1
|
Cui J, Jiang X, Li Y, Zhang L, Zhang Y, Wang X, He F, Li M, Zhang T, Kang J. Genome-Wide Identification, Phylogenetic, and Expression Analysis of Jasmonate ZIM-Domain Gene Family in Medicago Sativa L. Int J Mol Sci 2024; 25:10589. [PMID: 39408917 PMCID: PMC11477025 DOI: 10.3390/ijms251910589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
JASMONATE ZIM domain (JAZ) proteins, inhibitors of the jasmonic acid (JA) signaling pathway, are identified in different plants, such as rice and Arabidopsis. These proteins are crucial for growth, development, and abiotic stress responses. However, limited information is available regarding the JAZ family in alfalfa. This study identified 11 JAZ genes (MsJAZs) in the "Zhongmu No.1" reference genome of alfalfa. The physical and chemical properties, chromosome localization, phylogenetic relationships, gene structure, cis-acting elements, and collinearity of the 11 MsJAZ genes were subsequently analyzed. Tissue-specific analysis revealed distinct functions of different MsJAZ genes in growth and development. The expression patterns of MsJAZ genes under salt stress conditions were validated using qRT-PCR. All MsJAZ genes responded to salt stress, with varying levels of upregulation over time, highlighting their role in stress responses. Furthermore, heterogeneous expression of MsJAZ1 in Arabidopsis resulted in significantly lower seed germination and survival rates in OE-2 and OE-4 compared to the WT under 150 mM NaCl treatment. This study establishes a foundation for further exploration of the function of the JAZ family and provides significant insights into the genetic improvement of alfalfa.
Collapse
Affiliation(s)
- Jing Cui
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.C.); (X.J.); (Y.L.); (L.Z.); (Y.Z.); (X.W.); (F.H.); (M.L.)
| | - Xu Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.C.); (X.J.); (Y.L.); (L.Z.); (Y.Z.); (X.W.); (F.H.); (M.L.)
| | - Yajing Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.C.); (X.J.); (Y.L.); (L.Z.); (Y.Z.); (X.W.); (F.H.); (M.L.)
| | - Lili Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.C.); (X.J.); (Y.L.); (L.Z.); (Y.Z.); (X.W.); (F.H.); (M.L.)
| | - Yangyang Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.C.); (X.J.); (Y.L.); (L.Z.); (Y.Z.); (X.W.); (F.H.); (M.L.)
| | - Xue Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.C.); (X.J.); (Y.L.); (L.Z.); (Y.Z.); (X.W.); (F.H.); (M.L.)
| | - Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.C.); (X.J.); (Y.L.); (L.Z.); (Y.Z.); (X.W.); (F.H.); (M.L.)
| | - Mingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.C.); (X.J.); (Y.L.); (L.Z.); (Y.Z.); (X.W.); (F.H.); (M.L.)
| | - Tiejun Zhang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.C.); (X.J.); (Y.L.); (L.Z.); (Y.Z.); (X.W.); (F.H.); (M.L.)
| |
Collapse
|
2
|
Wang M, Wang T, Kou J, Wu J, Shao G, Wei J, Liu J, Ma P. SmJAZ3/4 positively and SmJAZ8 negatively regulates salt tolerance in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109151. [PMID: 39332329 DOI: 10.1016/j.plaphy.2024.109151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Salvia miltiorrhiza Bunge, a model plant for medicinal research, is extensively utilized for its dried roots and rhizomes for treatment of various diseases. Soil salinization hinders the large-scale cultivation and industrial production of S. miltiorrhiza by affecting its active compounds. Methyl jasmonate (MeJA) is a crucial plant hormone that regulates plant responses under salt stress. Jasmonate zim domain (JAZ) proteins function as transcriptional repressors in jasmonic acid (JA) signaling pathways. This study explores the interaction between JA and salt stress by using transgenic Arabidopsis thaliana to elucidate the roles of SmJAZ3, SmJAZ4, and SmJAZ8. We found that 2.5 μM MeJA reduced the inhibitory effect of 150 mM NaCl on wild-type seed germination, and this effect was reversed by 15 μM dihydroxyindole-2-carboxylic acid (DIECA). Similar results were observed in transgenic A. thaliana lines overexpressing SmJAZ3/4/8. Inclusion of SmJAZ3/4 enhanced salt resistance by increasing antioxidant enzyme activity, chlorophyll content, proline content, and Na+/K+ content, while SmJAZ8 had the opposite effect. These findings suggest that appropriate concentrations of MeJA can alleviate the negative effect of salt stress on plant growth and development. Investigating the salt tolerance of SmJAZ3/4/8 is significant for cultivating high-quality salt-tolerant S. miltiorrhiza.
Collapse
Affiliation(s)
- Mei Wang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Tong Wang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jingyang Kou
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jiafeng Wu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Gaige Shao
- Xian Agricultural Technology Extension Center, Xian, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, China
| | - Jingying Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
3
|
Li M, Liu X, Wu F, Shi X, Kong D, Li X, Mu C, Qu D, Wang L, Su H. Fermentation broth of a novel endophytic fungus enhanced maize salt tolerance by regulating sugar metabolism and phytohormone biosynthesis or signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109125. [PMID: 39278049 DOI: 10.1016/j.plaphy.2024.109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Soil salinization is a major environmental factor that severely affects global agriculture. Root endophytes can enter root cells, and offer various ecological benefits, such as promoting plant growth, improving soil conditions, and enhancing plant resistance. Su100 is a novel strain of endophytic fungus that was characterized from blueberry roots. In this study, we focused on evaluating the effects of Su100 secretion on maize growth. The results demonstrated that maize treated with Su100 fermentation broth (SFB) exhibited significantly stronger salt tolerance than the control. It is worth mentioning that the treated root system not only had an advantage in terms of biomass but also a change in root structure with a significant increase in lateral roots (LRs) compared to the control. Transcriptome analysis combined with hormone content measurements indicated that SFB upregulated the auxin signaling pathway, and also caused alterations in brassinosteroids (BR) and jasmonic acid (JA) biosynthesis and signaling pathways. Transcriptome analyses also indicated that SFB caused significant changes in the sugar metabolism of maize roots. The major changes included: enhancing the conversion and utilization of sucrose in roots; increasing carbon flow to uridine diphosphate glucose (UDPG), which acted as a precursor for producing more cell wall polysaccharides, mainly pectin and lignin; accelerating the tricarboxylic acid cycle, which were further supported by sugar content determinations. Taken together, our results indicated that the enhanced salt tolerance of maize treated with SFB was due to the modulation of sugar metabolism and phytohormone biosynthesis or signaling pathways. This study provided new insights into the mechanisms of action of endophytic fungi and highlighted the potential application of fungal preparations in agriculture.
Collapse
Affiliation(s)
- Mengyuan Li
- College of Life sciences, Ludong University, Yantai, Shandong, 264025, China
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Fanlin Wu
- College of Horticulture, Ludong University, Yantai, Shandong, 264025, China
| | - Xiaomeng Shi
- College of Horticulture, Ludong University, Yantai, Shandong, 264025, China
| | - Dongrui Kong
- College of Life sciences, Ludong University, Yantai, Shandong, 264025, China
| | - Xin Li
- College of Life sciences, Ludong University, Yantai, Shandong, 264025, China
| | - Chunhua Mu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Dehui Qu
- College of Horticulture, Ludong University, Yantai, Shandong, 264025, China.
| | - Lei Wang
- College of Life sciences, Ludong University, Yantai, Shandong, 264025, China.
| | - Hongyan Su
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong, 276000, China.
| |
Collapse
|
4
|
Kaur R, Gupta S, Tripathi V, Bharadwaj A. Unravelling the secrets of soil microbiome and climate change for sustainable agroecosystems. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01194-9. [PMID: 39249146 DOI: 10.1007/s12223-024-01194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
The soil microbiota exhibits an important function in the ecosystem, and its response to climate change is of paramount importance for sustainable agroecosystems. The macronutrients, micronutrients, and additional constituents vital for the growth of plants are cycled biogeochemically under the regulation of the soil microbiome. Identifying and forecasting the effect of climate change on soil microbiomes and ecosystem services is the need of the hour to address one of the biggest global challenges of the present time. The impact of climate change on the structure and function of the soil microbiota is a major concern, explained by one or more sustainability factors around resilience, reluctance, and rework. However, the past research has revealed that microbial interventions have the potential to regenerate soils and improve crop resilience to climate change factors. The methods used therein include using soil microbes' innate capacity for carbon sequestration, rhizomediation, bio-fertilization, enzyme-mediated breakdown, phyto-stimulation, biocontrol of plant pathogens, antibiosis, inducing the antioxidative defense pathways, induced systemic resistance response (ISR), and releasing volatile organic compounds (VOCs) in the host plant. Microbial phytohormones have a major role in altering root shape in response to exposure to drought, salt, severe temperatures, and heavy metal toxicity and also have an impact on the metabolism of endogenous growth regulators in plant tissue. However, shelf life due to the short lifespan and storage time of microbial formulations is still a major challenge, and efforts should be made to evaluate their effectiveness in crop growth based on climate change. This review focuses on the influence of climate change on soil physico-chemical status, climate change adaptation by the soil microbiome, and its future implications.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, IAH, GLA University, Mathura, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Saurabh Gupta
- Department of Biotechnology, IAH, GLA University, Mathura, India.
| | - Vishal Tripathi
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, 248002, Uttarakhand, India.
| | - Alok Bharadwaj
- Department of Biotechnology, IAH, GLA University, Mathura, India
| |
Collapse
|
5
|
De Y, Yan W, Gao F, Mu H. Unraveling the signaling pathways of phytohormones underlying salt tolerance in Elymus sibiricus: A transcriptomic and metabolomic approach. Genomics 2024; 116:110893. [PMID: 38944355 DOI: 10.1016/j.ygeno.2024.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Understanding phytohormonal signaling is crucial for elucidating plant defense mechanisms against environmental stressors. However, knowledge regarding phytohormone-mediated tolerance pathways under salt stress in Elymus sibiricus, an important species for forage and ecological restoration, remains limited. In this study, transcriptomic and metabolomic approaches uncover the dynamics of phytohormonal signaling in Elymus sibiricus under salt stress. Notably, four hours after exposure to salt, significant activity was observed in the ABA, JA, IAA, and CTK pathways, with ABA, JA, JA-L-Ile, and IAA identified as key mediators in the response of Elymus sibiricus' to salinity. Moreover, SAPK3, Os04g0167900-like, CAT1, MKK2, and MPK12 were identified as potential central regulators within these pathways. The complex interactions between phytohormones and DEGs are crucial for facilitating the adaptation of Elymus sibiricus to saline environments. These findings enhance our understanding of the salt tolerance mechanisms in Elymus sibiricus and provide a foundation for breeding salt-resistant varieties.
Collapse
Affiliation(s)
- Ying De
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China.
| | - Weihong Yan
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China
| | - Fengqin Gao
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China
| | - Huaibin Mu
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China
| |
Collapse
|
6
|
Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:195. [PMID: 39103657 DOI: 10.1007/s00122-024-04697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Myelocytomatosis (MYC) transcription factors (TFs) belong to the basic helix-loop-helix (bHLH) family in plants and play a central role in governing a wide range of physiological processes. These processes encompass plant growth, development, adaptation to biotic and abiotic stresses, as well as secondary metabolism. In recent decades, significant strides have been made in comprehending the multifaceted regulatory functions of MYCs. This advancement has been achieved through the cloning of MYCs and the characterization of plants with MYC deficiencies or overexpression, employing comprehensive genome-wide 'omics' and protein-protein interaction technologies. MYCs act as pivotal components in integrating signals from various phytohormones' transcriptional regulators to orchestrate genome-wide transcriptional reprogramming. In this review, we have compiled current research on the role of MYCs as molecular switches that modulate signal transduction pathways mediated by phytohormones and phytochromes. This comprehensive overview allows us to address lingering questions regarding the interplay of signals in response to environmental cues and developmental shift. It also sheds light on the potential implications for enhancing plant resistance to diverse biotic and abiotic stresses through genetic improvements achieved by plant breeding and synthetic biology efforts.
Collapse
Affiliation(s)
- Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhiwei Shen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mujun Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
7
|
Vafina G, Akhiyarova G, Korobova A, Finkina EI, Veselov D, Ovchinnikova TV, Kudoyarova G. The Long-Distance Transport of Jasmonates in Salt-Treated Pea Plants and Involvement of Lipid Transfer Proteins in the Process. Int J Mol Sci 2024; 25:7486. [PMID: 39000596 PMCID: PMC11242760 DOI: 10.3390/ijms25137486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
The adaption of plants to stressful environments depends on long-distance responses in plant organs, which themselves are remote from sites of perception of external stimuli. Jasmonic acid (JA) and its derivatives are known to be involved in plants' adaptation to salinity. However, to our knowledge, the transport of JAs from roots to shoots has not been studied in relation to the responses of shoots to root salt treatment. We detected a salt-induced increase in the content of JAs in the roots, xylem sap, and leaves of pea plants related to changes in transpiration. Similarities between the localization of JA and lipid transfer proteins (LTPs) around vascular tissues were detected with immunohistochemistry, while immunoblotting revealed the presence of LTPs in the xylem sap of pea plants and its increase with salinity. Furthermore, we compared the effects of exogenous MeJA and salt treatment on the accumulation of JAs in leaves and their impact on transpiration. Our results indicate that salt-induced changes in JA concentrations in roots and xylem sap are the source of accumulation of these hormones in leaves leading to associated changes in transpiration. Furthermore, they suggest the possible involvement of LTPs in the loading/unloading of JAs into/from the xylem and its xylem transport.
Collapse
Affiliation(s)
- Gulnara Vafina
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Guzel Akhiyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Alla Korobova
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Ekaterina I Finkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitry Veselov
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Tatiana V Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|
8
|
Xu H, Teng H, Zhang B, Liu W, Sui Y, Yan X, Wang Z, Cui H, Zhang H. NtHD9 modulates plant salt tolerance by regulating the formation of glandular trichome heads in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108765. [PMID: 38795550 DOI: 10.1016/j.plaphy.2024.108765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Salt stress is one of the main abiotic factor affecting plant growth. We have previously identified a key gene (NtHD9) in Nicotiana tabacum L. that positively regulates the formation of long glandular trichomes (LGTs). Here, we verified that both abiotic stress (aphids, drought and salt stress) could restore the phenotype lacking LGTs in NtHD9-knockout (NtHD9-KO) plants. The abiotic stress response assays indicated that NtHD9 is highly sensitive to salt stress. Compared with cultivated tobacco "K326" (CK) plants, NtHD9-overexpressing (NtHD9-OE) plants with more LGTs exhibited stronger salt tolerance, whereas NtHD9-KO with no LGTs showed weaker tolerance to salt. The densities and sizes of the glandular heads gradually increased with increasing NaCl concentrations in NtHD9-KO plants. Mineral element determination showed that leaves and trichomes of NtHD9-OE plants accumulated less Na+ but had higher K+ contents under salt stress, thus maintaining ion homeostasis in plants, which could contribute to a robust photosynthetic and antioxidant system under salt stress. Therefore, NtHD9-OE plants maintained a larger leaf area and root length under high-salt conditions than CK and NtHD9-KO plants. We verified that NtHD9 could individually interact with NtHD5, NtHD7, NtHD12, and NtJAZ10 proteins. Salt stress led to an increase in jasmonic acid (JA) levels and activated the expression of NtHDs while inhibiting the expression of NtJAZ. This study suggests that the glandular heads play an important role in plant resistance to salt stress. The activation of JA signaling leading to JAZ protein degradation may be key factors regulating the glandular heads development under salt stress.
Collapse
Affiliation(s)
- Hanchi Xu
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huanyu Teng
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bokai Zhang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wei Liu
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yalin Sui
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoxiao Yan
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhaojun Wang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hong Cui
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Hongying Zhang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
9
|
Soni S, Jha AB, Dubey RS, Sharma P. Nanowonders in agriculture: Unveiling the potential of nanoparticles to boost crop resilience to salinity stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171433. [PMID: 38458469 DOI: 10.1016/j.scitotenv.2024.171433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/10/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Soil salinization significantly affects crop production by reducing crop quality and decreasing yields. Climate change can intensify salinity-related challenges, making the task of achieving global food security more complex. To address the problem of elevated salinity stress in crops, nanoparticles (NPs) have emerged as a promising solution. NPs, characterized by their small size and extensive surface area, exhibit remarkable functionality and reactivity. Various types of NPs, including metal and metal oxide NPs, carbon-based NPs, polymer-based NPs, and modified NPs, have displayed potential for mitigating salinity stress in plants. However, the effectiveness of NPs application in alleviating plant stress is dependent upon multiple factors, such as NPs size, exposure duration, plant species, particle composition, and prevailing environmental conditions. Moreover, alterations to NPs surfaces through functionalization and coating also play a role in influencing plant tolerance to salinity stress. NPs can influence cellular processes by impacting signal transduction and gene expression. They counteract reactive oxygen species (ROS), regulate the water balance, enhance photosynthesis and nutrient uptake and promote plant growth and yield. The objective of this review is to discuss the positive impacts of diverse NPs on alleviating salinity stress within plants. The intricate mechanisms through which NPs accomplish this mitigation are also discussed. Furthermore, this review addresses existing research gaps, recent breakthroughs, and prospective avenues for utilizing NPs to combat salinity stress.
Collapse
Affiliation(s)
- Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Ambuj Bhushan Jha
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector-29, Gandhinagar 382030, Gujarat, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
10
|
Li N, Shao T, Xu L, Long X, Rengel Z, Zhang Y. Transcriptome analysis reveals the molecular mechanisms underlying the enhancement of salt-tolerance in Melia azedarach under salinity stress. Sci Rep 2024; 14:10981. [PMID: 38745099 PMCID: PMC11094156 DOI: 10.1038/s41598-024-61907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Melia azedarach demonstrates strong salt tolerance and thrives in harsh saline soil conditions, but the underlying mechanisms are poorly understood. In this study, we analyzed gene expression under low, medium, and high salinity conditions to gain a deeper understanding of adaptation mechanisms of M. azedarach under salt stress. The GO (gene ontology) analysis unveiled a prominent trend: as salt stress intensified, a greater number of differentially expressed genes (DEGs) became enriched in categories related to metabolic processes, catalytic activities, and membrane components. Through the analysis of the category GO:0009651 (response to salt stress), we identified four key candidate genes (CBL7, SAPK10, EDL3, and AKT1) that play a pivotal role in salt stress responses. Furthermore, the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis revealed that DEGs were significantly enriched in the plant hormone signaling pathways and starch and sucrose metabolism under both medium and high salt exposure in comparison to low salt conditions. Notably, genes involved in JAZ and MYC2 in the jasmonic acid (JA) metabolic pathway were markedly upregulated in response to high salt stress. This study offers valuable insights into the molecular mechanisms underlying M. azedarach salt tolerance and identifies potential candidate genes for enhancing salt tolerance in M. azedarach.
Collapse
Affiliation(s)
- Na Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianyun Shao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Li Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaohua Long
- Institute of Crop sciences, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, 010031, China.
| | - Zed Rengel
- Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Institute for Adriatic Crops and Karst Reclamation, 21000, Split, Croatia
| | - Yu Zhang
- Institute of Crop sciences, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, 010031, China
| |
Collapse
|
11
|
Dhabalia Ashok A, Freitag JN, Irisarri I, de Vries S, de Vries J. Sequence similarity networks bear out hierarchical relationships of green cytochrome P450. PHYSIOLOGIA PLANTARUM 2024; 176:e14244. [PMID: 38480467 DOI: 10.1111/ppl.14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
Land plants have diversified enzyme families. One of the most prominent is the cytochrome P450 (CYP or CYP450) family. With over 443,000 CYP proteins sequenced across the tree of life, CYPs are ubiquitous in archaea, bacteria, and eukaryotes. Here, we focused on land plants and algae to study the role of CYP diversification. CYPs, acting as monooxygenases, catalyze hydroxylation reactions crucial for specialized plant metabolic pathways, including detoxification and phytohormone production; the CYPome consists of one enormous superfamily that is divided into clans and families. Their evolutionary history speaks of high substrate promiscuity; radiation and functional diversification have yielded numerous CYP families. To understand the evolutionary relationships within the CYPs, we employed sequence similarity network analyses. We recovered distinct clusters representing different CYP families, reflecting their diversified sequences that we link to the prediction of functionalities. Hierarchical clustering and phylogenetic analysis further elucidated relationships between CYP clans, uncovering their shared deep evolutionary history. We explored the distribution and diversification of CYP subfamilies across plant and algal lineages, uncovering novel candidates and providing insights into the evolution of these enzyme families. This identified unexpected relationships between CYP families, such as the link between CYP82 and CYP74, shedding light on their roles in plant defense signaling pathways. Our approach provides a methodology that brings insights into the emergence of new functions within the CYP450 family, contributing to the evolutionary history of plants and algae. These insights can be further validated and implemented via experimental setups under various external conditions.
Collapse
Affiliation(s)
- Amra Dhabalia Ashok
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Jella N Freitag
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Iker Irisarri
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Germany
| | - Sophie de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Jan de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, University of Goettinzgen, Goettingen, Germany
| |
Collapse
|
12
|
Kumari S, Nazir F, Maheshwari C, Kaur H, Gupta R, Siddique KHM, Khan MIR. Plant hormones and secondary metabolites under environmental stresses: Enlightening defense molecules. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108238. [PMID: 38064902 DOI: 10.1016/j.plaphy.2023.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 02/15/2024]
Abstract
The climatic changes have great threats to sustainable agriculture and require efforts to ensure global food and nutritional security. In this regard, the plant strategic responses, including the induction of plant hormones/plant growth regulators (PGRs), play a substantial role in boosting plant immunity against environmental stress-induced adversities. In addition, secondary metabolites (SMs) have emerged as potential 'stress alleviators' that help plants to adapt against environmental stressors imposing detrimental impacts on plant health and survival. The introduction of SMs in plant biology has shed light on their beneficial effects in mitigating environmental crises. This review explores SMs-mediated plant defense responses and highlights the crosstalk between PGRs and SMs under diverse environmental stressors. In addition, genetic engineering approaches are discussed as a potential revenue to enhance plant hormone-mediated SM production in response to environmental cues. Thus, the present review aims to emphasize the significance of SMs implications with PGRs association and genetic approachability, which could aid in shaping the future strategies that favor agro-ecosystem compatibility under unpredictable environmental conditions.
Collapse
Affiliation(s)
- Sarika Kumari
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Faroza Nazir
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Chirag Maheshwari
- Biochemistry Division, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Harmanjit Kaur
- Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea.
| | | | | |
Collapse
|
13
|
Akhiyarova G, Vafina G, Veselov D, Kudoyarova G. Immunolocalization of Jasmonates and Auxins in Pea Roots in Connection with Inhibition of Root Growth under Salinity Conditions. Int J Mol Sci 2023; 24:15148. [PMID: 37894828 PMCID: PMC10606536 DOI: 10.3390/ijms242015148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Inhibition of root elongation is an important growth response to salinity, which is thought to be regulated by the accumulation of jasmonates and auxins in roots. Nevertheless, the mechanisms of the interaction of these hormones in the regulation of the growth response to salinity are still not clear enough. Their better understanding depends on the study of the distribution of jasmonates and auxins between root cells. This was achieved with the help of immunolocalization of auxin (indoleacetic acid) and jasmonates on the root sections of pea plants. Salinity inhibited root elongation and decreased the size of the meristem zone and the length of cells in the elongation zone. Immunofluorescence based on the use of appropriate, specific antibodies that recognize auxins and jasmonates revealed an increased abundance of both hormones in the meristem zone. The obtained data suggests the participation of either auxins or jasmonates in the inhibition of cell division, which leads to a decrease in the size of the meristem zone. The level of only auxin and not jasmonate increased in the elongation zone. However, since some literature evidence argues against inhibition of root cell division by auxins, while jasmonates have been shown to inhibit this process, we came to the conclusion that elevated jasmonate is a more likely candidate for inhibiting root meristem activity under salinity conditions. Data suggests that auxins, not jasmonates, reduce cell size in the elongation zone of salt-stressed plants, a suggestion supported by the known ability of auxins to inhibit root cell elongation.
Collapse
Affiliation(s)
| | | | | | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya 69, 450054 Ufa, Russia; (G.A.); (G.V.); (D.V.)
| |
Collapse
|
14
|
Degon Z, Dixon S, Rahmatallah Y, Galloway M, Gulutzo S, Price H, Cook J, Glazko G, Mukherjee A. Azospirillum brasilense improves rice growth under salt stress by regulating the expression of key genes involved in salt stress response, abscisic acid signaling, and nutrient transport, among others. FRONTIERS IN AGRONOMY 2023; 5:1216503. [PMID: 38223701 PMCID: PMC10785826 DOI: 10.3389/fagro.2023.1216503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Major food crops, such as rice and maize, display severe yield losses (30-50%) under salt stress. Furthermore, problems associated with soil salinity are anticipated to worsen due to climate change. Therefore, it is necessary to implement sustainable agricultural strategies, such as exploiting beneficial plant-microbe associations, for increased crop yields. Plants can develop associations with beneficial microbes, including arbuscular mycorrhiza and plant growth-promoting bacteria (PGPB). PGPB improve plant growth via multiple mechanisms, including protection against biotic and abiotic stresses. Azospirillum brasilense, one of the most studied PGPB, can mitigate salt stress in different crops. However, little is known about the molecular mechanisms by which A. brasilense mitigates salt stress. This study shows that total and root plant mass is improved in A. brasilense-inoculated rice plants compared to the uninoculated plants grown under high salt concentrations (100 mM and 200 mM NaCl). We observed this growth improvement at seven- and fourteen days post-treatment (dpt). Next, we used transcriptomic approaches and identified differentially expressed genes (DEGs) in rice roots when exposed to three treatments: 1) A. brasilense, 2) salt (200 mM NaCl), and 3) A. brasilense and salt (200 mM NaCl), at seven dpt. We identified 786 DEGs in the A. brasilense-treated plants, 4061 DEGs in the salt-stressed plants, and 1387 DEGs in the salt-stressed A. brasilense-treated plants. In the A. brasilense-treated plants, we identified DEGs involved in defense, hormone, and nutrient transport, among others. In the salt-stressed plants, we identified DEGs involved in abscisic acid and jasmonic acid signaling, antioxidant enzymes, sodium and potassium transport, and calcium signaling, among others. In the salt-stressed A. brasilense-treated plants, we identified some genes involved in salt stress response and tolerance (e.g., abscisic acid and jasmonic acid signaling, antioxidant enzymes, calcium signaling), and sodium and potassium transport differentially expressed, among others. We also identified some A. brasilense-specific plant DEGs, such as nitrate transporters and defense genes. Furthermore, our results suggest genes involved in auxin and ethylene signaling are likely to play an important role during these interactions. Overall, our transcriptomic data indicate that A. brasilense improves rice growth under salt stress by regulating the expression of key genes involved in defense and stress response, abscisic acid and jasmonic acid signaling, and ion and nutrient transport, among others. Our findings will provide essential insights into salt stress mitigation in rice by A. brasilense.
Collapse
Affiliation(s)
- Zachariah Degon
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Seth Dixon
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Yasir Rahmatallah
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mary Galloway
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Sophia Gulutzo
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Hunter Price
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - John Cook
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Galina Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Arijit Mukherjee
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| |
Collapse
|
15
|
Sybilska E, Daszkowska-Golec A. A complex signaling trio in seed germination: Auxin-JA-ABA. TRENDS IN PLANT SCIENCE 2023; 28:873-875. [PMID: 37208202 DOI: 10.1016/j.tplants.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Recently. Mei et al. discovered the molecular mechanism behind the synergistic action of auxins and jasmonates in enhancing the role of abscisic acid (ABA) in seed germination. They found that JASMONATE-ZIM DOMAIN (JAZ) proteins interact with AUXIN RESPONSE FACTOR (ARF)-16 to mediate auxin-jasmonic acid (JA) crosstalk. Furthermore, they revealed that ARF16 interacts with ABSCISIC ACID INSENSITIVE (ABI)-5 and positively modulates ABA responses at seed germination.
Collapse
Affiliation(s)
- Ewa Sybilska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
16
|
Tiwari S, Jain M, Singla-Pareek SL, Bhalla PL, Singh MB, Pareek A. Pokkali: A Naturally Evolved Salt-Tolerant Rice Shows a Distinguished Set of lncRNAs Possibly Contributing to the Tolerant Phenotype. Int J Mol Sci 2023; 24:11677. [PMID: 37511436 PMCID: PMC10380863 DOI: 10.3390/ijms241411677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 07/30/2023] Open
Abstract
Pokkali is a strong representation of how stress-tolerant genotypes have evolved due to natural selection pressure. Numerous omics-based investigations have indicated different categories of stress-related genes and proteins, possibly contributing to salinity tolerance in this wild rice. However, a comprehensive study towards understanding the role of long-noncoding RNAs (lncRNAs) in the salinity response of Pokkali has not been done to date. We have identified salt-responsive lncRNAs from contrasting rice genotypes IR64 and Pokkali. A total of 63 and 81 salinity-responsive lncRNAs were differentially expressed in IR64 and Pokkali, respectively. Molecular characterization of lncRNAs and lncRNA-miRNA-mRNA interaction networks helps to explore the role of lncRNAs in the stress response. Functional annotation revealed that identified lncRNAs modulate various cellular processes, including transcriptional regulation, ion homeostasis, and secondary metabolite production. Additionally, lncRNAs were predicted to bind stress-responsive transcription factors, namely ERF, DOF, and WRKY. In addition to salinity, expression profiling was also performed under other abiotic stresses and phytohormone treatments. A positive modulation in TCONS_00035411, TCONS_00059828, and TCONS_00096512 under both abiotic stress and phytohormone treatments could be considered as being of potential interest for the further functional characterization of IncRNA. Thus, extensive analysis of lncRNAs under various treatments helps to delineate stress tolerance mechanisms and possible cross-talk.
Collapse
Affiliation(s)
- Shalini Tiwari
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar 140306, India
| |
Collapse
|
17
|
Sun C, Shen X, Zhang Y, Song T, Xu L, Xiao J. Molecular Defensive Mechanism of Echinacea purpurea (L.) Moench against PAH Contaminations. Int J Mol Sci 2023; 24:11020. [PMID: 37446196 DOI: 10.3390/ijms241311020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The understanding of the molecular defensive mechanism of Echinacea purpurea (L.) Moench against polycyclic aromatic hydrocarbon (PAH) contamination plays a key role in the further improvement of phytoremediation efficiency. Here, the responses of E. purpurea to a defined mixture of phenanthrene (PHE) and pyrene (PYR) at different concentrations or a natural mixture from an oilfield site with a history of several decades were studied based on transcriptomics sequencing and widely targeted metabolomics approaches. The results showed that upon 60-day PAH exposure, the growth of E. purpurea in terms of biomass (p < 0.01) and leaf area per plant (p < 0.05) was negatively correlated with total PAH concentration and significantly reduced at high PAH level. The majority of genes were switched on and metabolites were accumulated after exposure to PHE + PYR, but a larger set of genes (3964) or metabolites (208) showed a response to a natural PAH mixture in E. purpurea. The expression of genes involved in the pathways, such as chlorophyll cycle and degradation, circadian rhythm, jasmonic acid signaling, and starch and sucrose metabolism, was remarkably regulated, enhancing the ability of E. purpurea to adapt to PAH exposure. Tightly associated with transcriptional regulation, metabolites mainly including sugars and secondary metabolites, especially those produced via the phenylpropanoid pathway, such as coumarins, flavonoids, and their derivatives, were increased to fortify the adaptation of E. purpurea to PAH contamination. These results suggest that E. purpurea has a positive defense mechanism against PAHs, which opens new avenues for the research of phytoremediation mechanism and improvement of phytoremediation efficiency via a mechanism-based strategy.
Collapse
Affiliation(s)
- Caixia Sun
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Xiangbo Shen
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yulan Zhang
- Liaoning Province Outstanding Innovation Team, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Tianshu Song
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Lingjing Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Junyao Xiao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| |
Collapse
|
18
|
Liu Y, Wang M, Huang Y, Zhu P, Qian G, Zhang Y, Li L. Genome-Wide Identification and Analysis of R2R3-MYB Genes Response to Saline-Alkali Stress in Quinoa. Int J Mol Sci 2023; 24:ijms24119132. [PMID: 37298082 DOI: 10.3390/ijms24119132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Soil saline-alkalization inhibits plant growth and development and seriously affects crop yields. Over their long-term evolution, plants have formed complex stress response systems to maintain species continuity. R2R3-MYB transcription factors are one of the largest transcription factor families in plants, widely involved in plant growth and development, metabolism, and stress response. Quinoa (Chenopodium quinoa Willd.), as a crop with high nutritional value, is tolerant to various biotic and abiotic stress. In this study, we identified 65 R2R3-MYB genes in quinoa, which are divided into 26 subfamilies. In addition, we analyzed the evolutionary relationships, protein physicochemical properties, conserved domains and motifs, gene structure, and cis-regulatory elements of CqR2R3-MYB family members. To investigate the roles of CqR2R3-MYB transcription factors in abiotic stress response, we performed transcriptome analysis to figure out the expression file of CqR2R3-MYB genes under saline-alkali stress. The results indicate that the expression of the six CqMYB2R genes was altered significantly in quinoa leaves that had undergone saline-alkali stress. Subcellular localization and transcriptional activation activity analysis revealed that CqMYB2R09, CqMYB2R16, CqMYB2R25, and CqMYB2R62, whose Arabidopsis homologues are involved in salt stress response, are localized in the nucleus and exhibit transcriptional activation activity. Our study provides basic information and effective clues for further functional investigation of CqR2R3-MYB transcription factors in quinoa.
Collapse
Affiliation(s)
- Yuqi Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Mingyu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yongshun Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Peng Zhu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Guangtao Qian
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yiming Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
19
|
Ndecky S, Nguyen TH, Eiche E, Cognat V, Pflieger D, Pawar N, Betting F, Saha S, Champion A, Riemann M, Heitz T. Jasmonate signaling controls negative and positive effectors of salt stress tolerance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3220-3239. [PMID: 36879437 DOI: 10.1093/jxb/erad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/01/2023] [Indexed: 05/21/2023]
Abstract
Plant responses to salt exposure involve large reconfigurations of hormonal pathways that orchestrate physiological changes towards tolerance. Jasmonate (JA) hormones are essential to withstand biotic and abiotic assaults, but their roles in salt tolerance remain unclear. Here we describe the dynamics of JA metabolism and signaling in root and leaf tissue of rice, a plant species that is highly exposed and sensitive to salt. Roots activate the JA pathway in an early pulse, while the second leaf displays a biphasic JA response with peaks at 1 h and 3 d post-exposure. Based on higher salt tolerance of a rice JA-deficient mutant (aoc), we examined, through kinetic transcriptome and physiological analysis, the salt-triggered processes that are under JA control. Profound genotype-differential features emerged that could underlie the observed phenotypes. Abscisic acid (ABA) content and ABA-dependent water deprivation responses were impaired in aoc shoots. Moreover, aoc accumulated more Na+ in roots, and less in leaves, with reduced ion translocation correlating with root derepression of the HAK4 Na+ transporter gene. Distinct reactive oxygen species scavengers were also stronger in aoc leaves, along with reduced senescence and chlorophyll catabolism markers. Collectively, our results identify contrasted contributions of JA signaling to different sectors of the salt stress response in rice.
Collapse
Affiliation(s)
- Simon Ndecky
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| | - Trang Hieu Nguyen
- DIADE, Institut de Recherche et de Développement (IRD), Université de Montpellier, Montpellier, France
| | - Elisabeth Eiche
- Institute for Applied Geosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Valérie Cognat
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| | - David Pflieger
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| | - Nitin Pawar
- Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ferdinand Betting
- Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Somidh Saha
- Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Antony Champion
- DIADE, Institut de Recherche et de Développement (IRD), Université de Montpellier, Montpellier, France
| | - Michael Riemann
- Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
20
|
Liu H, Sun J, Zou J, Li B, Jin H. MeJA-mediated enhancement of salt-tolerance of Populus wutunensis by 5-aminolevulinic acid. BMC PLANT BIOLOGY 2023; 23:185. [PMID: 37024791 PMCID: PMC10077631 DOI: 10.1186/s12870-023-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND 5-Aminolevulinic acid (ALA) is a natural and environmentally benign multifunctional plant growth regulator involved in the regulation of plant tolerance to various environmental stresses. This research aimed to explore the molecular mechanisms of salt tolerance in Populus wutunensis induced by exogenous ALA using physiological and transcriptomic analyses. RESULTS Physiological results showed that 50 mg·L- 1 ALA-treatment significantly reduced the malondialdehyde (MDA) content and the relative electrical conductivity (REC) and enhanced antioxidant activities of enzymes such as SOD, POD and CAT in salt-stressed P. wutunensis seedlings. Transcriptome analysis identified ALA-induced differentially expressed genes (DEGs) associating with increased salt-tolerance in P. wutunensis. GO and KEGG enrichment analyses showed that ALA activated the jasmonic acid signaling and significantly enhanced the protein processing in endoplasmic reticulum and the flavonoid biosynthesis pathways. Results of the hormone-quantification by LC-MS/MS-based assays showed that ALA could increase the accumulation of methyl jasmonate (MeJA) in salt-stressed P. wutunensis. Induced contents of soluble proteins and flavonoids by exogenous ALA in salt-treated seedlings were also correlated with the MeJA content. CONCLUSION 5-aminolevulinic acid improved the protein-folding efficiency in the endoplasmic reticulum and the flavonoid-accumulation through the MeJA-activated jasmonic acid signaling, thereby increased salt-tolerance in P. wutunensis.
Collapse
Affiliation(s)
- Huan Liu
- College of Environment and Bioresource, Dalian Minzu University, No 18, Liaohexi Road, 116600 Dalian, Liaoning China
| | - Jingliang Sun
- College of Environment and Bioresource, Dalian Minzu University, No 18, Liaohexi Road, 116600 Dalian, Liaoning China
| | - Jixiang Zou
- College of Environment and Bioresource, Dalian Minzu University, No 18, Liaohexi Road, 116600 Dalian, Liaoning China
| | - Baisheng Li
- College of Environment and Bioresource, Dalian Minzu University, No 18, Liaohexi Road, 116600 Dalian, Liaoning China
| | - Hua Jin
- College of Environment and Bioresource, Dalian Minzu University, No 18, Liaohexi Road, 116600 Dalian, Liaoning China
| |
Collapse
|
21
|
Pérez-Llorca M, Pollmann S, Müller M. Ethylene and Jasmonates Signaling Network Mediating Secondary Metabolites under Abiotic Stress. Int J Mol Sci 2023; 24:5990. [PMID: 36983071 PMCID: PMC10051637 DOI: 10.3390/ijms24065990] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Plants are sessile organisms that face environmental threats throughout their life cycle, but increasing global warming poses an even more existential threat. Despite these unfavorable circumstances, plants try to adapt by developing a variety of strategies coordinated by plant hormones, resulting in a stress-specific phenotype. In this context, ethylene and jasmonates (JAs) present a fascinating case of synergism and antagonism. Here, Ethylene Insensitive 3/Ethylene Insensitive-Like Protein1 (EIN3/EIL1) and Jasmonate-Zim Domain (JAZs)-MYC2 of the ethylene and JAs signaling pathways, respectively, appear to act as nodes connecting multiple networks to regulate stress responses, including secondary metabolites. Secondary metabolites are multifunctional organic compounds that play crucial roles in stress acclimation of plants. Plants that exhibit high plasticity in their secondary metabolism, which allows them to generate near-infinite chemical diversity through structural and chemical modifications, are likely to have a selective and adaptive advantage, especially in the face of climate change challenges. In contrast, domestication of crop plants has resulted in change or even loss in diversity of phytochemicals, making them significantly more vulnerable to environmental stresses over time. For this reason, there is a need to advance our understanding of the underlying mechanisms by which plant hormones and secondary metabolites respond to abiotic stress. This knowledge may help to improve the adaptability and resilience of plants to changing climatic conditions without compromising yield and productivity. Our aim in this review was to provide a detailed overview of abiotic stress responses mediated by ethylene and JAs and their impact on secondary metabolites.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Ali-Mentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
22
|
Xiao F, Zhou H. Plant salt response: Perception, signaling, and tolerance. FRONTIERS IN PLANT SCIENCE 2023; 13:1053699. [PMID: 36684765 PMCID: PMC9854262 DOI: 10.3389/fpls.2022.1053699] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/05/2022] [Indexed: 05/14/2023]
Abstract
Salt stress is one of the significant environmental stressors that severely affects plant growth and development. Plant responses to salt stress involve a series of biological mechanisms, including osmoregulation, redox and ionic homeostasis regulation, as well as hormone or light signaling-mediated growth adjustment, which are regulated by different functional components. Unraveling these adaptive mechanisms and identifying the critical genes involved in salt response and adaption are crucial for developing salt-tolerant cultivars. This review summarizes the current research progress in the regulatory networks for plant salt tolerance, highlighting the mechanisms of salt stress perception, signaling, and tolerance response. Finally, we also discuss the possible contribution of microbiota and nanobiotechnology to plant salt tolerance.
Collapse
Affiliation(s)
- Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Nowicka B. Modifications of Phytohormone Metabolism Aimed at Stimulation of Plant Growth, Improving Their Productivity and Tolerance to Abiotic and Biotic Stress Factors. PLANTS (BASEL, SWITZERLAND) 2022; 11:3430. [PMID: 36559545 PMCID: PMC9781743 DOI: 10.3390/plants11243430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Due to the growing human population, the increase in crop yield is an important challenge for modern agriculture. As abiotic and biotic stresses cause severe losses in agriculture, it is also crucial to obtain varieties that are more tolerant to these factors. In the past, traditional breeding methods were used to obtain new varieties displaying demanded traits. Nowadays, genetic engineering is another available tool. An important direction of the research on genetically modified plants concerns the modification of phytohormone metabolism. This review summarizes the state-of-the-art research concerning the modulation of phytohormone content aimed at the stimulation of plant growth and the improvement of stress tolerance. It aims to provide a useful basis for developing new strategies for crop yield improvement by genetic engineering of phytohormone metabolism.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
24
|
Kapoor R, Kumar G, Pawar L, Salvi P, Devanna BN, Singh K, Sharma TR. Stress responsive OsHyPRP16 promoter driven early expression of resistance gene Pi54 potentiate the resistance against Magnaporthe oryzae in transgenic rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111413. [PMID: 35963493 DOI: 10.1016/j.plantsci.2022.111413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The rice Hybrid Proline Rich Protein (HyPRP) encoding gene, OsHyPRP16 expression exhibit early upregulation in response to Magnaporthe oryzae inoculation. Here, we functionally characterized the OsHyPRP16 promoter through deletion analysis in transgenic Arabidopsis using GUS (β-glucuronidase) reporter assay. The promoter fragments, sequentially deleted from the 5' end could induce differential GUS activity in response to stresses induced by different hormones and abiotic stress conditions. In addition, a strong GUS induction was observed in M. oryzae inoculated transgenic Arabidopsis. Based on the insilico and stress-inducibility of D1 promoter fragment against various phytohormones and rice blast fungus, and with no basal activity under control conditions, we rationally selected D1 promoter fragment to drive the expression of a major rice blast resistance gene; Pi54 in the genetic background of blast susceptible TP309 rice line. The D1 promoter fragment was able to induce the expression of Pi54 at immediate-early stages of M. oryzae infection in transgenic rice. The transgenic plants with Pi54 under the control of D1 promoter fragment displayed complete resistance against M. oryzae infection as compared to control plants. The present study suggests that the D1 fragment of OsHyPRP16 promoter is a valuable tool for breeding and development of rice lines with early-inducible and pathogen-responsive enhanced disease resistance.
Collapse
Affiliation(s)
- Ritu Kapoor
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gulshan Kumar
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India
| | - Lata Pawar
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India
| | - Prafull Salvi
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India
| | - Basavantraya N Devanna
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India; Indian council of Agricultural Research, New Delhi, India.
| |
Collapse
|
25
|
Wang J, Lv P, Yan D, Zhang Z, Xu X, Wang T, Wang Y, Peng Z, Yu C, Gao Y, Duan L, Li R. Exogenous Melatonin Improves Seed Germination of Wheat ( Triticum aestivum L.) under Salt Stress. Int J Mol Sci 2022; 23:8436. [PMID: 35955571 PMCID: PMC9368970 DOI: 10.3390/ijms23158436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
Melatonin (MT) can effectively reduce oxidative damage induced by abiotic stresses such as salt in plants. However, the effects of MT on physiological responses and molecular regulation during wheat germination remains largely elusive. In this study, the response of wheat seeds to MT under salt stress during germination was investigated at physiological and transcriptome levels. Our results revealed that application of MT significantly reduced the negative influence of salt stress on wheat seed germination. The oxidative load was reduced by inducing high activities of antioxidant enzymes. In parallel, the content of gibberellin A3 (GA3) and jasmonic acid (JA) increased in MT-treated seedling. RNA-seq analysis demonstrated that MT alters oxidoreductase activity and phytohormone-dependent signal transduction pathways under salt stress. Weighted correlation network analysis (WGCNA) revealed that MT participates in enhanced energy metabolism and protected seeds via maintained cell morphology under salt stress during wheat seed germination. Our findings provide a conceptual basis of the MT-mediated regulatory mechanism in plant adaptation to salt stress, and identify the potential candidate genes for salt-tolerant wheat molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Liusheng Duan
- Beijing Key Laboratory of New Technology in Agricultural Application, National Experimental Teaching Demonstration Center for Plant Production, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (P.L.); (D.Y.); (Z.Z.); (X.X.); (T.W.); (Y.W.); (Z.P.); (C.Y.); (Y.G.)
| | - Runzhi Li
- Beijing Key Laboratory of New Technology in Agricultural Application, National Experimental Teaching Demonstration Center for Plant Production, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (P.L.); (D.Y.); (Z.Z.); (X.X.); (T.W.); (Y.W.); (Z.P.); (C.Y.); (Y.G.)
| |
Collapse
|
26
|
Gao L, Jia S, Cao L, Ma Y, Wang J, Lan D, Guo G, Chai J, Bi C. An F-box protein from wheat, TaFBA-2A, negatively regulates JA biosynthesis and confers improved salt tolerance and increased JA responsiveness to transgenic rice plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:227-239. [PMID: 35526420 DOI: 10.1016/j.plaphy.2022.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/26/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Soil salinity is a serious problem encountered by agriculture worldwide, which will lead to many harmful effects on plant growth, development, and even crop yield. F-box protein is the core subunit of the Skp1-Cullin-F-box (SCF) complex E3 ligase and plays crucial roles in regulating the growth, development, biotic & abiotic stresses, as well as hormone signaling pathway in plants. In this study, an FBA type F-box gene TaFBA-2A was isolated from wheat (Triticum aestivum L.). This study showed that TaFBA-2A could interact with TaSKP1, and TaOPR2, the crucial enzyme involving in jasmonic acid (JA) biosynthesis. TaFBA-2A negatively regulates JA biosynthesis, probably by mediating the degradation of TaOPR2 via the ubiquitin-26S proteasome pathway. Ectopic expression of TaFBA-2A improved the salt tolerance and increased the JA responsiveness of the transgenic rice lines. In addition, some agronomic traits closely related to crop yield were significantly enhanced in the rice lines ectopic expressing TaFBA-2A. The data obtained in this study shed light on the function and mechanisms of TaFBA-2A in JA biosynthesis and the responses to salt stress and JA treatment; this study also suggested that TaFBA-2A has the potential in improving the salt tolerance and crop yield of transgenic rice plants.
Collapse
Affiliation(s)
- Liting Gao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Shuzhen Jia
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Lu Cao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Yingjuan Ma
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Junling Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Di Lan
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Guangyan Guo
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Jianfang Chai
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Plant Genetic Transformation Center of Hebei Province, Shijiazhuang, 050051, China.
| | - Caili Bi
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
27
|
Ma L, Liu X, Lv W, Yang Y. Molecular Mechanisms of Plant Responses to Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:934877. [PMID: 35832230 PMCID: PMC9271918 DOI: 10.3389/fpls.2022.934877] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/23/2022] [Indexed: 06/12/2023]
Abstract
Saline-alkali soils pose an increasingly serious global threat to plant growth and productivity. Much progress has been made in elucidating how plants adapt to salt stress by modulating ion homeostasis. Understanding the molecular mechanisms that affect salt tolerance and devising strategies to develop/breed salt-resilient crops have been the primary goals of plant salt stress signaling research over the past few decades. In this review, we reflect on recent major advances in our understanding of the cellular and physiological mechanisms underlying plant responses to salt stress, especially those involving temporally and spatially defined changes in signal perception, decoding, and transduction in specific organelles or cells.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaohong Liu
- Department of Art and Design, Taiyuan University, Taiyuan, China
| | - Wanjia Lv
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Comparative Transcriptomics Reveals the Molecular Mechanism of the Parental Lines of Maize Hybrid An'nong876 in Response to Salt Stress. Int J Mol Sci 2022; 23:ijms23095231. [PMID: 35563623 PMCID: PMC9100555 DOI: 10.3390/ijms23095231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
Maize (Zea mays L.) is an essential food crop worldwide, but it is highly susceptible to salt stress, especially at the seedling stage. In this study, we conducted physiological and comparative transcriptome analyses of seedlings of maize inbred lines An’nong876 paternal (cmh15) and An’nong876 maternal (CM37) under salt stress. The cmh15 seedlings were more salt-tolerant and had higher relative water content, lower electrolyte leakage, and lower malondialdehyde levels in the leaves than CM37. We identified 2559 upregulated and 1770 downregulated genes between salt-treated CM37 and the controls, and 2757 upregulated and 2634 downregulated genes between salt-treated cmh15 and the controls by RNA sequencing analysis. Gene ontology functional enrichment analysis of the differentially expressed genes showed that photosynthesis-related and oxidation-reduction processes were deeply involved in the responses of cmh15 and CM37 to salt stress. We also found differences in the hormone signaling pathway transduction and regulation patterns of transcription factors encoded by the differentially expressed genes in both cmh15 and CM37 under salt stress. Together, our findings provide insights into the molecular networks that mediate salt stress tolerance of maize at the seedling stage.
Collapse
|
29
|
Abuslima E, Kanbar A, Raorane ML, Eiche E, Junker BH, Hause B, Riemann M, Nick P. Gain time to adapt: How sorghum acquires tolerance to salinity. FRONTIERS IN PLANT SCIENCE 2022; 13:1008172. [PMID: 36325549 PMCID: PMC9619063 DOI: 10.3389/fpls.2022.1008172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/05/2022] [Indexed: 05/14/2023]
Abstract
Salinity is a global environmental threat to agricultural production and food security around the world. To delineate salt-induced damage from adaption events we analysed a pair of sorghum genotypes which are contrasting in their response to salt stress with respect to physiological, cellular, metabolomic, and transcriptional responses. We find that the salt-tolerant genotype Della can delay the transfer of sodium from the root to the shoot, more swiftly deploy accumulation of proline and antioxidants in the leaves and transfer more sucrose to the root as compared to its susceptible counterpart Razinieh. Instead Razinieh shows metabolic indicators for a higher extent photorespiration under salt stress. Following sodium accumulation by a fluorescent dye in the different regions of the root, we find that Della can sequester sodium in the vacuoles of the distal elongation zone. The timing of the adaptive responses in Della leaves indicates a rapid systemic signal from the roots that is travelling faster than sodium itself. We arrive at a model where resistance and susceptibility are mainly a matter of temporal patterns in signalling.
Collapse
Affiliation(s)
- Eman Abuslima
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Department of Botany, Faculty of Science, Suez Canal University, Ismailia, Egypt
- *Correspondence: Eman Abuslima,
| | - Adnan Kanbar
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Manish L. Raorane
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Elisabeth Eiche
- Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Laboratory for Environmental and Raw Materials Analysis (LERA), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Björn H. Junker
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Bettina Hause
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle, Germany
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
30
|
Choudhary P, Pramitha L, Rana S, Verma S, Aggarwal PR, Muthamilarasan M. Hormonal crosstalk in regulating salinity stress tolerance in graminaceous crops. PHYSIOLOGIA PLANTARUM 2021; 173:1587-1596. [PMID: 34537966 DOI: 10.1111/ppl.13558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 05/04/2023]
Abstract
Soil salinity is one of the major threats that pose challenges to global cereal productivity and food security. Cereals have evolved sophisticated mechanisms to circumvent stress at morpho-physiological, biochemical, and molecular levels. Salt stress cues are perceived by the roots, which trigger the underlying signaling pathways that involve phytohormones. Each phytohormone triggers a specific signaling pathway integrated in a complex manner to produce antagonistic, synergistic, and additive responses. Phytohormones induce salt-responsive signaling pathways to modulate various physiological and anatomical mechanisms, including cell wall repair, apoplastic pH regulation, ion homeostasis, root hair formation, chlorophyll content, and leaf morphology. Exogenous applications of phytohormones moderate the adverse effects of salinity and improve growth. Understanding the complex hormonal crosstalk in cereals under salt stress will advance the knowledge about cooperation or antagonistic mechanisms among hormones and their role in developing salt-tolerant cereals to enhance the productivity of saline agricultural land. In this context, the present review focuses on the mechanisms of hormonal crosstalk that mediate the salt stress response and adaptation in graminaceous crops.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Lydia Pramitha
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Shubham Verma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
31
|
Han X, Yang Y. Phospholipids in Salt Stress Response. PLANTS 2021; 10:plants10102204. [PMID: 34686013 PMCID: PMC8540237 DOI: 10.3390/plants10102204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
High salinity threatens crop production by harming plants and interfering with their development. Plant cells respond to salt stress in various ways, all of which involve multiple components such as proteins, peptides, lipids, sugars, and phytohormones. Phospholipids, important components of bio-membranes, are small amphoteric molecular compounds. These have attracted significant attention in recent years due to the regulatory effect they have on cellular activity. Over the past few decades, genetic and biochemical analyses have partly revealed that phospholipids regulate salt stress response by participating in salt stress signal transduction. In this review, we summarize the generation and metabolism of phospholipid phosphatidic acid (PA), phosphoinositides (PIs), phosphatidylserine (PS), phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), as well as the regulatory role each phospholipid plays in the salt stress response. We also discuss the possible regulatory role based on how they act during other cellular activities.
Collapse
Affiliation(s)
- Xiuli Han
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China;
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel./Fax: +86-10-62732030
| |
Collapse
|
32
|
Fiodor A, Singh S, Pranaw K. The Contrivance of Plant Growth Promoting Microbes to Mitigate Climate Change Impact in Agriculture. Microorganisms 2021; 9:1841. [PMID: 34576736 PMCID: PMC8472176 DOI: 10.3390/microorganisms9091841] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/14/2021] [Accepted: 08/27/2021] [Indexed: 01/07/2023] Open
Abstract
Combating the consequences of climate change is extremely important and critical in the context of feeding the world's population. Crop simulation models have been extensively studied recently to investigate the impact of climate change on agricultural productivity and food security. Drought and salinity are major environmental stresses that cause changes in the physiological, biochemical, and molecular processes in plants, resulting in significant crop productivity losses. Excessive use of chemicals has become a severe threat to human health and the environment. The use of beneficial microorganisms is an environmentally friendly method of increasing crop yield under environmental stress conditions. These microbes enhance plant growth through various mechanisms such as production of hormones, ACC deaminase, VOCs and EPS, and modulate hormone synthesis and other metabolites in plants. This review aims to decipher the effect of plant growth promoting bacteria (PGPB) on plant health under abiotic soil stresses associated with global climate change (viz., drought and salinity). The application of stress-resistant PGPB may not only help in the combating the effects of abiotic stressors, but also lead to mitigation of climate change. More thorough molecular level studies are needed in the future to assess their cumulative influence on plant development.
Collapse
Affiliation(s)
- Angelika Fiodor
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India;
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| |
Collapse
|
33
|
Electrical Signals, Plant Tolerance to Actions of Stressors, and Programmed Cell Death: Is Interaction Possible? PLANTS 2021; 10:plants10081704. [PMID: 34451749 PMCID: PMC8401951 DOI: 10.3390/plants10081704] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023]
Abstract
In environmental conditions, plants are affected by abiotic and biotic stressors which can be heterogenous. This means that the systemic plant adaptive responses on their actions require long-distance stress signals including electrical signals (ESs). ESs are based on transient changes in the activities of ion channels and H+-ATP-ase in the plasma membrane. They influence numerous physiological processes, including gene expression, phytohormone synthesis, photosynthesis, respiration, phloem mass flow, ATP content, and many others. It is considered that these changes increase plant tolerance to the action of stressors; the effect can be related to stimulation of damages of specific molecular structures. In this review, we hypothesize that programmed cell death (PCD) in plant cells can be interconnected with ESs. There are the following points supporting this hypothesis. (i) Propagation of ESs can be related to ROS waves; these waves are a probable mechanism of PCD initiation. (ii) ESs induce the inactivation of photosynthetic dark reactions and activation of respiration. Both responses can also produce ROS and, probably, induce PCD. (iii) ESs stimulate the synthesis of stress phytohormones (e.g., jasmonic acid, salicylic acid, and ethylene) which are known to contribute to the induction of PCD. (iv) Generation of ESs accompanies K+ efflux from the cytoplasm that is also a mechanism of induction of PCD. Our review argues for the possibility of PCD induction by electrical signals and shows some directions of future investigations in the field.
Collapse
|
34
|
Fiaz S, Ahmar S, Saeed S, Riaz A, Mora-Poblete F, Jung KH. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security. Int J Mol Sci 2021; 22:5585. [PMID: 34070430 PMCID: PMC8197453 DOI: 10.3390/ijms22115585] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.
Collapse
Affiliation(s)
- Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur 22620, Pakistan
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile
| | - Sajjad Saeed
- Department of Forestry and Wildlife Management, University of Haripur, Haripur 22620, Pakistan
| | - Aamir Riaz
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile
| | - Ki-Hung Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
35
|
Chen JT, Aroca R, Romano D. Molecular Aspects of Plant Salinity Stress and Tolerance. Int J Mol Sci 2021; 22:ijms22094918. [PMID: 34066387 PMCID: PMC8125339 DOI: 10.3390/ijms22094918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/31/2023] Open
Affiliation(s)
- Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 81148, Taiwan
- Correspondence:
| | - Ricardo Aroca
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), 18008 Granada, Spain;
| | - Daniela Romano
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, CT, Italy;
| |
Collapse
|