1
|
Bolduc DL, Cary LH, Kiang JG, Kurada L, Kumar VP, Edma SA, Olson MG, Vergara VB, Bistline DD, Reese M, Kenchegowda D, Hood M, Korotcov A, Jaiswal S, Blakely WF. Natural-history Characterization of a Murine Partial-body Irradiation Model System: Establishment of a Multiple-Parameter Based GI-ARS Severity-Scoring System. Radiat Res 2024; 201:406-417. [PMID: 38319684 DOI: 10.1667/rade-23-00132.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/15/2023] [Indexed: 02/07/2024]
Abstract
The purpose of this investigation was to characterize the natural history of a murine total-abdominal-irradiation exposure model to measure gastrointestinal acute radiation injury. Male CD2F1 mice at 12 to 15 weeks old received total-abdominal irradiation using 4-MV linear accelerator X-rays doses of 0, 11, 13.5, 15, 15.75 and 16.5 Gy (2.75 Gy/min). Daily cage-side (i.e., in the animal housing room) observations of clinical signs and symptoms including body weights on all animals were measured up to 10 days after exposure. Jejunum tissues from cohorts of mice were collected at 1, 3, 7 and 10 days after exposure and radiation injury was assessed by histopathological analyses. Results showed time- and dose-dependent loss of body weight [for example at 7 days: 0.66 (±0.80) % loss for 0 Gy, 6.40 (±0.76) % loss at 11 Gy, 9.43 (±2.06) % loss at 13.5 Gy, 23.53 (± 1.91) % loss at 15 Gy, 29.97 (±1.16) % loss at 15.75 Gy, and 31.79 (±0.76) % loss at 16.5 Gy]. Negligible clinical signs and symptoms, except body weight changes, of radiation injury were observed up to 10 days after irradiation with doses of 11 to 15 Gy. Progressive increases in the severity of clinical signs and symptoms were found after irradiation with doses >15 Gy. Jejunum histology showed a progressive dose-dependent increase in injury. For example, at 7 days postirradiation, the percent of crypts, compared to controls, decreased to 82.3 (±9.5), 69.2 (±12.3), 45.4 (±11.9), 18.0 (±3.4), and 11.5 (± 1.8) with increases in doses from 11 to 16.5 Gy. A mucosal injury scoring system was used that mainly focused on changes in villus morphology damage (i.e., subepithelial spaces near the tips of the villi with capillary congestion, significant epithelial lifting along the length of the villi with a few denuded villus tips). Peak levels of total-abdominal irradiation induced effects on the mucosal injury score were seen 7 days after irradiation for doses ≥15 Gy, with a trend to show a decline after 7 days. A murine multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system was established based on clinical signs and symptoms that included measures of appearance (i.e., hunched and/or fluffed fur), respiratory rate, general (i.e., decreased mobility) and provoked behavior (i.e., subdued response to stimulation), weight loss, and feces/diarrhea score combined with jejunum mucosal-injury grade score. In summary, the natural-history radio-response for murine partial-body irradiation exposures is important for establishing a well-characterized radiation model system; here we established a multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system that provides a radiation injury gastrointestinal tissue-based assessment utility.
Collapse
Affiliation(s)
- David L Bolduc
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Lynnette H Cary
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Pharmacology and Molecular Therapeutics
| | - Juliann G Kiang
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Pharmacology and Molecular Therapeutics
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Lalitha Kurada
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
| | - Vidya P Kumar
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
| | - Sunshine A Edma
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Matthew G Olson
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
| | - Vernieda B Vergara
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Dalton D Bistline
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Mario Reese
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Doreswamy Kenchegowda
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
| | - Maureen Hood
- Biomedical Research Imaging Core at Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Alexandru Korotcov
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
- Biomedical Research Imaging Core at Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Shalini Jaiswal
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
- Biomedical Research Imaging Core at Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Preventive Medicine and Statistics, Uniformed Services of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
2
|
Ding Y, Zhou G, Hu W. Epigenetic regulation of TGF-β pathway and its role in radiation response. Int J Radiat Biol 2024; 100:834-848. [PMID: 38506660 DOI: 10.1080/09553002.2024.2327395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE Transforming growth factor (TGF-β) plays a dual role in tumor progression as well as a pivotal role in radiation response. TGF-β-related epigenetic regulations, including DNA methylation, histone modifications (including methylation, acetylation, phosphorylation, ubiquitination), chromatin remodeling and non-coding RNA regulation, have been found to affect the occurrence and development of tumors as well as their radiation response in multiple dimensions. Due to the significance of radiotherapy in tumor treatment and the essential roles of TGF-β signaling in radiation response, it is important to better understand the role of epigenetic regulation mechanisms mediated by TGF-β signaling pathways in radiation-induced targeted and non-targeted effects. CONCLUSIONS By revealing the epigenetic mechanism related to TGF-β-mediated radiation response, summarizing the existing relevant adjuvant strategies for radiotherapy based on TGF-β signaling, and discovering potential therapeutic targets, we hope to provide a new perspective for improving clinical treatment.
Collapse
Affiliation(s)
- Yunan Ding
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Gui R, Li W, Li Z, Wang H, Wu Y, Jiao W, Zhao G, Shen Y, Wang L, Zhang J, Chen S, Hao L, Cheng Y. Effects and potential mechanisms of IGF1/IGF1R in the liver fibrosis: A review. Int J Biol Macromol 2023; 251:126263. [PMID: 37567540 DOI: 10.1016/j.ijbiomac.2023.126263] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Liver fibrosis is a wound-healing response due to persistent liver damage and it may progress to cirrhosis and even liver cancer if no intervention is given. In the current cognition, liver fibrosis is reversible. So, it is of great significance to explore the related gene targets or biomarker for anti-fibrosis of liver. Insulin like growth factor 1 (IGF1) and IGF1 receptor (IGF1R) are mainly expressed in the liver tissues and play critical roles in the liver function. The present review summarized the role of IGF1/IGF1R and its signaling system in liver fibrosis and illustrated the potential mechanisms including DNA damage repair, cell senescence, lipid metabolism and oxidative stress that may be involved in this process according to the studies on the fibrosis of liver or other organs. In particular, the roles of IGF1 and IGF1R in DNA damage repair were elaborated, including membrane-localized and nucleus-localized IGF1R. In addition, for each of the potential mechanism in anti-fibrosis of liver, the signaling pathways of the IGF1/IGF1R mediated and the cell species in liver acted by IGF1 and IGF1R under different conditions were included. The data in this review will support for the study about the effect of IGF1/IGF1R on liver fibrosis induced by various factors, meanwhile, provide a basis for the study of liver fibrosis to focus on the communications between the different kinds of liver cells.
Collapse
Affiliation(s)
- Ruirui Gui
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Wanqiao Li
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Zhipeng Li
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Hongbin Wang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yuchen Wu
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Wenlin Jiao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Gang Zhao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Luping Wang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Jialu Zhang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Sihan Chen
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China.
| | - Yunyun Cheng
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Chakraborty N, Holmes-Hampton GP, Gautam A, Kumar R, Hritzo B, Legesse B, Dimitrov G, Ghosh SP, Hammamieh R. Early to sustained impacts of lethal radiation on circulating miRNAs in a minipig model. Sci Rep 2023; 13:18496. [PMID: 37898651 PMCID: PMC10613244 DOI: 10.1038/s41598-023-45250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Early diagnosis of lethal radiation is imperative since its intervention time windows are considerably short. Hence, ideal diagnostic candidates of radiation should be easily accessible, enable to inform about the stress history and objectively triage subjects in a time-efficient manner. Therefore, the small molecules such as metabolites and microRNAs (miRNAs) from plasma are legitimate biomarker candidate for lethal radiation. Our objectives were to comprehend the radiation-driven molecular pathogenesis and thereby determine biomarkers of translational potential. We investigated an established minipig model of LD70/45 total body irradiation (TBI). In this pilot study, plasma was collected pre-TBI and at multiple time points post-TBI. The majority of differentially expressed miRNAs and metabolites were perturbed immediately after TBI that potentially underlined the severity of its acute impact. The integrative network analysis of miRNA and metabolites showed a cohesive response; the early and consistent perturbations of networks were linked to cancer and the shift in musculoskeletal atrophy synchronized with the comorbidity-networks associated with inflammation and bioenergy synthesis. Subsequent comparative pipeline delivered 92 miRNAs, which demonstrated sequential homology between human and minipig, and potentially similar responses to lethal radiation across these two species. This panel promised to retrospectively inform the time since the radiation occurred; thereby could facilitate knowledge-driven interventions.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Raina Kumar
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, 21702-5010, USA
| | - Bernadette Hritzo
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Betre Legesse
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - George Dimitrov
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, 21702-5010, USA
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA.
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| |
Collapse
|
5
|
Chopra S, Moroni M, Sanjak J, MacMillan L, Hritzo B, Martello S, Bylicky M, May J, Coleman CN, Aryankalayil MJ. Whole blood gene expression within days after total-body irradiation predicts long term survival in Gottingen minipigs. Sci Rep 2021; 11:15873. [PMID: 34354115 PMCID: PMC8342483 DOI: 10.1038/s41598-021-95120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Gottingen minipigs mirror the physiological radiation response observed in humans and hence make an ideal candidate model for studying radiation biodosimetry for both limited-sized and mass casualty incidents. We examined the whole blood gene expression profiles starting one day after total-body irradiation with increasing doses of gamma-rays. The minipigs were monitored for up to 45 days or time to euthanasia necessitated by radiation effects. We successfully identified dose- and time-agnostic (over a 1-7 day period after radiation), survival-predictive gene expression signatures derived using machine-learning algorithms with high sensitivity and specificity. These survival-predictive signatures fare better than an optimally performing dose-differentiating signature or blood cellular profiles. These findings suggest that prediction of survival is a much more useful parameter for making triage, resource-utilization and treatment decisions in a resource-constrained environment compared to predictions of total dose received. It should hopefully be possible to build such classifiers for humans in the future.
Collapse
Affiliation(s)
- Sunita Chopra
- National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria Moroni
- Armed Forces Radiobiological Research Institute, Bethesda, MD, 20889, USA
| | | | | | - Bernadette Hritzo
- Armed Forces Radiobiological Research Institute, Bethesda, MD, 20889, USA
| | - Shannon Martello
- National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michelle Bylicky
- National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jared May
- National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, 20892, USA
| | - C Norman Coleman
- National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, 20892, USA.
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, 20892, USA.
| | - Molykutty J Aryankalayil
- National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, 20892, USA.
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, 20892, USA.
| |
Collapse
|