1
|
Yu P, Cao S, Yang SM, Rai G, Martinez NJ, Yasgar A, Zakharov AV, Simeonov A, Molina Arocho WA, Lobel GP, Mohei H, Scott AL, Zhai L, Furth EE, Celeste Simon M, Haldar M. RALDH1 Inhibition Shows Immunotherapeutic Efficacy in Hepatocellular Carcinoma. Cancer Immunol Res 2024; 12:180-194. [PMID: 38051215 PMCID: PMC10872947 DOI: 10.1158/2326-6066.cir-22-1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/25/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Globally, hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers and a leading cause of cancer-related death. We previously identified an immune evasion pathway whereby tumor cells produce retinoic acid (RA) to promote differentiation of intratumoral monocytes into protumor macrophages. Retinaldehyde dehydrogenase 1 (RALDH1), RALDH2, and RALDH3 are the three isozymes that catalyze RA biosynthesis. In this study, we have identified RALDH1 as the key driver of RA production in HCC and demonstrated the efficacy of RALDH1-selective inhibitors (Raldh1-INH) in suppressing RA production by HCC cells. Raldh1-INH restrained tumor growth in multiple mouse models of HCC by reducing the number and tumor-supporting functions of intratumoral macrophages as well as increasing T-cell infiltration and activation within tumors. Raldh1-INH also displayed favorable pharmacokinetic, pharmacodynamic, and toxicity profiles in mice thereby establishing them as promising new drug candidates for HCC immunotherapy.
Collapse
Affiliation(s)
- Pengfei Yu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- BeiGene (Shanghai) Research & Development Co., Ltd., Shanghai 200131, China
| | - Shuwen Cao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Natalia J. Martinez
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Alexey V. Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - William A. Molina Arocho
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Graham P. Lobel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hesham Mohei
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexis L. Scott
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Zhai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emma E. Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malay Haldar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Huang WJ, Qiu BJ, Qi XS, Chen CY, Liu WM, Zhou SA, Ding M, Lu FF, Zhao J, Tang D, Zhou X, Fu GB, Wang ZY, Ma HQ, Wu YL, Wu HP, Chen XS, Yu WF, Yan HX. CD24 +LCN2 + liver progenitor cells in ductular reaction contributed to macrophage inflammatory responses in chronic liver injury. Cell Biosci 2023; 13:184. [PMID: 37784089 PMCID: PMC10546777 DOI: 10.1186/s13578-023-01123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND CD24+CK19+/CD24+SOX9+ resident liver cells are activated and expanded after chronic liver injury in a ductular reaction. However, the sources and functions of these cells in liver damage remain disputed. RESULTS The current study combined genetic lineage tracing with in vitro small-molecule-based reprogramming to define liver progenitor cells (LPCs) derived from hepatic parenchymal and non-parenchymal tissues. tdTom+ hepatocytes were isolated from ROSA26tdTomato mice following AAV8-Tbg-Cre-mediated recombination, EpCAM+ biliary epithelial cells (BECs) from wild-type intrahepatic bile ducts and ALB/GFP-EpCAM- cells were isolated from AlbCreERT/R26GFP mice. A cocktail of small molecules was used to convert the isolated cells into LPCs. These in vitro cultured LPCs with CD24 and SOX9 expression regained the ability to proliferate. Transcriptional profiling showed that the in-vitro cultured LPCs derived from the resident LPCs in non-parenchymal tissues expressed Lipocalin-2 (Lcn2) at high levels. Accordingly, endogenous Cd24a+Lcn2+ LPCs were identified by integration of sc-RNA-sequencing and pathological datasets of liver dysfunction which indicates that LPCs produced by ductular reactions might also originate from the resident LPCs. Transplantation of in-vitro cultured Cd24a+Lcn2+ LPCs into CCl4-induced fibrotic livers exacerbated liver damage and dysfunction, possibly due to LCN2-dependent macrophage inflammatory response. CONCLUSIONS CD24+LCN2+ LPCs constituted the expanding ductular reaction and contributed to macrophage-mediated inflammation in chronic liver damage. The current findings highlight the roles of LPCs from distinct origins and expose the possibility of targeting LPCs in the treatment of chronic hepatic diseases.
Collapse
Affiliation(s)
- Wei-Jian Huang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Celliver Biotechnology Inc., Shanghai, China
| | - Bi-Jun Qiu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University., Shanghai, China
| | - Xiao-Shu Qi
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Cai-Yang Chen
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
| | - Wen-Ming Liu
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | | | - Min Ding
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Jiaotong University, Shanghai, China
| | - Feng-Feng Lu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University., Shanghai, China
| | - Dan Tang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Xu Zhou
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Gong-Bo Fu
- Department of Medical Oncology, First School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Zhen-Yu Wang
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Hong-Qian Ma
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yu-Ling Wu
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Hong-Ping Wu
- International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Song Chen
- Department of Infectious Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200120, China.
| | - Wei-Feng Yu
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - He-Xin Yan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
- Celliver Biotechnology Inc., Shanghai, China.
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Jiaotong University, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
3
|
He H, Chai X, Li J, Li C, Wu X, Ye X, Ma H, Li X. LCN2 contributes to the improvement of nonalcoholic steatohepatitis by 8-Cetylberberine. Life Sci 2023; 321:121595. [PMID: 36940908 DOI: 10.1016/j.lfs.2023.121595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
AIMS Nonalcoholic steatohepatitis (NASH) is becoming one of the most common causes of liver transplantation and hepatocellular carcinoma, but no specific drugs are FDA-approved to treat it. 8-cetylberberine (CBBR), which is a long-chain alkane derivative of berberine, exhibits potent pharmacological activities and improves metabolism performance. The aim of this study is to explore the function and mechanism of CBBR against NASH. MATERIALS AND METHODS L02 and HepG2 hepatocytes were treated with the medium containing palmitic acids and oleic acids (PO) and incubated with CBBR for 12 h, then the levels of lipid accumulation were tested by kits or western blots. C57BL/6 J mice were fed with a high-fat diet or a high-fat/high-cholesterol diet. CBBR (15 mg/kg or 30 mg/kg) was orally administered for 8 weeks. Liver weight, steatosis, inflammation, and fibrosis were evaluated. Transcriptomic indicated the target of CBBR in NASH. KEY FINDINGS CBBR significantly reduced lipid accumulation, inflammation, liver injury, and fibrosis in NASH mice. CBBR also decreased lipid accumulation and inflammation in PO-induced L02 and HepG2 cells. RNA sequencing and bioinformatics analysis indicated that CBBR inhibited the pathways and key regulators associated with lipid accumulation, inflammation, and fibrosis in the pathogenesis of NASH. Mechanically, CBBR may prevent NASH via inhibiting LCN2, as proved by the finding that the anti-NASH effect of CBBR was more obvious in PO-stimulated HepG2 cells treated with LCN2 overexpression. SIGNIFICANCE Our work provides an insight into the effectiveness of CBBR in improving metabolic-stress-caused NASH as well as the mechanism by regulating LCN2.
Collapse
Affiliation(s)
- Huan He
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xue Chai
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Juan Li
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Changsheng Li
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xinran Wu
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hang Ma
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Xuegang Li
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
4
|
Recombinant FGF21 Attenuates Polychlorinated Biphenyl-Induced NAFLD/NASH by Modulating Hepatic Lipocalin-2 Expression. Int J Mol Sci 2022; 23:ijms23168899. [PMID: 36012166 PMCID: PMC9408415 DOI: 10.3390/ijms23168899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Although recent studies have demonstrated that polychlorinated biphenyls (PCB) exposure leads to toxicant-associated steatohepatitis, the underlying mechanism of this condition remains unsolved. Male C57Bl/6 mice fed a standard diet (SD) or 60% high fat diet (HFD) were exposed to the nondioxin-like PCB mixture Aroclor1260 or dioxin-like PCB congener PCB126 by intraperitoneal injection for a total of four times for six weeks. We observed hepatic injury, steatosis, inflammation, and fibrosis in not only the Aroclor1260-treated mice fed a HFD but the PCB126-treated mice fed either a SD or a HFD. We also observed that both types of PCB exposure induced hepatic iron overload (HIO). Noticeably, the expression of hepatic lipocalin-2 (LCN2) was significantly increased in the PCB-induced nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) models. The knockdown of LCN2 resulted in improvement of PCB-induced lipid and iron accumulation in vitro, suggesting that LCN2 plays a pivotal role in PCB-induced NAFLD/NASH. We observed that recombinant FGF21 improved hepatic steatosis and HIO in the PCB-induced NAFLD/NASH models. Importantly, recombinant FGF21 reduced the PCB-induced overexpression of hepatic LCN2 in vivo and in vitro. Our findings indicate that recombinant FGF21 attenuates PCB-induced NAFLD/NASH by modulating hepatic lipocalin-2 expression. Our data suggest that hepatic LCN2 might represent a suitable therapeutic target for improving PCB-induced NAFLD/NASH accompanying HIO.
Collapse
|
5
|
Pita-Grisanti V, Chasser K, Sobol T, Cruz-Monserrate Z. Understanding the Potential and Risk of Bacterial Siderophores in Cancer. Front Oncol 2022; 12:867271. [PMID: 35785195 PMCID: PMC9248441 DOI: 10.3389/fonc.2022.867271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/06/2022] [Indexed: 01/19/2023] Open
Abstract
Siderophores are iron chelating molecules produced by nearly all organisms, most notably by bacteria, to efficiently sequester the limited iron that is available in the environment. Siderophores are an essential component of mammalian iron homeostasis and the ongoing interspecies competition for iron. Bacteria produce a broad repertoire of siderophores with a canonical role in iron chelation and the capacity to perform versatile functions such as interacting with other microbes and the host immune system. Siderophores are a vast area of untapped potential in the field of cancer research because cancer cells demand increased iron concentrations to sustain rapid proliferation. Studies investigating siderophores as therapeutics in cancer generally focused on the role of a few siderophores as iron chelators; however, these studies are limited and some show conflicting results. Moreover, siderophores are biologically conserved, structurally diverse molecules that perform additional functions related to iron chelation. Siderophores also have a role in inflammation due to their iron acquisition and chelation properties. These diverse functions may contribute to both risks and benefits as therapeutic agents in cancer. The potential of siderophore-mediated iron and bacterial modulation to be used in the treatment of cancer warrants further investigation. This review discusses the wide range of bacterial siderophore functions and their utilization in cancer treatment to further expand their functional relevance in cancer detection and treatment.
Collapse
Affiliation(s)
- Valentina Pita-Grisanti
- The Ohio State University Interdisciplinary Nutrition Program, The Ohio State University, Columbus, OH, United States
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Kaylin Chasser
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Trevor Sobol
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Zobeida Cruz-Monserrate,
| |
Collapse
|
6
|
Wei K, Song G, Xi L, Chen J, Sun C, Chen P, Wei Y, Wang L, Kong X, Li Y, Xu D, Jia X. Association of plasma neutrophil gelatinase-associated lipocalin and thoracic aorta calcification in maintenance hemodialysis patients with and without diabetes. BMC Nephrol 2022; 23:156. [PMID: 35459121 PMCID: PMC9026670 DOI: 10.1186/s12882-022-02773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Neutrophil gelatinase-associated lipocalin (NGAL) is not only a bone-derived factor involved in metabolism, but also a biomarker of kidney disease and cardiovascular pathophysiology. We conducted this cross-sectional observational study to explore relationships between plasma NGAL and thoracic aorta calcification (TAC) in maintenance hemodialysis (MHD) patients with and without diabetes. Methods Plasma NGAL was measured by ELISA, TAC was evaluated via computed tomography scan using a 3D quantification method or chest radiography aortic arch calcification score. Spearman correlation, Logistic regression and Partial correlation analysis were used to describe the correlations between NGAL and TAC. Results Plasma NGAL levels were lower in MHD patients with diabetes compared to those without diabetes (49.33(42.37, 55.48) vs 56.78(44.37, 674.13) ng/mL, P = 0.026). In MHD patients without diabetes, lg (NGAL) was positively correlated with ARC value(R = 0.612, P = 0.003) analyzed by Spearman correlation; for partial correlation analysis, lg (NGAL) was positively correlated with ARC value, after adjusting for age and sex (R = 0.550, P = 0.015), adjusting for age, sex and CHD (R = 0.565, P = 0.015), adjusting for age, sex, CHD and Alb (R = 0.536, P = 0.027), or adjusting for age, sex, CHD, Alb, and dialyzer membrane (polysulfone) (R = 0.590, P = 0.016); however, when adjusting for age, sex, CHD, Alb and Ca, the correlation between lg (NGAL) and ARC value disappeared. Positive correlation were found between NGAL and Ca (R = 0.644, P < 0.001), Ca and ACR (R = 0.534, P = 0.013) in Spearman coefficient analysis. Conclusion There were positive correlations among plasma NGAL, serum Ca and ARC in MHD patients without diabetes; which suggests that NGAL is possibly a participant in cardiovascular calcification, in non-diabetic MHD. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02773-z.
Collapse
Affiliation(s)
- Kai Wei
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Gesheng Song
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China
| | - Linhe Xi
- Department of Plastic and Reconstruction, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China
| | - Juan Chen
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Chuancai Sun
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Ping Chen
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Yong Wei
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Li Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Xianglei Kong
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Yang Li
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Dongmei Xu
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Xiaoyan Jia
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China. .,Shandong Provincial Insititute of Nephrology, Jinan, China.
| |
Collapse
|
7
|
Chawla H, Bhosale V, Misra R, Sonkar SK, Kohli N, Jamal N, Vimal SR, Dangi B, Durgapal K, Singh S, Negi MPS, Ghatak A. Lipocalin-2 levels increase in plasma of non-alcoholic fatty liver disease patients with metabolic syndrome. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Chen J, Lei S, Huang Y, Zha X, Gu L, Zhou D, Li J, Liu F, Li N, Du L, Huang X, Lin Z, Bu L, Qu S. The relationship between Lipocalin-2 level and hepatic steatosis in obese patients with NAFLD after bariatric surgery. Lipids Health Dis 2022; 21:10. [PMID: 35034646 PMCID: PMC8761269 DOI: 10.1186/s12944-022-01622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipocalin-2 (LCN2) has a critical effect on obesity as well as its associated comorbidities. The present study focused on analyzing serum LCN2 levels of obese patients with nonalcoholic fatty liver disease (NAFLD) and on determining relationship of hepatic steatosis improvement with LCN2 levels after laparoscopic sleeve gastrectomy (LSG). METHODS This work enrolled ninety patients with obesity and NAFLD. Twenty-three of them underwent LSG. Anthropometric and biochemical parameters and serum LCN2 levels were determined at baseline and those at 6-month post-LSG. Controlled attenuation parameter (CAP) measured by FibroScan was adopted for evaluating hepatic steatosis. RESULTS Among severe obesity patients, serum LCN2 levels were significantly increased (111.59 ± 51.16 ng/mL vs. 92.68 ± 32.68 ng/mL, P = 0.035). The CAP value was higher indicating higher liver fat content (360.51 ± 45.14 dB/m vs. 340.78 ± 45.02 dB/m, P = 0.044). With regard to surgical patients, liver function, glucose, and lipid levels were significantly improved after surgery. Serum LCN2 levels significantly decreased (119.74 ± 36.15 ng/mL vs. 87.38 ± 51.65 ng/mL, P = 0.001). Decreased CAP indicated a significant decrease in liver fat content (358.48 ± 46.13 dB/m vs. 260.83 ± 69.64 dB/m, P < 0.001). The decrease in LCN2 levels was significantly related to the reduced hepatic fat content and improvement in steatosis grade after adjusting for gender, age, and BMI decrease. CONCLUSIONS Serum LCN2 levels are related to obesity and NAFLD. The decreased serum LCN2 levels could be an indicator of hepatic steatosis improvement.
Collapse
Affiliation(s)
- Jiaqi Chen
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China ,grid.440227.70000 0004 1758 3572Department of Endocrinology and Metabolism, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Shihui Lei
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Yueye Huang
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Xiaojuan Zha
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Lei Gu
- grid.24516.340000000123704535Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Donglei Zhou
- grid.24516.340000000123704535Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Li
- grid.24516.340000000123704535Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Liu
- grid.24516.340000000123704535Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Nannan Li
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Lei Du
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Xiu Huang
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Ziwei Lin
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Le Bu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Clinical Medicine School of Nanjing Medical University, Medicine School of Tongji University, Shanghai, 200072, China.
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Clinical Medicine School of Nanjing Medical University, Medicine School of Tongji University, Shanghai, 200072, China.
| |
Collapse
|
9
|
Adipose-Derived Lipid-Binding Proteins: The Good, the Bad and the Metabolic Diseases. Int J Mol Sci 2021; 22:ijms221910460. [PMID: 34638803 PMCID: PMC8508731 DOI: 10.3390/ijms221910460] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue releases a large range of bioactive factors called adipokines, many of which are involved in inflammation, glucose homeostasis and lipid metabolism. Under pathological conditions such as obesity, most of the adipokines are upregulated and considered as deleterious, due to their pro-inflammatory, pro-atherosclerotic or pro-diabetic properties, while only a few are downregulated and would be designated as beneficial adipokines, thanks to their counteracting properties against the onset of comorbidities. This review focuses on six adipose-derived lipid-binding proteins that have emerged as key factors in the development of obesity and diabetes: Retinol binding protein 4 (RBP4), Fatty acid binding protein 4 (FABP4), Apolipoprotein D (APOD), Lipocalin-2 (LCN2), Lipocalin-14 (LCN14) and Apolipoprotein M (APOM). These proteins share structural homology and capacity to bind small hydrophobic molecules but display opposite effects on glucose and lipid metabolism. RBP4 and FABP4 are positively associated with metabolic syndrome, while APOD and LCN2 are ubiquitously expressed proteins with deleterious or beneficial effects, depending on their anatomical site of expression. LCN14 and APOM have been recently identified as adipokines associated with healthy metabolism. Recent findings on these lipid-binding proteins exhibiting detrimental or protective roles in human and murine metabolism and their involvement in metabolic diseases are also discussed.
Collapse
|
10
|
Liu H, Wan X, Shi Y, Huang F, Shu H, Huang R, Gu L. Neutrophil Gelatinase-Associated Lipocalin Contributes to Increased Risk of Cardiovascular Death After Acute Coronary Syndrome. Int J Gen Med 2021; 14:4887-4895. [PMID: 34475780 PMCID: PMC8407785 DOI: 10.2147/ijgm.s328022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/05/2021] [Indexed: 11/23/2022] Open
Abstract
Background Neutrophil gelatinase-associated lipocalin (NGAL) has been suggested to reflect early renal dysfunction. We investigated the predictive significance of serum NGAL in predicting cardiovascular (CV) death in an old-age population with coronary heart disease (CHD). Methods In total, 633 CHD patients with a stable clinical condition were enrolled. The measurements of serum NGAL and other laboratory indices were performed within 24 hours after admission. Adjusted analysis was used to assess relationships between serum NGAL and CV death during the 10-year follow-up period. Results Multivariate logistic regression analysis demonstrated that elevated NGAL levels were related to a higher prevalence of CV disease history [quartile 4, 2.41 (1.60–4.59), P-trend <0.001]. The Kaplan–Meier curve indicated that patients with high NGAL levels tended to have a higher rate of CV death than patients with low NGAL levels. A multivariate Cox model suggested that increased levels of NGAL were independently linked with elevated risk of CV death (HR=2.62, 95% CI 1.51–4.96, P<0.001) during the 10-year follow-up period, after adjusting for related confounding factors using sensitivity analysis. Furthermore, the receiver operating characteristics (ROC) curve demonstrated that serum NGAL (AUC=0.917, 95% CI 0.895–0.940, P<0.001) had an ideal predictive value in predicting CV death. Conclusion Serum levels of NGAL were elevated in patients with CHD and may be a new parameter that could independently predict CV death in these patients, which may strengthen its potential application in clinical practice.
Collapse
Affiliation(s)
- Huogen Liu
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an City, Fujian Province, 355000, People's Republic of China
| | - Xin Wan
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an City, Fujian Province, 355000, People's Republic of China
| | - Yundi Shi
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an City, Fujian Province, 355000, People's Republic of China
| | - Fengming Huang
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an City, Fujian Province, 355000, People's Republic of China
| | - Hailin Shu
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an City, Fujian Province, 355000, People's Republic of China
| | - Rijin Huang
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an City, Fujian Province, 355000, People's Republic of China
| | - Ling Gu
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an City, Fujian Province, 355000, People's Republic of China
| |
Collapse
|