1
|
Cheng CY, Chuang WC, Lin CP, Li CH, Chang HY, Wu WJ, Wu MF, Ko JL. Endoglin as a predictive biomarker for pemetrexed sensitivity in non-small-cell lung cancer: a cellular study. Cancer Chemother Pharmacol 2025; 95:20. [PMID: 39792181 DOI: 10.1007/s00280-024-04734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVE Based on our previous research, which demonstrated that elevated plasma endoglin (ENG) levels in lung cancer patients were associated with a better prognosis, increased sensitivity to pemetrexed, and enhanced tumor suppression, this study aims to validate these findings at the cellular level. The focus is on membrane and extracellular ENG and their influence on drug response and tumor cell behavior in non-small cell lung cancer (NSCLC) cells. METHODS The correlation between ENG expression and pemetrexed-induced cytotoxicity in eight human non-squamous subtype NSCLC cell lines was analyzed. ENG in A549 and H1975 cells was knocked down using shRNA. MTT assay, cell cycle assay, western blot analysis, and boyden chamber assay were used to detect the effect of ENG on pemetrexed-induced cytotoxicity, cell cycle distribution, and cell migration. RESULTS The expression of membrane ENG was positively correlated with pemetrexed-induced cytotoxicity in human NSCLC cells. Compared to pemetrexed-sensitive A549 cells, the A549/a400 (pemetrexed-resistant subline) cells exhibited a reduced accumulation of cells in the S phase, making them less susceptible to cell death. ENG knockdown also alleviated pemetrexed-induced S phase arrest and regulated G1/S phase-related proteins (p53, p21, CDK2, and Cyclin A). Additionally, co-treatment with recombinant ENG enhanced pemetrexed-induced migration inhibition in the sensitive cel1 line and cytotoxicity in the resistance cell line. CONCLUSION The present results strengthened our prior clinical findings, showing that higher membrane ENG expression enhances pemetrexed-induced cytotoxicity and S phase arrest, which may involve the ENG-p21 pathway. Additionally, microenvironmental ENG enhanced the anti-migration of pemetrexed. These findings highlight the potential of ENG as a biomarker and therapeutic target, opening new avenues to improve the outcomes of non-squamous cell NSCLC treatment.
Collapse
Affiliation(s)
- Ching-Yuan Cheng
- Division of Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, Changhua, 500209, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Yunlin Christian Hospital, Yunlin, 648106, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Wen-Chen Chuang
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
- Institute of Medicine, Chung-Shan Medical University, Taichung, 40201, Taiwan
| | - Ching-Pin Lin
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan
| | - Che-Hsing Li
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hui-Yi Chang
- Institute of Medicine, Chung-Shan Medical University, Taichung, 40201, Taiwan
| | - Wen-Jun Wu
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
- Institute of Medicine, Chung-Shan Medical University, Taichung, 40201, Taiwan
| | - Ming-Fang Wu
- Institute of Medicine, Chung-Shan Medical University, Taichung, 40201, Taiwan.
- Divisions of Medical Oncology and Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan.
- CSMU Lung Cancer Research Center, Chung Shan Medical University, Taichung, 40201, Taiwan.
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung-Shan Medical University, Taichung, 40201, Taiwan.
- Divisions of Medical Oncology and Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan.
- CSMU Lung Cancer Research Center, Chung Shan Medical University, Taichung, 40201, Taiwan.
| |
Collapse
|
2
|
de Melo IG, Tavares V, Savva-Bordalo J, Rei M, Liz-Pimenta J, Pereira D, Medeiros R. Endothelial Dysfunction Markers in Ovarian Cancer: VTE Risk and Tumour Prognostic Outcomes. Life (Basel) 2024; 14:1630. [PMID: 39768338 PMCID: PMC11678387 DOI: 10.3390/life14121630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Ovarian cancer (OC) presents daunting lethality rates worldwide, with frequent late-stage diagnosis and chemoresistance, highlighting the need for improved prognostic approaches. Venous thromboembolism (VTE), a major cancer mortality factor, is partially driven by endothelial dysfunction (ED). ED's pro-inflammatory state fosters tumour progression, suggesting a VTE-independent link between ED and cancer. Given this triad's interplay, ED markers may influence OC behaviour and patients' prognosis. Thus, the impact of ED-related genes and single-nucleotide polymorphisms (SNPs) on OC-related VTE and patient thrombogenesis-independent prognosis was investigated. NOS3 upregulation was linked to lower VTE incidence (χ2, p = 0.013), while SELP upregulation was associated with shorter overall survival (log-rank test, p = 0.048). Dismissing patients with VTE before OC diagnosis, SELP rs6136 T allele carriers presented lower progression-free survival (log-rank test, p = 0.038). Nevertheless, due to the SNP minor allele underrepresentation, further investigation is required. Taken together, ED markers seem to exhibit roles that depend on the clinical context, such as tumour-related thrombogenesis or cancer prognosis. Validation with larger cohorts and more in-depth functional studies are needed for data clarification and potential therapeutic strategies exploitation to tackle cancer progression and thrombosis in OC patients.
Collapse
Affiliation(s)
- Inês Guerra de Melo
- Molecular Oncology and Viral Pathology Group, Research Centre of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal; (I.G.d.M.); (V.T.)
- Faculty of Medicine, University of Porto (FMUP), 4200-072 Porto, Portugal;
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Centre of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal; (I.G.d.M.); (V.T.)
- Faculty of Medicine, University of Porto (FMUP), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana Savva-Bordalo
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Mariana Rei
- Department of Gynaecology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal;
| | - Joana Liz-Pimenta
- Faculty of Medicine, University of Porto (FMUP), 4200-072 Porto, Portugal;
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD), 5000-508 Vila Real, Portugal
| | - Deolinda Pereira
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Centre of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal; (I.G.d.M.); (V.T.)
- Faculty of Medicine, University of Porto (FMUP), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
3
|
Ejlalidiz M, Mehri-Ghahfarrokhi A, Saberiyan M. Identification of hub genes and pathways in Uterine corpus endometrial carcinoma (UCEC): A comprehensive in silico study. Biochem Biophys Rep 2024; 40:101860. [PMID: 39552710 PMCID: PMC11565547 DOI: 10.1016/j.bbrep.2024.101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
Background Uterine corpus endometrial carcinoma (UCEC), derived from the endometrium, is the most common type of endometrial malignasis. This gynecological malignancy is very common all over the world, especially in developed countries and shows a potentially rising trend correlated with the increase in obese women. Methods Differentially Expressed Genes (DEGs) analysis was conducted on GSE7305 and GSE25628 datasets from the Gene Expression Omnibus (GEO). DEGs were identified using GEO2R (adjusted p-value <0.05, |logFC| > 1). Pathway analysis employed KEGG and Gene Ontology databases, while protein-protein interactions were analyzed using Cytoscape and Gephi. GEPIA was used for target gene validation. Results We have identified 304 common DEGs and 78 hub genes using GEO and PPI analysis, respectively. The GO and KEGG pathways analysis revealed enrichment of DEGs in extracellular matrix structural constituent, extracellular space, cell adhesion, and ECM-receptor interaction. GEPIA analysis identified three genes, ENG, GNG4, and ECT2, whose expression significantly differed between normal and tumor samples. Conclusion This analysis study identified the hub genes and associated pathways involved in the pathogenesis of UCEC. The identified hub genes exhibit remarkable potential as diagnostic biomarkers, providing a significant opportunity for early diagnosis and more effective therapeutic approaches for UCEC.
Collapse
Affiliation(s)
- Mahsa Ejlalidiz
- Medical Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Mehri-Ghahfarrokhi
- Clinical Research Developmental Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, School of Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
4
|
Mangoni AA, Zinellu A. A systematic review and meta-analysis of the endothelial-immune candidate biomarker endoglin in rheumatic diseases. Clin Exp Med 2024; 25:4. [PMID: 39535678 PMCID: PMC11561007 DOI: 10.1007/s10238-024-01519-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Existing challenges in accurately diagnosing various rheumatic diseases (RDs) have stimulated the search for novel biomarkers to aid clinical evaluation and monitoring. We conducted a systematic review and meta-analysis of studies investigating the candidate biomarker endoglin (CD105), a transmembrane glycoprotein expressed in endothelial, myeloid, and lymphoid cells, in RD patients and healthy controls. We searched PubMed, Scopus, and Web of Science from inception to 10 August 2024 to identify relevant studies. We evaluated the risk of bias using the JBI Critical Appraisal Checklist and the certainty of evidence using GRADE (PROSPERO registration number: CRD42023581008). Overall, circulating endoglin concentrations were significantly higher in RD patients compared to controls (13 studies; standard mean difference, SMD = 0.64, 95% CI 0.13 to 1.14, p = 0.014; low certainty of evidence). The effect size of the between-group differences in endoglin concentrations was not significantly associated with age, male-to-female ratio, year of publication, number of participants, or mean RD duration. By contrast, the effect size was statistically significant in studies conducted in the European region (p = 0.033), involving patients with systemic sclerosis (p = 0.032), and measuring serum (p = 0.019). The results of this systematic review and meta-analysis suggest the potential pathophysiological role of endoglin in RDs. This, however, requires further investigation in prospective studies, particularly in patients with systemic sclerosis.
Collapse
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, and Flinders Medical Centre, Bedford Park, Adelaide, SA, 5042, Australia.
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia.
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
5
|
Franceschi S, Lessi F, Morelli M, Menicagli M, Aretini P, Gambacciani C, Pieri F, Grimod G, Trapanese MG, Valenti S, Paiar F, Di Stefano AL, Santonocito OS, Pasqualetti F, Mazzanti CM. Exploring Extracellular Vesicle Surface Protein Markers Produced by Glioblastoma Tumors: A Characterization Study Using In Vitro 3D Patient-Derived Cultures. Cancers (Basel) 2024; 16:3748. [PMID: 39594703 PMCID: PMC11592176 DOI: 10.3390/cancers16223748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Glioblastoma (GBM) is an aggressive brain cancer with limited treatment options. Extracellular vesicles (EVs) derived from GBM cells contain important biomarkers, such as microRNAs, proteins, and DNA mutations, which are involved in tumor progression, invasion, and resistance to treatment. Identifying surface markers on these EVs is crucial for their isolation and potential use in noninvasive diagnosis. This study aimed to use tumor-derived explants to investigate the surface markers of EVs and explore their role as diagnostic biomarkers for GBM. METHODS Tumor explants from nine GBM patients without IDH1/IDH2 mutations or 1p-19q co-deletion were cultured to preserve both tumor viability and cytoarchitecture. EVs were collected from the tumor microenvironment using differential centrifugation, filtration, and membrane affinity binding. Their surface protein composition was analyzed through multiplex protein assays. RNA-Seq data from TCGA and GTEx datasets, along with in silico single-cell RNA-seq data, were used to assess EV surface biomarker expression across large GBM patient cohorts. RESULTS The in vitro model successfully replicated the tumor microenvironment and produced EVs with distinct surface markers. Biomarker analysis in large datasets revealed specific expression patterns unique to GBM patients compared with healthy controls. These markers demonstrated potential as a GBM-specific signature and were correlated with clinical data. Furthermore, in silico single-cell RNA-seq provided detailed insights into biomarker distribution across different cell types within the tumor. CONCLUSIONS This study underscores the efficacy of the tumor-derived explant model and its potential to advance the understanding of GBM biology and EV production. A key innovation is the isolation of EVs from a model that faithfully mimics the tumor's original cytoarchitecture, offering a deeper understanding of the cells involved in EV release. The identified EV surface markers represent promising targets for enhancing EV isolation and optimizing their use as diagnostic tools. Moreover, further investigation into their molecular cargo may provide crucial insights into tumor characteristics and evolution.
Collapse
Affiliation(s)
- Sara Franceschi
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy; (F.L.); (M.M.); (M.M.); (P.A.); (C.M.M.)
| | - Francesca Lessi
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy; (F.L.); (M.M.); (M.M.); (P.A.); (C.M.M.)
| | - Mariangela Morelli
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy; (F.L.); (M.M.); (M.M.); (P.A.); (C.M.M.)
| | - Michele Menicagli
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy; (F.L.); (M.M.); (M.M.); (P.A.); (C.M.M.)
| | - Paolo Aretini
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy; (F.L.); (M.M.); (M.M.); (P.A.); (C.M.M.)
| | - Carlo Gambacciani
- Department of Neurosurgery, Spedali Riuniti di Livorno, 57124 Livorno, Italy; (C.G.); (F.P.); (G.G.); (A.L.D.S.); (O.S.S.)
| | - Francesco Pieri
- Department of Neurosurgery, Spedali Riuniti di Livorno, 57124 Livorno, Italy; (C.G.); (F.P.); (G.G.); (A.L.D.S.); (O.S.S.)
| | - Gianluca Grimod
- Department of Neurosurgery, Spedali Riuniti di Livorno, 57124 Livorno, Italy; (C.G.); (F.P.); (G.G.); (A.L.D.S.); (O.S.S.)
| | - Maria Grazia Trapanese
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56126 Pisa, Italy; (M.G.T.); (S.V.); (F.P.)
| | - Silvia Valenti
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56126 Pisa, Italy; (M.G.T.); (S.V.); (F.P.)
| | - Fabiola Paiar
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56126 Pisa, Italy; (M.G.T.); (S.V.); (F.P.)
| | - Anna Luisa Di Stefano
- Department of Neurosurgery, Spedali Riuniti di Livorno, 57124 Livorno, Italy; (C.G.); (F.P.); (G.G.); (A.L.D.S.); (O.S.S.)
| | - Orazio Santo Santonocito
- Department of Neurosurgery, Spedali Riuniti di Livorno, 57124 Livorno, Italy; (C.G.); (F.P.); (G.G.); (A.L.D.S.); (O.S.S.)
| | - Francesco Pasqualetti
- Department of Radiation Oncology, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy;
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35121 Padova, Italy
| | - Chiara Maria Mazzanti
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy; (F.L.); (M.M.); (M.M.); (P.A.); (C.M.M.)
| |
Collapse
|
6
|
Saberianpour S, Melotto G, Redhead L, Terrazzini N, Forss JR, Santin M. Harnessing the Interactions of Wound Exudate Cells with Dressings Biomaterials for the Control and Prognosis of Healing Pathways. Pharmaceuticals (Basel) 2024; 17:1111. [PMID: 39338276 PMCID: PMC11434639 DOI: 10.3390/ph17091111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
The global socioeconomic challenge generated by wounds requires an understanding of healing and non-healing pathways in patients. Also, the interactions occurring between the wound dressing biomaterials with cells relevant to the healing process have not been sufficiently investigated, thus neglecting the role that wound dressing composition can play in healing. Through the study of six cases of acute surgical wounds, the present work analyses the early (24 h post-surgery) interactions of biochemical and cellular components with (i) Atrauman, a device made of knitted woven synthetic polymeric fibre when used as a primary dressing, and (ii) Melolin, a hydrocolloid engineered as two layers of synthetic and cellulose non-woven fibres when used as a secondary dressing. A pathway towards healing could be observed in those cases where endoglin-expressing cells and M2 macrophages were retained by Atrauman fibres at the interface with the wound bed. On the contrary, cases where the secondary dressing Melolin absorbed these cell phenotypes in its mesh resulted in a slower or deteriorating healing process. The data obtained indicate that a subtraction of progenitor cells by Melolin may impair the healing process and that the analysis of the retrieved wound dressings for biomarkers expressed by cells relevant to wound healing may become an additional tool to determine the patient's prognosis.
Collapse
Affiliation(s)
- Shirin Saberianpour
- Centre for Regenerative Medicine and Devices, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK
- School of Applied Sciences, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK
| | - Gianluca Melotto
- Centre for Regenerative Medicine and Devices, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK
- School of Health and Sport Sciences, University of Brighton, Falmer Campus, Village Way, Brighton BN1 9PH, UK
| | - Lucy Redhead
- Centre for Regenerative Medicine and Devices, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK
- School of Health and Sport Sciences, University of Brighton, Falmer Campus, Village Way, Brighton BN1 9PH, UK
| | - Nadia Terrazzini
- Centre for Regenerative Medicine and Devices, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK
- School of Applied Sciences, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK
| | - Jaqueline Rachel Forss
- Centre for Regenerative Medicine and Devices, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK
- School of Health and Sport Sciences, University of Brighton, Falmer Campus, Village Way, Brighton BN1 9PH, UK
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK
- School of Applied Sciences, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK
| |
Collapse
|
7
|
Iida M, Crossman BE, Kostecki KL, Glitchev CE, Kranjac CA, Crow MT, Adams JM, Liu P, Ong I, Yang DT, Kang I, Salgia R, Wheeler DL. MerTK Drives Proliferation and Metastatic Potential in Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:5109. [PMID: 38791148 PMCID: PMC11121248 DOI: 10.3390/ijms25105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by the absence of the estrogen receptor, progesterone receptor, and receptor tyrosine kinase HER2 expression. Due to the limited number of FDA-approved targeted therapies for TNBC, there is an ongoing need to understand the molecular underpinnings of TNBC for the development of novel combinatorial treatment strategies. This study evaluated the role of the MerTK receptor tyrosine kinase on proliferation and invasion/metastatic potential in TNBC. Immunohistochemical analysis demonstrated MerTK expression in 58% of patient-derived TNBC xenografts. The stable overexpression of MerTK in human TNBC cell lines induced an increase in proliferation rates, robust in vivo tumor growth, heightened migration/invasion potential, and enhanced lung metastases. NanoString nCounter analysis of MerTK-overexpressing SUM102 cells (SUM102-MerTK) revealed upregulation of several signaling pathways, which ultimately drive cell cycle progression, reduce apoptosis, and enhance cell survival. Proteomic profiling indicated increased endoglin (ENG) production in SUM102-MerTK clones, suggesting that MerTK creates a conducive environment for increased proliferative and metastatic activity via elevated ENG expression. To determine ENG's role in increasing proliferation and/or metastatic potential, we knocked out ENG in a SUM102-MerTK clone with CRISPR technology. Although this ENG knockout clone exhibited similar in vivo growth to the parental SUM102-MerTK clone, lung metastasis numbers were significantly decreased ~4-fold, indicating that MerTK enhances invasion and metastasis through ENG. Our data suggest that MerTK regulates a unique proliferative signature in TNBC, promoting robust tumor growth and increased metastatic potential through ENG upregulation. Targeting MerTK and ENG simultaneously may provide a novel therapeutic approach for TNBC patients.
Collapse
Affiliation(s)
- Mari Iida
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Bridget E. Crossman
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Kourtney L. Kostecki
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Christine E. Glitchev
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Carlene A. Kranjac
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Madisen T. Crow
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Jillian M. Adams
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Peng Liu
- Departments of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA; (P.L.); (I.O.)
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Irene Ong
- Departments of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA; (P.L.); (I.O.)
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David T. Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Irene Kang
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA; (I.K.); (R.S.)
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA; (I.K.); (R.S.)
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
8
|
González-Muñoz T, Di Giannatale A, García-Silva S, Santos V, Sánchez-Redondo S, Savini C, Graña-Castro O, Blanco-Aparicio C, Fischer S, De Wever O, Creus-Bachiller E, Ortega-Bertran S, Pisapia DJ, Rodríguez-Peralto JL, Fernández-Rodríguez J, Pérez-Portabella CR, Alaggio R, Benassi MS, Pazzaglia L, Scotlandi K, Ratner N, Yohay K, Theuer CP, Peinado H. Endoglin, a Novel Biomarker and Therapeutical Target to Prevent Malignant Peripheral Nerve Sheath Tumor Growth and Metastasis. Clin Cancer Res 2023; 29:3744-3758. [PMID: 37432984 DOI: 10.1158/1078-0432.ccr-22-2462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft-tissue sarcomas that lack effective treatments, underscoring the urgent need to uncover novel mediators of MPNST pathogenesis that may serve as potential therapeutic targets. Tumor angiogenesis is considered a critical event in MPNST transformation and progression. Here, we have investigated whether endoglin (ENG), a TGFβ coreceptor with a crucial role in angiogenesis, could be a novel therapeutic target in MPNSTs. EXPERIMENTAL DESIGN ENG expression was evaluated in human peripheral nerve sheath tumor tissues and plasma samples. Effects of tumor cell-specific ENG expression on gene expression, signaling pathway activation and in vivo MPNST growth and metastasis, were investigated. The efficacy of ENG targeting in monotherapy or in combination with MEK inhibition was analyzed in xenograft models. RESULTS ENG expression was found to be upregulated in both human MPNST tumor tissues and plasma-circulating small extracellular vesicles. We demonstrated that ENG modulates Smad1/5 and MAPK/ERK pathway activation and pro-angiogenic and pro-metastatic gene expression in MPNST cells and plays an active role in tumor growth and metastasis in vivo. Targeting with ENG-neutralizing antibodies (TRC105/M1043) decreased MPNST growth and metastasis in xenograft models by reducing tumor cell proliferation and angiogenesis. Moreover, combination of anti-ENG therapy with MEK inhibition effectively reduced tumor cell growth and angiogenesis. CONCLUSIONS Our data unveil a tumor-promoting function of ENG in MPNSTs and support the use of this protein as a novel biomarker and a promising therapeutic target for this disease.
Collapse
Affiliation(s)
- Teresa González-Muñoz
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Angela Di Giannatale
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Vanesa Santos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sara Sánchez-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Claudia Savini
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Patients in Science, Medical Writing and Communication, Valencia, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Suzanne Fischer
- Laboratory of Experimental Cancer Research, Cancer Research Institute Ghent, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Cancer Research Institute Ghent, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Edgar Creus-Bachiller
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Ortega-Bertran
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - David J Pisapia
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, New York
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Jose L Rodríguez-Peralto
- Department of Dermatology, 12 de Octubre University Hospital, Complutense University of Madrid, Investigation institute I+12, CIBERONC, Madrid, Spain
| | - Juana Fernández-Rodríguez
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Plataforma Mouse Lab, Servicios Científico-Técnicos, IDIBELL, l'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Medical-Surgical Sciences and Biotechnologies La Sapienza University, Rome, Italy
| | - Maria Serena Benassi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Laura Pazzaglia
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nancy Ratner
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kaleb Yohay
- New York University Grossman School of Medicine, New York, New York
| | | | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
9
|
Bernabeu C, Olivieri C, Rossi E. Editorial: Role of membrane-bound and circulating endoglin in disease. Front Med (Lausanne) 2023; 10:1271756. [PMID: 37731711 PMCID: PMC10507402 DOI: 10.3389/fmed.2023.1271756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Affiliation(s)
- Carmelo Bernabeu
- Centro de Investigaciones Biológicas “Margarita Salas”, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carla Olivieri
- General Biology and Medical Genetics Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Elisa Rossi
- Université de Paris, INSERM, Innovative Therapies in Haemostasis, Paris, France
| |
Collapse
|
10
|
Giorello MB, Martinez LM, Borzone FR, Padin MDR, Mora MF, Sevic I, Alaniz L, Calcagno MDL, García-Rivello H, Wernicke A, Labovsky V, Chasseing NA. CD105 expression in cancer-associated fibroblasts: a biomarker for bone metastasis in early invasive ductal breast cancer patients. Front Cell Dev Biol 2023; 11:1250869. [PMID: 37719885 PMCID: PMC10501720 DOI: 10.3389/fcell.2023.1250869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: Bone metastasis is one of the causes that mainly decrease survival in patients with advanced breast cancer. Therefore, it is essential to find prognostic markers for the occurrence of this type of metastasis during the early stage of the disease. Currently, cancer-associated fibroblasts, which represent 80% of the fibroblasts present in the tumor microenvironment, are an interesting target for studying new biomarkers and developing alternative therapies. This study evaluated the prognostic significance of the CD105 expression in cancer-associated fibroblasts in early breast cancer patients. Methods: Immunohistochemistry was used to assess CD105 expression in invasive ductal breast carcinomas (n = 342), analyzing its association with clinical and pathological characteristics. Results: High CD105 expression in cancer-associated fibroblasts was associated with an increased risk of metastatic occurrence (p = 0.0003), particularly bone metastasis (p = 0.0005). Furthermore, high CD105 expression was associated with shorter metastasis-free survival, bone metastasis-free survival, and overall survival (p = 0.0002, 0.0006, and 0.0002, respectively). CD105 expression also constituted an independent prognostic factor for metastasis-free survival, bone metastasis-free survival, and overall survival (p = 0.0003, 0.0006, and 0.0001, respectively). Discussion: The high CD105 expression in cancer-associated fibroblasts is an independent prognostic marker for bone metastasis in early breast cancer patients. Therefore, the evaluation of CD105(+) CAFs could be crucial to stratify BCPs based on their individual risk profile for the development of BM, enhancing treatment strategies and outcomes.
Collapse
Affiliation(s)
- María Belén Giorello
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Leandro Marcelo Martinez
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Francisco Raúl Borzone
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | | - Ina Sevic
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Basicas y Aplicadas (CIBA), Junín, Argentina
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Basicas y Aplicadas (CIBA), Junín, Argentina
| | | | | | - Alejandra Wernicke
- Departamento de Anatomía Patológica, Hospital Italiano, Buenos Aires, Argentina
| | - Vivian Labovsky
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
11
|
Oladejo M, Nguyen HM, Wood L. CD105 in the progression and therapy of renal cell carcinoma. Cancer Lett 2023; 570:216327. [PMID: 37499740 DOI: 10.1016/j.canlet.2023.216327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Molecular biomarkers that interact with the vascular and immune compartments play an important role in the progression of solid malignancies. CD105, which is a component of the transforming growth factor beta (TGF β) signaling cascade, has long been studied for its role in potentiating angiogenesis in numerous cancers. In renal cell carcinoma (RCC), the role of CD105 is more complicated due to its diverse expression profile on the tumor cells, tumor vasculature, and the components of the immune system. Since its discovery, its angiogenic role has overshadowed other potential functions, especially in cancers. In this review, we aim to summarize the recent evidence and findings of the multifunctional roles of CD105 in angiogenesis and immunomodulation in the context of the various subtypes of RCC, with a specific emphasis on the clear cell RCC subtype. Since CD105 is an established biomarker and tumor antigen, we also provide an update on the preclinical and clinical applications of CD105 as a therapeutic platform in RCC.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Laurence Wood
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA.
| |
Collapse
|
12
|
Bosoteanu M, Deacu M, Aschie M, Vamesu S, Cozaru GC, Mitroi AF, Voda RI, Orasanu CI, Vlad SE, Penciu RC, Chirila SI. The Role of Pathogenesis Associated with the Tumor Microclimate in the Differential Diagnosis of Uterine Myocytic Tumors. J Clin Med 2023; 12:4161. [PMID: 37373854 DOI: 10.3390/jcm12124161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Myocytic tumors of the uterus present vast morphological heterogeneity, which makes differential diagnosis between the different entities necessary. This study aims to enrich the existing data and highlight new potential therapeutic targets regarding aspects related to the pathogenic process and the tumor microenvironment in order to improve the quality of life of women. We performed a 5-year retrospective study, including particular cases of uterine myocyte tumors. Immunohistochemical analyses of pathogenic pathways (p53, RB1, and PTEN) and tumor microclimate using markers (CD8, PD-L1, and CD105), as well as genetic testing of the PTEN gene, were performed. The data were statistically analyzed using the appropriate parameters. In cases of atypical leiomyoma, a significant association was observed between PTEN deletion and an increased number of PD-L1+ T lymphocytes. For malignant lesions and STUMP, PTEN deletion was associated with the advanced disease stage. Advanced cases were also associated with an increased mean CD8+ T cell count. An increased number of lymphocytes was associated with an increased percentage of RB1+ nuclei. The study corroborated clinical and histogenetic data, highlighting the importance of the differential diagnosis of these tumors to improve the management of patients and increase their quality of life.
Collapse
Affiliation(s)
- Madalina Bosoteanu
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Department of Pathology, Faculty of Medicine, "Ovidius" University of Constanţa, 900527 Constanta, Romania
| | - Mariana Deacu
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Department of Pathology, Faculty of Medicine, "Ovidius" University of Constanţa, 900527 Constanta, Romania
| | - Mariana Aschie
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Department of Pathology, Faculty of Medicine, "Ovidius" University of Constanţa, 900527 Constanta, Romania
- Academy of Medical Sciences of Romania, 030171 Bucharest, Romania
| | - Sorin Vamesu
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
- Clinical Service of Pathology, Department of Genetics, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Anca Florentina Mitroi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
- Clinical Service of Pathology, Department of Genetics, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Raluca Ioana Voda
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
| | - Cristian Ionut Orasanu
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
| | - Sabina Elena Vlad
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
| | - Roxana Cleopatra Penciu
- Department of Obstetrics and Gynecology, Faculty of Medicine, "Ovidius" University of Constanţa, 900527 Constanta, Romania
| | - Sergiu Ioachim Chirila
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, Ovidius University, 900527 Constanta, Romania
| |
Collapse
|
13
|
Litwiniuk-Kosmala M, Makuszewska M, Czesak M. Endoglin in head and neck neoplasms. Front Med (Lausanne) 2023; 10:1115212. [PMID: 36844233 PMCID: PMC9950573 DOI: 10.3389/fmed.2023.1115212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Tumors of the head and neck region form a heterogeneous group of pathologies, including various benign lesions and malignant neoplasms. Endoglin, also known as CD105, is an accessory receptor for transforming growth factor beta (TGF-β), that regulates angiogenesis, both under physiological and pathological conditions. It is highly expressed in proliferating endothelial cells. Therefore, it is considered as a marker of tumor-related angiogenesis. In this review we discuss the role of endoglin as a possible marker of carcinogenesis, as well as a potential target for antibody-based therapies in the neoplasms of the head and neck region.
Collapse
Affiliation(s)
| | - Maria Makuszewska
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Czesak
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
Ruiz-Llorente L, Ruiz-Rodríguez MJ, Savini C, González-Muñoz T, Riveiro-Falkenbach E, Rodríguez-Peralto JL, Peinado H, Bernabeu C. Correlation Between Endoglin and Malignant Phenotype in Human Melanoma Cells: Analysis of hsa-mir-214 and hsa-mir-370 in Cells and Their Extracellular Vesicles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:253-272. [PMID: 37093432 DOI: 10.1007/978-3-031-26163-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Endoglin (CD105) is an auxiliary receptor of transforming growth factor (TGF)-β family members that is expressed in human melanomas. It is heterogeneously expressed by primary and metastatic melanoma cells, and endoglin targeting as a therapeutic strategy for melanoma tumors is currently been explored. However, its involvement in tumor development and malignancy is not fully understood. Here, we find that endoglin expression correlates with malignancy of primary melanomas and cultured melanoma cell lines. Next, we have analyzed the effect of ectopic endoglin expression on two miRNAs (hsa-mir-214 and hsa-mir-370), both involved in melanoma tumor progression and endoglin regulation. We show that compared with control cells, overexpression of endoglin in the WM-164 melanoma cell line induces; (i) a significant increase of hsa-mir-214 levels in small extracellular vesicles (EVs) as well as an increased trend in cells; and (ii) significantly lower levels of hsa-mir-370 in the EVs fractions, whereas no significant differences were found in cells. As hsa-mir-214 and hsa-mir-370 are not just involved in melanoma tumor progression, but they can also target endoglin-expressing endothelial cells in the tumor vasculature, these results suggest a complex and differential regulatory mechanism involving the intracellular and extracellular signaling of hsa-mir-214 and hsa-mir-370 in melanoma development and progression.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain.
- Biochemistry and Molecular Biology Unit, Department of System Biology, School of Medicine and Health Sciences, University of Alcalá, 28871, Alcalá de Henares, Madrid, Spain.
| | - María Jesús Ruiz-Rodríguez
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
| | - Claudia Savini
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Teresa González-Muñoz
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Erica Riveiro-Falkenbach
- Department of Pathology, Instituto i+12, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - José L Rodríguez-Peralto
- Department of Pathology, Instituto i+12, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - Héctor Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| |
Collapse
|
15
|
Huang Q, Xiao R, Lu J, Zhang Y, Xu L, Gao J, Sun J, Wang H. Endoglin aggravates peritoneal fibrosis by regulating the activation of TGF-β/ALK/Smads signaling. Front Pharmacol 2022; 13:973182. [PMID: 36210850 PMCID: PMC9537553 DOI: 10.3389/fphar.2022.973182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Peritoneal fibrosis (PF) is an intractable complication in patients on long-term peritoneal dialysis (PD). Transforming growth factor-β (TGF-β) is a key pro-fibrogenic factor involved in PD-associated PF, and endoglin, as a coreceptor for TGF-β, plays a role in balancing the TGF-β signaling pathway. Here, we investigated whether endoglin could be a potential therapeutic target for PF. Methods: In vivo, we established PF model in SD rats by daily intraperitoneal injection of peritoneal dialysis fluids (PDF) containing 4.25% glucose for 6 weeks and downregulated endoglin expression by tail vein injection of AAV9-ENG on day 14 to assess the effect of endoglin on peritoneal morphology and markers related to fibrosis, angiogenesis, and epithelial-mesenchymal transition (EMT). In vitro, we treated human peritoneal mesothelial cells (HPMCs) transfected with ENG siRNA in high glucose medium to explore the potential mechanism of endoglin in PF. Results: Compared to control group, continuous exposure to biologically incompatible PDF induced exacerbated PF, accompanied by a significant increase in endoglin expression. Conversely, knockdown of endoglin ameliorated peritoneal injury characterized by increased peritoneal thickening and collagen deposition, angiogenesis, as well as EMT. Consistently, HPMCs cultured in high glucose medium underwent the EMT process and exhibited over-expression of fibronectin, collagen type I, vascular endothelial growth factor (VEGF), whereas these aforementioned alterations were alleviated after ENG siRNA transfection. In addition, we also found that ENG siRNA inhibited TGF-β-induced phosphorylation of Smad2/3 and Smad1/5/9 in HPMCs treated with high glucose (HG). Conclusion: Our findings confirmed for the first time that endoglin exacerbated PF by regulating the activation of TGF-β/ALK/Smads signaling, which will provide a novel potential therapeutic target in PF.
Collapse
Affiliation(s)
- Qian Huang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Rui Xiao
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jing Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Liang Xu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Sun
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Haiping Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
16
|
Puerto-Camacho P, Díaz-Martín J, Olmedo-Pelayo J, Bolado-Carrancio A, Salguero-Aranda C, Jordán-Pérez C, Esteban-Medina M, Álamo-Álvarez I, Delgado-Bellido D, Lobo-Selma L, Dopazo J, Sastre A, Alonso J, Grünewald TGP, Bernabeu C, Byron A, Brunton VG, Amaral AT, Álava ED. Endoglin and MMP14 Contribute to Ewing Sarcoma Spreading by Modulation of Cell–Matrix Interactions. Int J Mol Sci 2022; 23:ijms23158657. [PMID: 35955799 PMCID: PMC9369355 DOI: 10.3390/ijms23158657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 01/26/2023] Open
Abstract
Endoglin (ENG) is a mesenchymal stem cell (MSC) marker typically expressed by active endothelium. This transmembrane glycoprotein is shed by matrix metalloproteinase 14 (MMP14). Our previous work demonstrated potent preclinical activity of first-in-class anti-ENG antibody-drug conjugates as a nascent strategy to eradicate Ewing sarcoma (ES), a devastating rare bone/soft tissue cancer with a putative MSC origin. We also defined a correlation between ENG and MMP14 expression in ES. Herein, we show that ENG expression is significantly associated with a dismal prognosis in a large cohort of ES patients. Moreover, both ENG/MMP14 are frequently expressed in primary ES tumors and metastasis. To deepen in their functional relevance in ES, we conducted transcriptomic and proteomic profiling of in vitro ES models that unveiled a key role of ENG and MMP14 in cell mechano-transduction. Migration and adhesion assays confirmed that loss of ENG disrupts actin filament assembly and filopodia formation, with a concomitant effect on cell spreading. Furthermore, we observed that ENG regulates cell–matrix interaction through activation of focal adhesion signaling and protein kinase C expression. In turn, loss of MMP14 contributed to a more adhesive phenotype of ES cells by modulating the transcriptional extracellular matrix dynamics. Overall, these results suggest that ENG and MMP14 exert a significant role in mediating correct spreading machinery of ES cells, impacting the aggressiveness of the disease.
Collapse
Affiliation(s)
- Pilar Puerto-Camacho
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Molecular Pathology of Sarcomas, 41013 Seville, Spain
| | - Juan Díaz-Martín
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Molecular Pathology of Sarcomas, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Joaquín Olmedo-Pelayo
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Molecular Pathology of Sarcomas, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Alfonso Bolado-Carrancio
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Carmen Salguero-Aranda
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Molecular Pathology of Sarcomas, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carmen Jordán-Pérez
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Molecular Pathology of Sarcomas, 41013 Seville, Spain
| | - Marina Esteban-Medina
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Inmaculada Álamo-Álvarez
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Daniel Delgado-Bellido
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Molecular Pathology of Sarcomas, 41013 Seville, Spain
| | - Laura Lobo-Selma
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Molecular Pathology of Sarcomas, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Ana Sastre
- Unidad Hemato-oncología Pediátrica, Hospital Infantil Universitario La Paz, 28046 Madrid, Spain
| | - Javier Alonso
- Unidad Hemato-oncología Pediátrica, Hospital Infantil Universitario La Paz, 28046 Madrid, Spain
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (IIER-ISCIII), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), 28029 Madrid, Spain
| | - Thomas G. P. Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Hopp-Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Carmelo Bernabeu
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Valerie G. Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ana Teresa Amaral
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Molecular Pathology of Sarcomas, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
- Correspondence: (A.T.A.); (E.D.Á.)
| | - Enrique De Álava
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Molecular Pathology of Sarcomas, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
- Correspondence: (A.T.A.); (E.D.Á.)
| |
Collapse
|
17
|
Alessandrini L, Ferrari M, Taboni S, Sbaraglia M, Franz L, Saccardo T, Del Forno BM, Agugiaro F, Frigo AC, Dei Tos AP, Marioni G. Tumor-stroma ratio, neoangiogenesis and prognosis in laryngeal carcinoma. A pilot study on preoperative biopsies and matched surgical specimens. Oral Oncol 2022; 132:105982. [PMID: 35759860 DOI: 10.1016/j.oraloncology.2022.105982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The interaction between tumor cells and stroma is critical in tumorigenesis, tumor neo-angiogenesis and cancer progression. The aims of this study were to: (i) evaluate the concordance between tumor-stroma ratio (TSR) and microvascular density (MVD) on paired biopsy and surgical specimens of laryngeal carcinoma (LSCC); (ii) investigate the association of TSR with angiogenesis (CD105- and CD31-assessed MVD); (iii) assess the prognostic role of TSR and MVD evaluated on preoperative biopsies and paired surgical specimens. METHODS TSR, CD105- and CD31-assessed MVD were analyzed in paired biopsies and surgical specimens of 43 consecutive cases. RESULTS TSR showed good agreement between biopsies and surgical specimens (AC1 statistic: 0.7957). In biopsies, TSR low/stroma-rich cases showed higher CD105-assessed MVD (p = 0.0380). In surgical specimens both median CD105- and CD31-assessed MVD were significantly higher in TSR low/stroma-rich than in TSR high/stroma-poor patients (p = 0.0089 and p = 0.0391). In the univariate Cox's model, TSR predicted disease-free survival (DFS) in both biopsies and surgical specimens (p = 0.0003 and p = 0.0002). DFS was associated with CD105- and CD31-assessed MVD in biopsies (p < 0.0001 for both) and surgical specimens (p < 0.0001 for both). Considering biopsies, the multivariate analysis found both TSR (p = 0.0032; HR = 6.112, 95%CI: 1.833-20.378) and CD105-assessed MVD (p = 0.0002; HR = 1.201, 95%CI: 1.090-1.322) as DFS predictor. In paired surgical specimens, both TSR (p = 0.0074; HR = 6.137, 95%CI: 1.626-23.172) and CD105-assessed MVD (p = 0.0005; HR = 1.172 95 %CI 1.071-1.282) retained their significance in multivariate analysis. CONCLUSIONS If confirmed by large prospective studies, TSR and MVD could be proposed as prognostic biomarkers of LSCC for a possible treatment intensification or targeted therapy.
Collapse
Affiliation(s)
| | - Marco Ferrari
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Padova, Italy; Technology for Health (PhD program), Department of Information Engineering, University of Brescia, Brescia, Italy; University Health Network (UHN) Guided Therapeutics (GTx) Program International Scholar, UHN, Toronto, Canada
| | - Stefano Taboni
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Padova, Italy; University Health Network (UHN) Guided Therapeutics (GTx) Program International Scholar, UHN, Toronto, Canada; Artificial Intelligence in Medicine and Innovation in Clinical Research and Methodology (PhD program), Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Marta Sbaraglia
- Department of Medicine DIMED, University of Padova, Padova, Italy
| | - Leonardo Franz
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Padova, Italy; University Health Network (UHN) Guided Therapeutics (GTx) Program International Scholar, UHN, Toronto, Canada
| | - Tommaso Saccardo
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Padova, Italy
| | | | - Francesca Agugiaro
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Padova, Italy
| | - Anna Chiara Frigo
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | | | - Gino Marioni
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Padova, Italy.
| |
Collapse
|
18
|
Detanac D, Jancic S, Sengul D, Sengul I, Detanac D. Expression of endoglin, CD105, in conjunctival melanocytic nevi: Is it suspicious like in thyroidology? Oculi plus vident quam oculus? Rev Assoc Med Bras (1992) 2022; 68:680-684. [DOI: 10.1590/1806-9282.20220152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | - Ilker Sengul
- Giresun University, Turkey; Giresun University, Turkey
| | | |
Collapse
|
19
|
Alhusaini AM, Fadda LM, Alanazi AM, Sarawi WS, Alomar HA, Ali HM, Hasan IH, Ali RA. Nano-Resveratrol: A Promising Candidate for the Treatment of Renal Toxicity Induced by Doxorubicin in Rats Through Modulation of Beclin-1 and mTOR. Front Pharmacol 2022; 13:826908. [PMID: 35281939 PMCID: PMC8913579 DOI: 10.3389/fphar.2022.826908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/30/2022] Open
Abstract
Background: Although doxorubicin (DXR) is one of the most used anticancer drugs, it can cause life-threatening renal damage. There has been no effective treatment for DXR-induced renal damage until now. Aim: This work aims at examining the potential impact of nano-resveratrol (N-Resv), native resveratrol (Resv), and their combination with carvedilol (Card) against DXR-induced renal toxicity in rats and to investigate the mechanisms through which these antioxidants act to ameliorate DXR nephrotoxicity. Method: DXR was administered to rats (2 mg/kg, i.p.) twice weekly over 5 weeks. The antioxidants in question were taken 1 week before the DXR dose for 6 weeks. Results: DXR exhibited an elevation in serum urea, creatinine, renal lipid peroxide levels, endoglin expression, kidney injury molecule-1 (KIM-1), and beclin-1. On the other hand, renal podocin and mTOR expression and GSH levels were declined. In addition, DNA fragmentation was markedly increased in the DXR-administered group. Treatment with either Resv or N-Resv alone or in combination with Card ameliorated the previously measured parameters. Conclusion: N-Resv showed superior effectiveness relative to Resv in most of the measured parameters. Histopathological examination revealed amelioration of renal structural and cellular changes after DXR by Card and N-Resv, thus validating the previous biochemical and molecular results.
Collapse
Affiliation(s)
- Ahlam M. Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Ahlam M. Alhusaini,
| | - Laila M. Fadda
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abeer M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wedad S. Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hatun A. Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanaa M. Ali
- Genetics and Cytology Department, National Research Centre, Cairo, Egypt
| | - Iman H. Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rehab Ahmed Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
The Dual Effect of the BMP9-ALK1 Pathway in Blood Vessels: An Opportunity for Cancer Therapy Improvement? Cancers (Basel) 2021; 13:cancers13215412. [PMID: 34771575 PMCID: PMC8582496 DOI: 10.3390/cancers13215412] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The modulation of tumor blood vessels is a great opportunity for improving cancer therapies. Understanding the cellular and molecular players that regulate the biology of tumor blood vessels and tumor angiogenesis is necessary for the development of new anti-tumor strategies. Bone morphogenetic protein 9 (BMP9) is a circulating factor with multiple effects in vascular biology through its receptor activin receptor-like kinase 1 (ALK1). In this review, we give an overview of the possible benefits of modulating BMP9–ALK1 functions for cancer therapy improvement. Abstract The improvement of cancer therapy efficacy, the extension of patient survival and the reduction of adverse side effects are major challenges in cancer research. Targeting blood vessels has been considered a promising strategy in cancer therapy. Since the tumor vasculature is disorganized, leaky and triggers immunosuppression and tumor hypoxia, several strategies have been studied to modify tumor vasculature for cancer therapy improvement. Anti-angiogenesis was first described as a mechanism to prevent the formation of new blood vessels and prevent the oxygen supply to tumor cells, showing numerous limitations. Vascular normalization using low doses of anti-angiogenic drugs was purposed to overcome the limitations of anti-angiogenic therapies. Other strategies such as vascular promotion or the induction of high endothelial venules are being studied now to improve cancer therapy. Bone morphogenetic protein 9 (BMP9) exerts a dual effect through the activin receptor-like kinase 1 (ALK1) receptor in blood vessel maturation or activation phase of angiogenesis. Thus, it is an interesting pathway to target in combination with chemotherapies or immunotherapies. This review manuscript explores the effect of the BMP9–ALK1 pathway in tumor angiogenesis and the possible usefulness of targeting this pathway in anti-angiogenesis, vascular normalization or vascular promotion therapies.
Collapse
|