1
|
Jin BH, Woo J, Lee M, Ku S, Moon HS, Ryu SJ, Hyun YM, Park JY, Kuh SU, Cho YE. Optimization of the optical transparency of bones by PACT-based passive tissue clearing. Exp Mol Med 2023; 55:2190-2204. [PMID: 37779150 PMCID: PMC10618275 DOI: 10.1038/s12276-023-01089-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 10/03/2023] Open
Abstract
Recent developments in tissue clearing methods such as the passive clearing technique (PACT) have allowed three-dimensional analysis of biological structures in whole, intact tissues, thereby providing a greater understanding of spatial relationships and biological circuits. Nonetheless, the issues that remain in maintaining structural integrity and preventing tissue expansion/shrinkage with rapid clearing still inhibit the wide application of these techniques in hard bone tissues, such as femurs and tibias. Here, we present an optimized PACT-based bone-clearing method, Bone-mPACT+, that protects biological structures. Bone-mPACT+ and four different decalcifying procedures were tested for their ability to improve bone tissue clearing efficiency without sacrificing optical transparency; they rendered nearly all types of bone tissues transparent. Both mouse and rat bones were nearly transparent after the clearing process. We also present a further modification, the Bone-mPACT+ Advance protocol, which is specifically optimized for processing the largest and hardest rat bones for easy clearing and imaging using established tissue clearing methods.
Collapse
Affiliation(s)
- Byung-Ho Jin
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- College of Medicine, Yonsei University Graduate School, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, International ST Mary´s Hospital, College of Medicine, Catholic Kwandong University, Incheon, 22711, Republic of Korea
| | - Jiwon Woo
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Biomedical Research Institute, Biohedron, Seoul, 06230, Republic of Korea
- Biomedical Research Center, Gangnam Severance Hospital, Seoul, 06230, Republic of Korea
| | - Mirae Lee
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Biomedical Research Center, Gangnam Severance Hospital, Seoul, 06230, Republic of Korea
| | - Seockmo Ku
- Department of Food Science and Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Hyung Seok Moon
- Biomedical Research Center, Gangnam Severance Hospital, Seoul, 06230, Republic of Korea
| | - Seung Jun Ryu
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- Department of Neurosurgery, Daejeon Eulji Medical Center, Eulji University, Daejeon, 35233, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jeong-Yoon Park
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- College of Medicine, Yonsei University Graduate School, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sung Uk Kuh
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- College of Medicine, Yonsei University Graduate School, Seoul, 03722, Republic of Korea
- Biomedical Research Center, Gangnam Severance Hospital, Seoul, 06230, Republic of Korea
- Department of Medical Device Engineering and Management, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yong Eun Cho
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
- College of Medicine, Yonsei University Graduate School, Seoul, 03722, Republic of Korea.
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Department of Neurosurgery, Wiltse Memorial Hospital, Suwon-si, Gyeonggi-do, 16480, Republic of Korea.
| |
Collapse
|
2
|
Wang Z, Zhao S, Zhang L, Yang Q, Cheng C, Ding N, Zhu Z, Shu H, Liu C, Zhao J. A genome-wide association study identifies a new variant associated with word reading fluency in Chinese children. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12833. [PMID: 36514817 PMCID: PMC9994172 DOI: 10.1111/gbb.12833] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Reading disability exhibited defects in different cognitive domains, including word reading fluency, word reading accuracy, phonological awareness, rapid automatized naming and morphological awareness. To identify the genetic basis of Chinese reading disability, we conducted a genome-wide association study (GWAS) of the cognitive traits related to Chinese reading disability in 2284 unrelated Chinese children. Among the traits analyzed in the present GWAS, we detected one genome-wide significant association (p < 5 × 10-8 ) on word reading fluency for one SNP on 4p16.2, within EVC genes (rs6446395, p = 7.33 × 10-10 ). Rs6446395 also showed significant association with Chinese character reading accuracy (p = 2.95 × 10-4 ), phonological awareness (p = 7.11 × 10-3 ) and rapid automatized naming (p = 4.71 × 10-3 ), implying multiple effects of this variant. The eQTL data showed that rs6446395 affected EVC expression in the cerebellum. Gene-based analyses identified a gene (PRDM10) to be associated with word reading fluency at the genome-wide level. Our study discovered a new candidate susceptibility variant for reading ability and provided new insights into the genetics of developmental dyslexia in Chinese children.
Collapse
Affiliation(s)
- Zhengjun Wang
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Shunan Zhao
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Liming Zhang
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Qing Yang
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Chen Cheng
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Ning Ding
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Zijian Zhu
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
| | - Chunyu Liu
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
- The School of Life SciencesCentral South UniversityChangshaChina
- Department of PsychiatrySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Jingjing Zhao
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| |
Collapse
|
3
|
Woo J, Lee EY, Lee M, Ku S, Park JY, Cho YE. Comparative Analyses of Clearing Efficacies of Tissue Clearing Protocols by Using a Punching Assisted Clarity Analysis. Front Bioeng Biotechnol 2022; 9:784626. [PMID: 35155401 PMCID: PMC8831720 DOI: 10.3389/fbioe.2021.784626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/30/2021] [Indexed: 02/03/2023] Open
Abstract
The advent of tissue clearing methods, in conjunction with novel high-resolution imaging techniques, has enabled the visualization of three-dimensional structures with unprecedented depth and detail. Although a variety of clearing protocols have been developed, little has been done to quantify their efficacies in a systematic, reproducible fashion. Here, we present two simple assays, Punching-Assisted Clarity Analysis (PACA)-Light and PACA-Glow, which use easily accessible spectroscopy and gel documentation systems to quantify the transparency of multiple cleared tissues simultaneously. We demonstrate the use of PACA-Light and PACA-Glow to compare twenty-eight tissue clearing protocols on rodent brains. We also show that regional differences exist in tissue transparency in the rodent brain, with cerebellar tissue consistently achieving lower clearing levels compared to the prefrontal or cerebral cortex across all protocols. This represents the largest comparative study of tissue clearing protocols to date, made possible by the high-throughput nature of our PACA platforms.
Collapse
Affiliation(s)
- Jiwon Woo
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Institute, Biohedron Therapeutics Co., Ltd., Seoul, South Korea
| | - Eunice Yoojin Lee
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Mirae Lee
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Jeong-Yoon Park
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Eun Cho
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Lee M, Woo J, Kim DH, Yang YM, Lee EY, Kim JH, Kang SG, Shim JK, Park JY. A novel paper MAP method for rapid high resolution histological analysis. Sci Rep 2021; 11:23340. [PMID: 34857810 PMCID: PMC8639998 DOI: 10.1038/s41598-021-02632-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Three-dimensional visualization of cellular and subcellular-structures in histological-tissues is essential for understanding the complexities of biological-phenomena, especially with regards structural and spatial relationships and pathologlical-diagnosis. Recent advancements in tissue-clearing technology, such as Magnified Analysis of Proteome (MAP), have significantly improved our ability to study biological-structures in three-dimensional space; however, their wide applicability to a variety of tissues is limited by long incubation-times and a need for advanced imaging-systems that are not readily available in most-laboratories. Here, we present optimized MAP-based method for paper-thin samples, Paper-MAP, which allow for rapid clearing and subsequent imaging of three-dimensional sections derived from various tissues using conventional confocal-microscopy. Paper-MAP successfully clear tissues within 1-day, compared to the original-MAP, without significant differences in achieved optical-transparency. As a proof-of-concept, we investigated the vasculature and neuronal-networks of a variety of human and rodent tissues processed via Paper-MAP, in both healthy and diseased contexts, including Alzheimer’s disease and glioma.
Collapse
Affiliation(s)
- Mirae Lee
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.,Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Jiwon Woo
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.,Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.,Biomedical Research Institute, Biohedron Therapeutics Co., Ltd, Seoul, 06273, Republic of Korea
| | - Doh-Hee Kim
- Research Institute, Seoul Medical Center, Seoul, 02053, Republic of Korea
| | - Yu-Mi Yang
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.,Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Eunice Yoojin Lee
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Jung-Hee Kim
- Research Institute, Seoul Medical Center, Seoul, 02053, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Department of Medical Sciences, Yonsei University Graduate School, Seoul, 03722, Republic of Korea
| | - Jin-Kyung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jeong-Yoon Park
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea. .,The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea. .,Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
| |
Collapse
|