketed artificial tears confirms the linear correlation between the MM of the HA used in the products and the mucoadhesive index measured on the ocular surface model.
Collapse
Affiliation(s)
- Cristian Guarise
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031, Abano Terme, PD, Italy.
| | - Laura Acquasaliente
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Mauro Pavan
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031, Abano Terme, PD, Italy
| | - Matteo Soato
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031, Abano Terme, PD, Italy
| | - Giacomo Garofolin
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031, Abano Terme, PD, Italy
| | - Riccardo Beninatto
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031, Abano Terme, PD, Italy
| | - Elena Giacomel
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031, Abano Terme, PD, Italy
| | - Eleonora Sartori
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031, Abano Terme, PD, Italy
| | - Devis Galesso
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031, Abano Terme, PD, Italy
| |
Collapse
|
4
|
Srinivasan S, Williams R. Propylene Glycol and Hydroxypropyl Guar Nanoemulsion - Safe and Effective Lubricant Eye Drops in the Management of Dry Eye Disease. Clin Ophthalmol 2022; 16:3311-3326. [PMID: 36237486 PMCID: PMC9553314 DOI: 10.2147/opth.s377960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/15/2022] [Indexed: 02/05/2023] Open
Abstract
Dry eye disease (DED) is a chronic condition of the ocular surface characterized by a loss of the tear film homeostasis and accompanied by symptoms such as eye discomfort and visual disturbances. DED is classified as aqueous deficient dry eye (ADDE), evaporative dry eye (EDE), and mixed dry eye etiologies. The mainstay treatment in the management of DED is artificial tear drops or lubricant eye drops that replenish the aqueous and/or lipid layer of the tear film. These are available as both lipid-based and non-lipid-based formulations, with/without preservatives. Lipid-based lubricant eye drops can stabilize the tear film lipid layer, reduce tear evaporation, and improve signs of EDE. In this review, we present the formulation components, mechanism of action, and summary of preclinical and clinical evidence on a lipid-based formulation - propylene glycol-hydroxypropyl guar (PG-HPG) nanoemulsion lubricant eye drops (SystaneTM Complete). These eye drops consist of the demulcent (lubricant), PG (0.6%). HPG forms a soft, thin, cross-linked in situ gel matrix with borate ions, when exposed to the tear film, which prolongs lubricant retention and provides ocular surface protection. Dimyristoyl phosphatidyl glycerol, an anionic phospholipid, helps in replenishing the lipid layer of the tear film. Moreover, the nanoemulsion formulation serves as a depot for delivery of dimyristoyl phosphatidyl glycerol to enhance ocular surface coverage. Preclinical and clinical evidence demonstrate that PG-HPG nanoemulsion lubricant eye drops are safe and effective in providing temporary relief of symptoms of DED, regardless of its subtypes. Specifically, it provides sustained reduction in dry eye symptoms, improves tear film stability/lipid layer grade, and improves ocular surface characteristics.
Collapse
Affiliation(s)
- Sruthi Srinivasan
- Alcon Research LLC, Johns Creek, GA, 30097, USA,Correspondence: Sruthi Srinivasan, Alcon Research LLC, 11460 Johns Creek Parkway, Johns Creek, GA, 30097, USA, Tel +1 678 415 5315, Email
| | | |
Collapse
|
5
|
Labetoulle M, Benitez-del-Castillo JM, Barabino S, Herrero Vanrell R, Daull P, Garrigue JS, Rolando M. Artificial Tears: Biological Role of Their Ingredients in the Management of Dry Eye Disease. Int J Mol Sci 2022; 23:ijms23052434. [PMID: 35269576 PMCID: PMC8910031 DOI: 10.3390/ijms23052434] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/21/2022] Open
Abstract
Dry eye disease (DED) is the most common ocular surface disease, characterized by insufficient production and/or instability of the tear film. Tear substitutes are usually the first line of treatment for patients with DED. Despite the large variety of tear substitutes available on the market, few studies have been performed to compare their performance. There is a need to better understand the specific mechanical and pharmacological roles of each ingredient composing the different formulations. In this review, we describe the main categories of ingredients composing tear substitutes (e.g., viscosity-enhancing agents, electrolytes, osmo-protectants, antioxidants, lipids, surfactants and preservatives) as well as their effects on the ocular surface, and we provide insight into how certain components of tear substitutes may promote corneal wound healing, and/or counteract inflammation. Based on these considerations, we propose an approach to select the most appropriate tear substitute formulations according to the predominant etiological causes of DED.
Collapse
Affiliation(s)
- Marc Labetoulle
- Service d’Ophtalmologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, 94270 Le Kremlin Bicêtre, France;
| | | | - Stefano Barabino
- Centro Superficie Oculare e Occhio Secco, ASST Fatebenefratelli-Sacco, Ospedale L. Sacco, Università di Milano, 20157 Milan, Italy;
| | - Rocio Herrero Vanrell
- Research Group (UCM 920415), Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain;
| | - Philippe Daull
- Ophthalmic Innovation Center, Santen SAS, 91058 Evry, France;
| | | | - Maurizio Rolando
- Ocular Surface Centre, ISPRE (Instituto di Medicina Oftalmica) Ophthalmic, 16129 Genoa, Italy;
| |
Collapse
|
6
|
Wróblewska KB, Milanowski B, Kucińska M, Plewa S, Długaszewska J, Muszalska-Kolos I. Novel Formulation of Eye Drops Containing Choline Salicylate and Hyaluronic Acid: Stability, Permeability, and Cytotoxicity Studies Using Alternative Ex Vivo and In Vitro Models. Pharmaceuticals (Basel) 2021; 14:849. [PMID: 34577550 PMCID: PMC8465216 DOI: 10.3390/ph14090849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
This work investigated the potential of a novel formulation of eye drops containing a non-steroidal anti-inflammatory drug-choline salicylate (CS)-and hyaluronic acid (HA). Thus, these drops may exert both anti-inflammatory and regenerative activity. The experiment was conducted through the careful characterization of physicochemical properties, stability, and quality of eye drops. Moreover, microbiological analysis, as well as penetration and cytotoxic studies, were performed. The UV, HPLC-UV, and HPLC-MS/MS methods were used to determine the purity and stability of CS. The penetration rate of CS was assessed using a hydrophilic membrane and ex vivo porcine cornea model. Additionally, the cytotoxic effects were evaluated using the SIRC cell line. The interaction between HA and CS was tested using size-exclusion chromatography and IR spectrophotometry. As a result, HA increased the viscosity of the drops, which prolonged their contact with the ocular surface, thus ensuring more effective penetration of CS into the corneal structure. After long-term storage, an interaction in the pharmaceutical phase between CS and HA was observed. However, this interaction did not affect the viability of rabbit corneal cells. Our findings showed that eye drops with CS and HA, stored at 2-8 °C in light-protected conditions, met the criteria of stability and safety.
Collapse
Affiliation(s)
- Katarzyna Barbara Wróblewska
- Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Bartłomiej Milanowski
- Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., Na Kępie 3, 64-360 Zbąszyń, Poland
| | - Małgorzata Kucińska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Szymon Plewa
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Jolanta Długaszewska
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Święcickiego 6, 60-781 Poznan, Poland;
| | - Izabela Muszalska-Kolos
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| |
Collapse
|